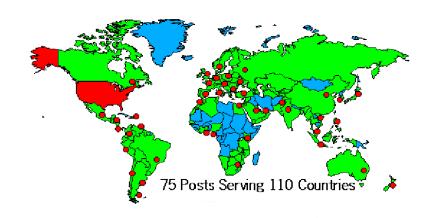
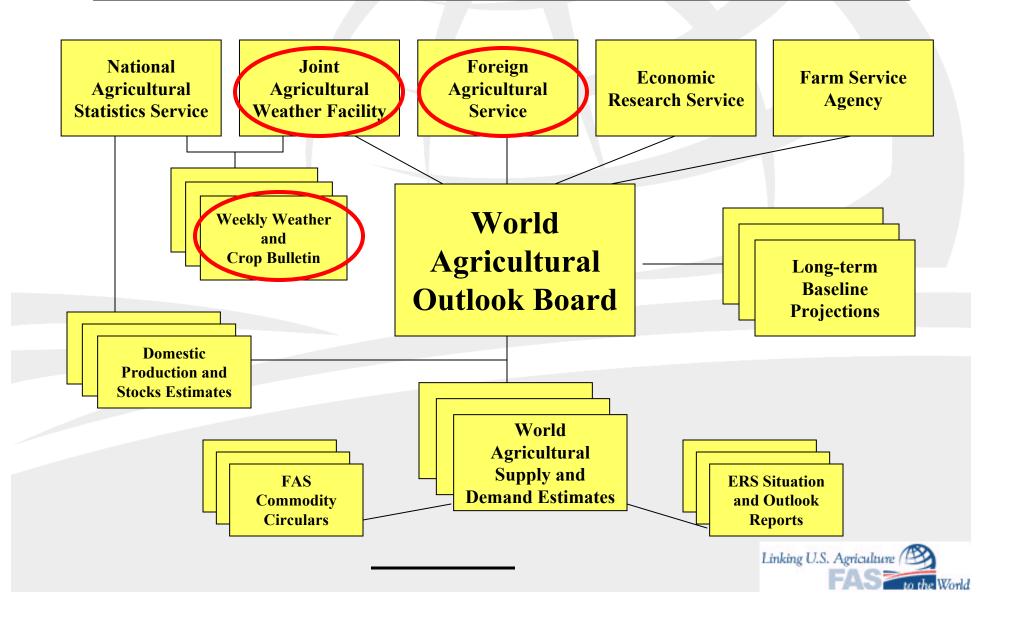
FAS/OGA/IPAD Introduction & Geospatial Data Applied to Global Agriculture Monitoring


USDA Foreign Agricultural Service (FAS)
Office of Global Analysis (OGA)
International Production Assessment Division (IPAD)
curt.reynolds@fas.usda.gov

USDA/FAS/OGA/IPAD

Foreign Agricultural Service (FAS) of USDA

Linking U.S. agriculture to the world to enhance export opportunities and global food security......


FAS Attachés Cover Over 70% of Global Land Area, and 85% of Foreign Global Population

- FAS is primarily responsible for USDA's:
 - Overseas activities with attachés located at 75 posts
 - Market development,
 - International trade agreements and negotiations,
 - Collection and analysis of statistics and market information.
- http://www.fas.usda.gov/aboutfas.html

USDA's Economic Information System

USDA's Economic Intelligence System

United States: Crop estimates
(supply/demand) prepared
every month by USDA's NASS
(National Agricultural
Statistical Service).

Foreign Countries: Crop estimates (supply/demand) audited & published every month by USDA's ICEC (Interagency Commodity Estimates Committee):

- WAOB (World Agricultural Outlook Board)
- FAS (Foreign Agricultural Service)
- **ERS** (Economic Research Service)
- World Agricultural Supply & Demand Estimates (WASDE) estimates released to commodity markets on the <u>9-12th day of each month at 8:30AM</u>.
- PSD Online from FAS provides historical and current crop estimates.

USDA/FAS Economic Analysis

Chicago Board of Trade (CBOT) & other commodity markets

Publications

- **III** Trade Policy
- **Exporter Assistance & Export Programs**
- **Food Aid & Export Credit Programs**
- UMR (Usual Marketing Requirements)

- USDA decision-makers
- **U.S. Ag Producers & Traders**
- **Commodity Price Discovery**
- **#** Commodity Price Adjustments

The Day of Lock-up

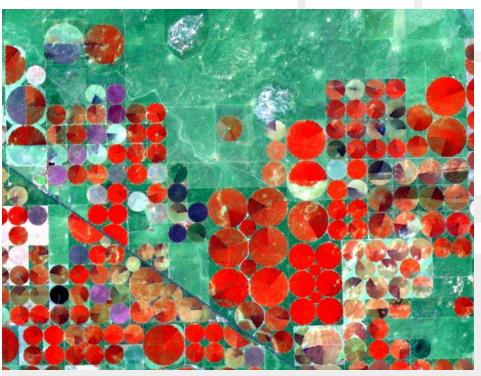
- Why: Maintain integrity with level playing field
- How often: Monthly, second week
- When: 2:00 a.m.
- Where: Secured wing in South Building
- What:
 - Incorporate NASS domestic estimates
 - Finalize PSDs and reports
 - Secretary Vilsack briefed and <u>WASDE report is released</u> at 8:30 a.m., before markets open
 - FAS reports and databases released at 9:00 a.m.

USDA's Economic Intelligence System

- Lockup End Results: Monthly estimates for each country are available on the internet at:
 - WASDE Circular from WAOB released on the <u>9-12th</u> day of each month at 8:30AM. (since Sept. 1973)
 http://www.usda.gov/oce/commodity/wasde/
 - Monthly World Production, Market and Trade Reports http://www.fas.usda.gov/currwmt.asp
 - PSD Online from FAS

http://www.fas.usda.gov/psdonline/

Goals of USDA's Economic Intelligence System


- Objective
 - Provide independent and unbiased information for commodity markets.
- Reliable
 - Best available information at current point in time.
 - Analysis based on sound data.
- Timely
 - Scheduled and immediate release for public, traders and commodity markets.

FAS Office of Global Analysis (OGA) International Production Assessment (IPAD) Division

IPAD's Mission Statement:

Produce the most objective and accurate assessment of the global agriculture <u>production</u> outlook, and the conditions affecting global food security.

- USDA's "Production and Supply Database" (PSD Online) is used for market intelligence (http://www.fas.usda.gov/psd/)
- IPAD's Heritage- Joint USDA/NASA/NOAA remote sensing programs from 1975-1988.
 - LACIE (mid-1970's): researched how to monitor agriculture with Landsat & NOAA satellite series.
 - AGRISTARS (1980's): developed automated applications using Landsat, NOAA, and weather data from U.S. Air Force Weather Agency (AFWA).

IPAD Data Sources & Output Products

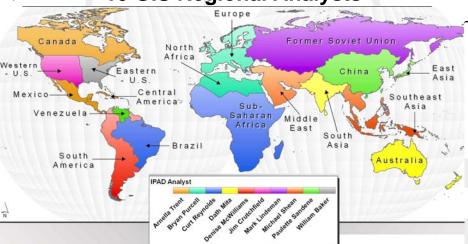
- FAS Field Travel
- Official Country Reports
- News Wire Services
- •FAS Attaché Reports

(http://www.fas.usda.gov/)

Weather Data (stations & satellites)

Crop models (stations & satellites)

Vegetation Data (satellites)


•Medium-resolution & temporal coverage

- ■NOAA-AVHRR (1 & 8-km)
- ■SPOT-IV (1-km)
- ■MODIS (250-meters)

ne-resolution satellites

- ■Landsat-7 (30-meters with 185-km swath width)
- ■AWiFS on IRS satellite (70-m with 740-km swath width)

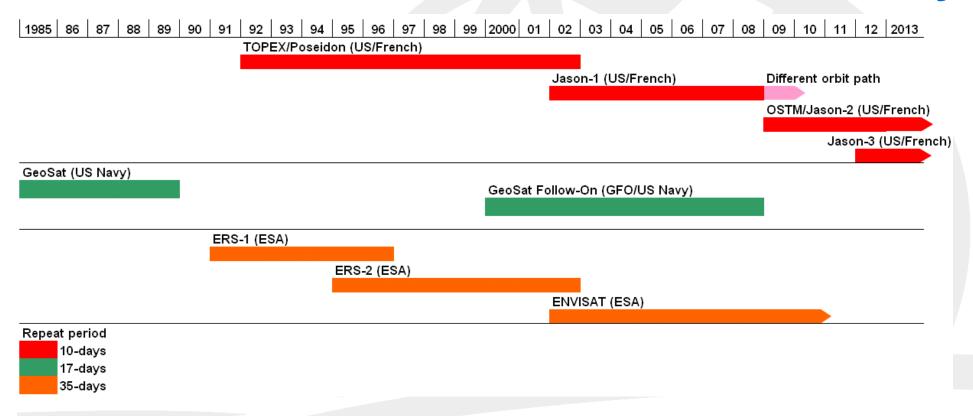
10 GIS Regional Analysts

Crop Production Estimates Released Each Month

- World Agricultural Supply & Demand Estimates (WASDE)
- •World Agricultural Production (WAP) Circular
- Production & Supply Database (PSD Online)

Summary Satellites Used by IPAD

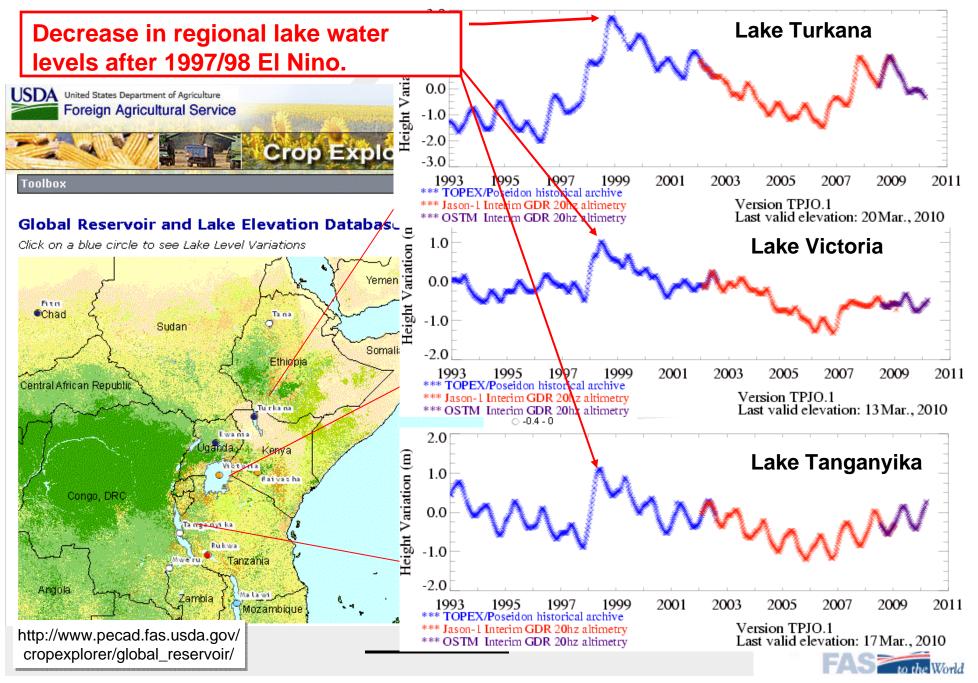
- Geo-stationary satellites monitor weather (rainfall & temperature) which is collected/processed by US Air Force Weather Agency (AFWA) at 25-km resolution
 - GOES (North & South America)
 - METEOSAT (Europe & Africa), and
 - GMS (Asia and Australia)
- <u>Polar-orbiting satellites</u> monitor <u>NDVI</u> & generate false-color composites for year-to-year comparisons (at 250-m resolution)
 - <u>Daily repeat cycle</u>
 - NOAA-AVHRR (1-km and 8-km resolution),
 - SPOT-VGT (1-km resolution),
 - Terra/Aqua Satellites (MODIS sensor with 250 meter resolution)
 - SSM/I (Special Sensor Microwave Imager (SSM/I, 25-km) to monitor surface wetness
 - 16-day and 24-day (5-day) repeat cycle
 - Landsat-7 (30-m) and AWiFS (55-m) on IRS
- <u>Radar altimeter satellites</u> monitor lake water-level variations (with 10-day overpass)
 - <u>70+ lakes:</u> TOPEX/Poseidon (1992-2002), Jason-1 (2002-2009), OSTM Jason 2 (2009-present)
 - 300+ lakes: ERS and ENVISAT from ESA


Global Reservoir and Lake Monitor (GRLM)

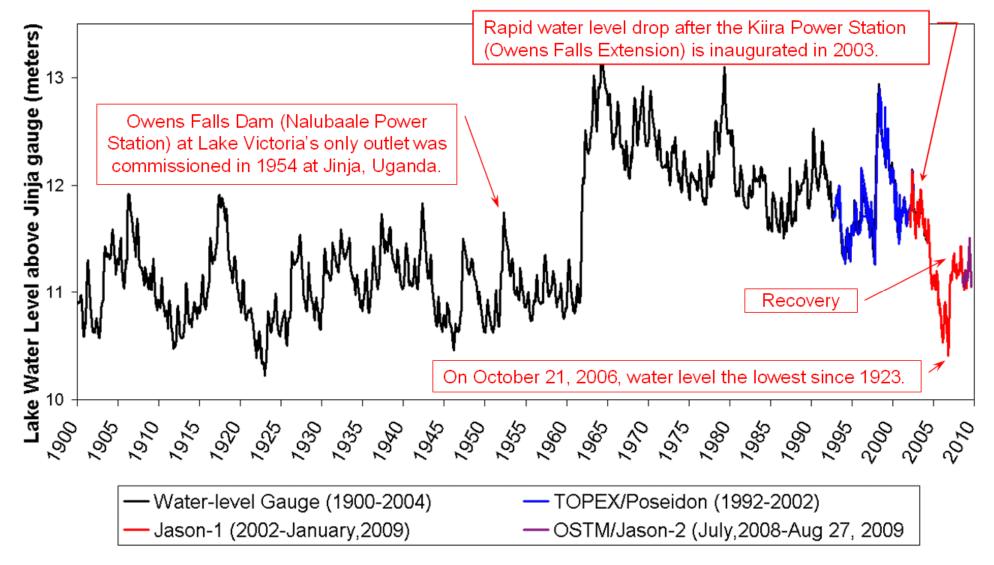
Source: http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/

GRLM measures reservoir/lake height variations from 1992-present for 70+ lakes worldwide by utilizing <u>satellite radar altimeters</u>.

Timeline for Satellite Radar Altimetry



Recent Events:

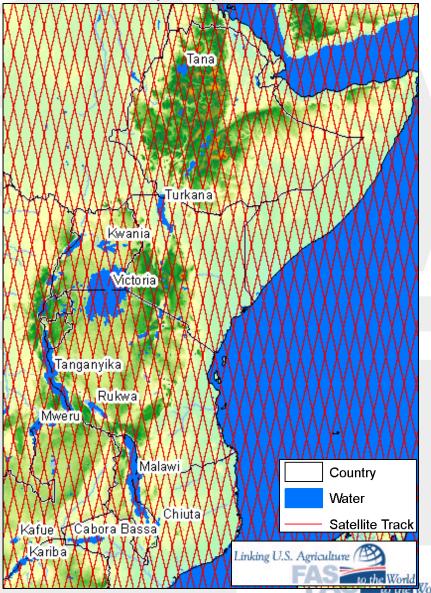

- Sept. 17, 2008: End of Mission for GFO (Geosat Follow-On)
- <u>June 20, 2008:</u> Jason-2 or OSTM (Ocean Surface Topography Mission) was launched and follows Jason-1 orbit
- <u>Feb. 14, 2009</u>: Jason-2 continues along TOPEX/Poseidon/Jason-1 orbits and Jason-1 moved to new satellite orbit

1997/98 El Niño Effects on East Africa Lakes

Historical Water Level Elevations for Lake Victoria

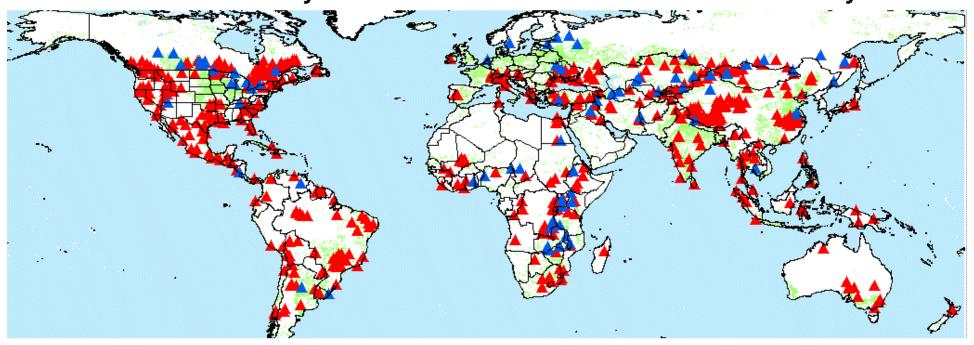
Data Source:

Water-level gauge data from Jinja, Uganda (near Lake Victoria's outlet) Satellite radar altimeter data from USDS/NASA/UMD at: http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/


U.S. Department of Agricultural (USDA)
Foreign Agricultural Service (FAS)
Office of Global Analysis (OGA)
International Production
Assessment Division (IPAD)

Different Satellite Orbits and Repeat Cycles

OSTM/Jason-2 Satellite Orbit with 10-day Repeat Cycle


Turkana Kwania Victoria Tanganyika Rukwa Mwe ru Kafue Cabora Bassa

ENVISAT Satellite Orbit with 35-day Repeat Cycle

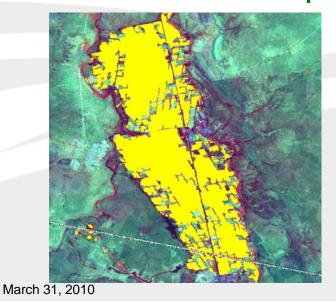
Potential GRLM Improvement with ENVISAT

Current Lakes Monitored by Jason-2/OSTM and Potential Lakes Monitored by ENVISAT

- Current Jason-2/OSTM Lakes (73)
- Potential ENVISAT Lakes (611)
- Croplands

Data Source: Source: http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/

Global Agricultural Monitoring (GLAM)

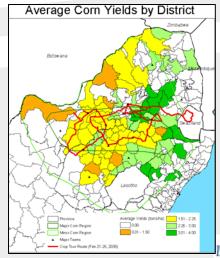

(Joint USDA/NASA funded project)

Area

AWiFS (56-m) Landsat (30-m)

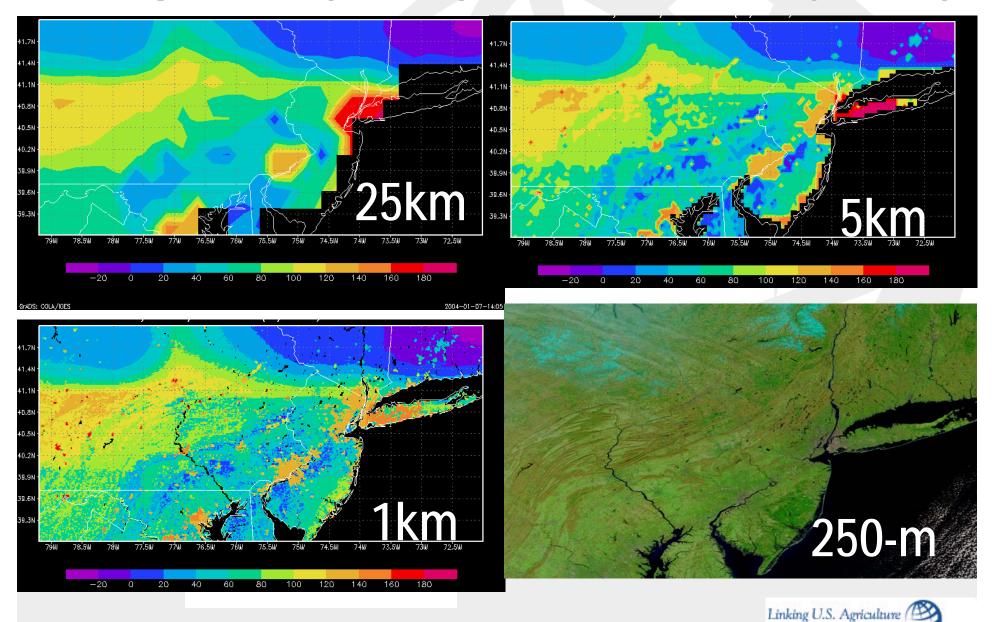
Semi-automated classification algorithms

Change in Area Estimates and Mid-season Dominate Crop Masks



Yield

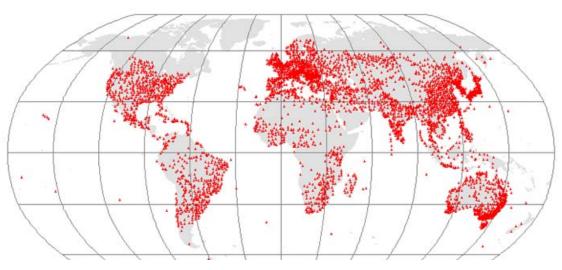
MODIS-CropNDVI (250-meter) **Time Series Maps and Graphs**


Regression and analog year algorithms

Mid-season to End-of-season Yield Estimates and Maps

Precipitation (25-km) to MODIS-NDVI (250-m)

World Meteorological Organization (WMO)


Daily Data Loaded Next Day:

- 24-hour precipitation
- Max Temp
- Min Temp
- Snow Coverage

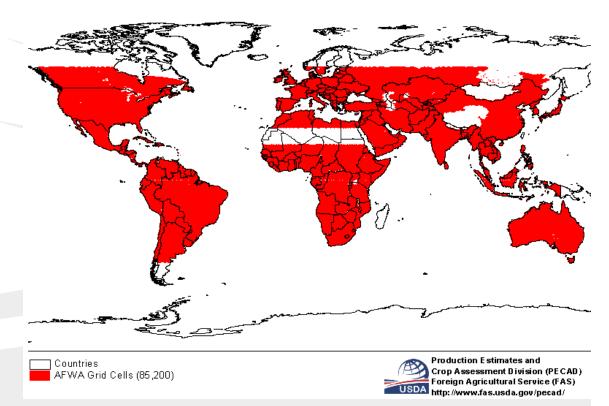
PECAD Adds to CADRE:

- Average Daily Temperature
- Cumulative precipitation
- Potential ET
- Soil Moisture
- Crop Calendar
- Corn Hazard (Alarm)
- Winterkill Model

"Yesterday's Weather Delivered Today"

Daily weather data provided by approximately 7000 WMO ground stations

Air Force Weather Data (AFWA)

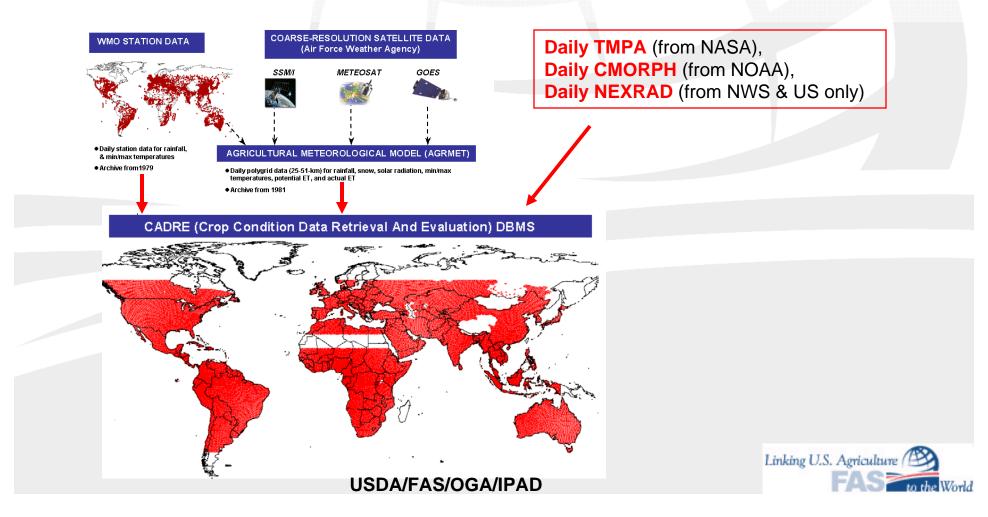

Daily AFWA Data Loaded Next Day:

- 24-hour precipitation
- Max Temp
- Min Temp
- Snow Coverage
- Actual and Potential ET
- Solar and IR Radiation

PECAD Adds to CADRE:

- Average Daily Temperature
- Cumulative precipitation
- Potential ET
- Soil Moisture
- Crop Calendar
- Corn Hazard (Alarm)
- Relative Yield Reduction
- Winterkill Model

Spatial Coverage of AFWA Weather Data



CADRE

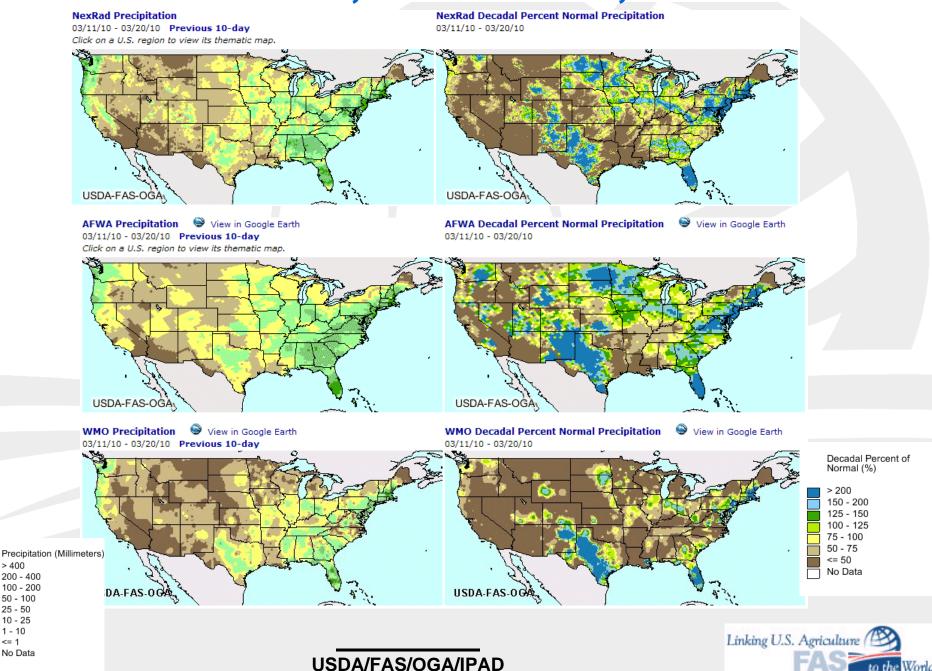
(Crop Assessment Data Retrieval & Evaluation)

CADRE is a geospatial database that stores (in Oracle):

- Daily weather station data (from WMO/GTS)
- Daily weather grid cell data (from AFWA)
 - Grid cell resolution (25km near equator & 51km near poles)
- Daily TMPA (from NASA), Daily CMORPH (from NOAA), and Daily NEXRAD (from NWS)

Summary Global Precipitation Data Sets Utilized by IPAD

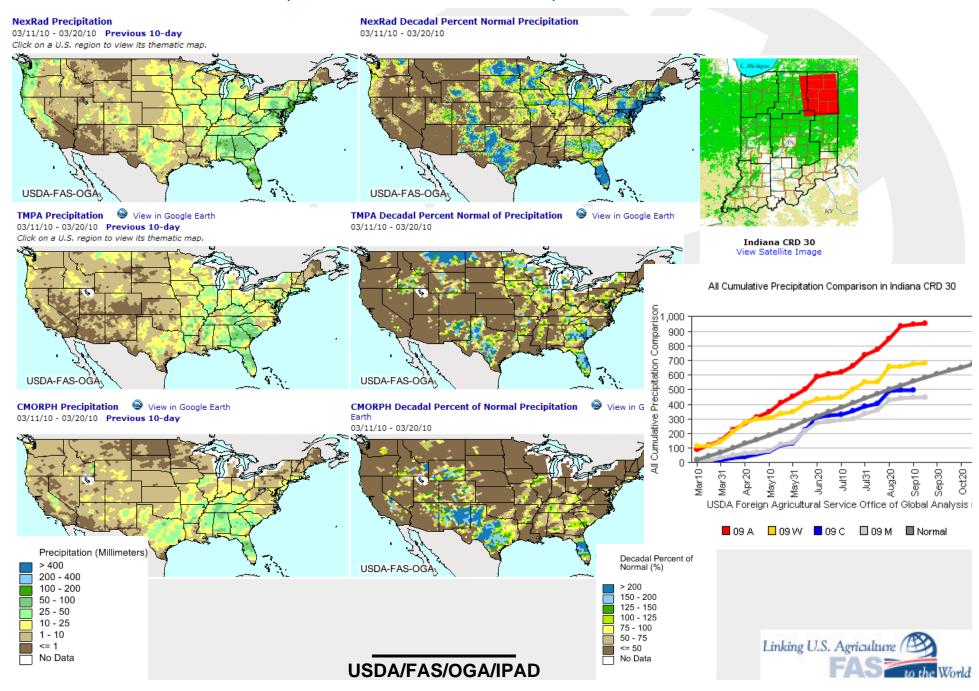
Product/Source1.	Spatial Resolution	Coverage	Infrared Geostationary	Passive Microwave	Active Radar	Ground Station	
			Satellites (IR)	(PMW)		Gauge (SG)	
GTS/WMO and	approx. 7500	Global	No	No	No	Yes	
NOAA/NWS	stations						
(for USA)	report daily						
AGRMET/	47-km at 60°	Global	Yes	SSM/I	No	Yes,	
AFWA	latitude (true) and	60° N-S				GTS/WMO,	
	25-km at the					NOAA/NWS,	
	equator					and others	
CMORPH/	8-km at equator	Global	Yes	SSM/I,TMI,	No	No	
NOAA-CPC	_	60° N-S		AMSR-E,			
				AMSU-B			
TMPA-RT	0.25 degrees or	Global/	Yes	SSM/I,TMI,	No	No ^{2.}	
(3B42RT)/	approx. 28-km	50° N-S		AMSR-E,			
NASA-DISC				AMSU-B			
NEXRAD/	4-km	USA/	Yes ³	No	Ground	Yes,	
NOAA-NWS		lower 48			Doppler	NOAA/NWS	


^{1.} USDA/FAS' CADRE receives daily all precipitation products listed and Crop Explorer aggregates the daily products into 10-day time periods for agricultural monitoring.

^{2.} Station gauges (SG) are added more than one month later to the 3B42RT product to produce an after real-time global precipitation product called 3B42 (V6).

^{3.} Satellite precipitation estimates (SPE) are incorporated in regions where there is limited or no radar coverage.

NEXRAD, Old-AFWA, WMO



> 400

200 - 400 100 - 200

<= 1 No Data

NEXRAD, NOAA-CMORPH, and TMPA-NASA

CADRE

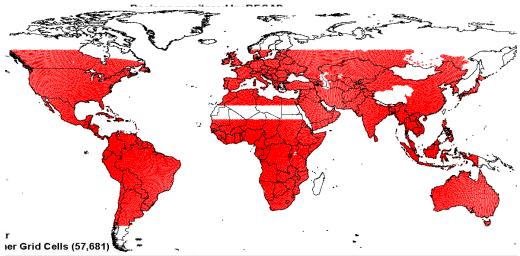
CADRE stores baseline geospatial data sets:

- Climate 30-year normals & NDVI multi-year averages
- Soils water holding capacity
- Average crop planting dates

CADRE calculates and stores daily soil moisture, crop calendar and crop modeling data.

2-LAYER SOIL MOISTURE MODEL

• Estimates soil moisture daily for stations and grid cells.

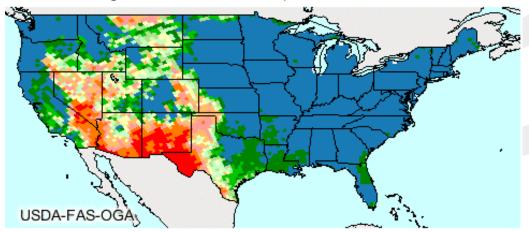

CROP STRESS (ALARM) MODELS

- Meteorological data filters that provide early warning to adverse weather conditions.
- Crop hazard algorithms monitor crop stress for corn, wheat, soybean, sorghum, and barley.
- Flag regional weather anomalies that exceed temperature and soil moisture thresholds for the particular crop.

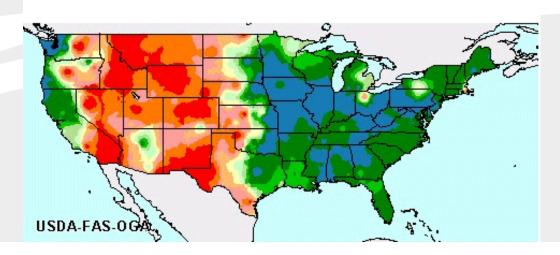
CROP MODELS

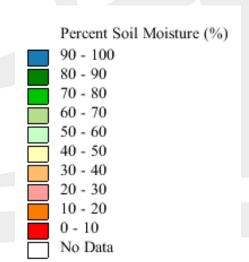
- Crop calendar models crop stages for corn, wheat, and sorghum.
- Relative yield-reduction models based on crop water production functions.
- Models include wheat (CERES, AGRISTARS, Maas, & URCROP), corn (AGRISTARS & URCROP), soybean (Sinclair), sorghum (AGRISTARS) & barley (URCROP).

CADRE (Crop Condition Data Retrieval And Evaluation) DBMS


AFWA & WMO Soil Moisture

(modified 2-layer Palmer Model)

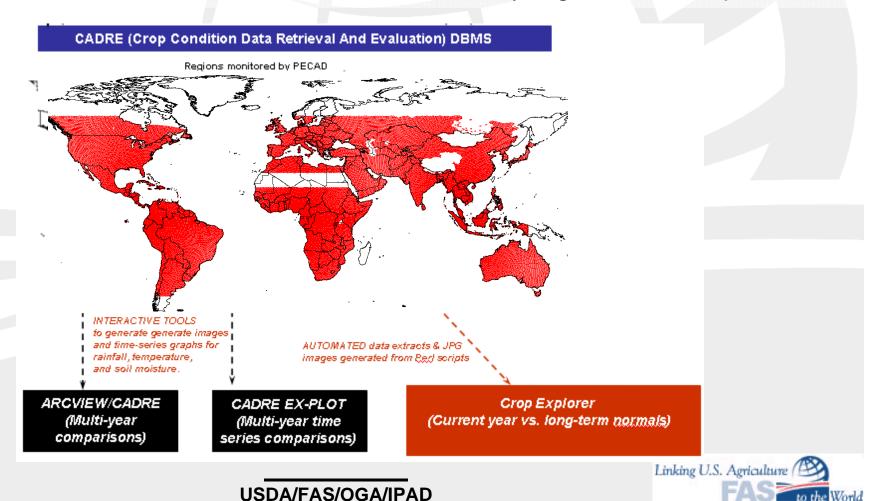

AFWA Percent Soil Moisture
View in Google Earth


03/11/10 - 03/20/10 Previous 10-day

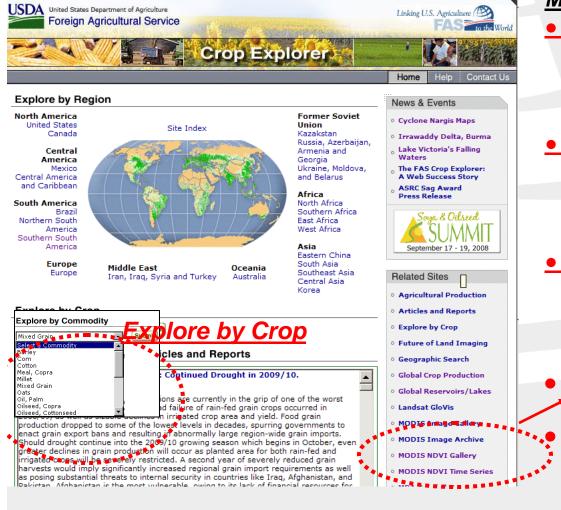
Click on a U.S. region to view its thematic map.

WMO Percent Soil Moisture View in Google Earth 03/11/10 - 03/20/10 Previous 10-day

Summary Global Soil Moisture Data Sets Utilized by IPAD


Product	Data Source	Spatial	Coverage	Input Data	Infrared	Passive	Ground
	(process	Resolution			Geosta-	Microwave	Station
	agency)				tionary		with Gauge
					Satellites		
"Station" 2-layer	GTS/WMO	16,000	Global	Daily rainfall	No	No	Yes,
Soil Moisture Model	and NOAA-	total		and min/max			approx. 7500
(modified Palmer)	NWS for USA	stations		temperatures for			stations report
	(USDA/FAS)			PET calculations			daily
"Grid cell" 2-layer	AGRMET/	47-km at 60°	Global	Daily rainfall	Yes	SSM/I	Yes,
Soil Moisture Model	AFWA	latitude (true)	60° N-S	and min/max			GTS/WMO,
(modified Palmer)	(USDA/FAS)	and 25-km at		temperatures for			NOAA/NWS,
		the equator		PET calculations			and others
"Corrected"	AGRMET/	47-km at 60°	Global	"Grid cell" Soil	Yes	SSM/I and	Yes,
(AMSR-E) 2-layer	AFWA and	latitude (true)	60° N-S	Moisture		"corrected"	GTS/WMO,
Soil Moisture Model	MODIS/	and 25-km at		"corrected"		with MODIS/	NOAA/NWS,
(modified Palmer)	AMSR-E	the equator		every 3-days		AMSR-E data	and others
	(USDA/ARS/	_		with MODIS/			
	HRSL)			AMSR-E data			
Surface	SSM/I	1/3-degree or	Global/	Current week	No	SSM/I	No
Wetness	(WeatherPre-	approx. 37-km	80° N-S	compared to 20-			
	dict Consult-			year climatology			
	ing-WPC)						

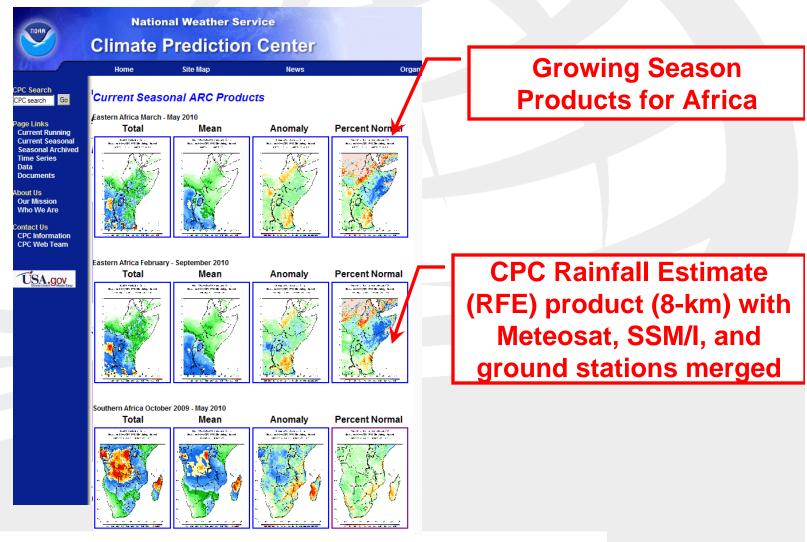
CADRE


CADRE allows data to be displayed:

- Automatic: "Crop Explorer" products are displayed on the Internet every 10-days and for summer/winter growing seasons
- Interactive: Arcview GIS extractions for any region and time period.

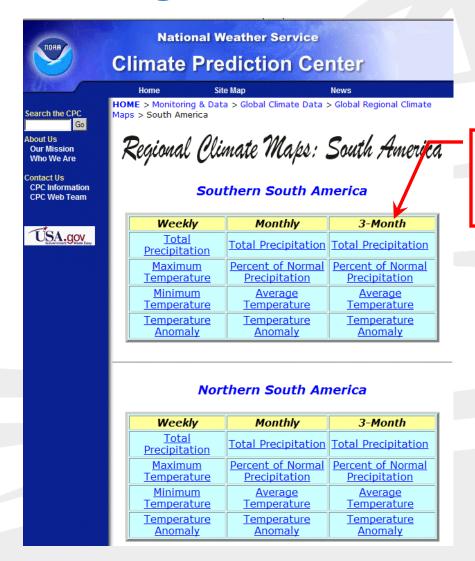
Crop Explorer

(displays numerous weather and vegetation condition data sets over major crop regions every 10-days)



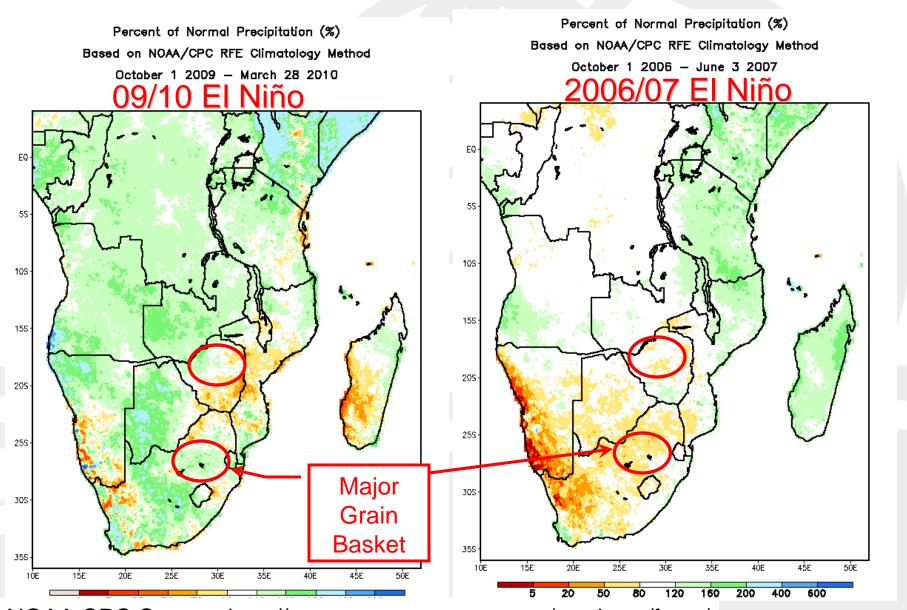
Maps and time-series charts for:

- Weather Data (AWFA, WMO, CMORPH, TMPA, and NEXRAD)
 - Dekadal (10-day) precipitation & temperatures compared to climate normals
- Soil Moisture & Crop Models
 - Modified Palmer two-layer soil moisture
 - <u>Behind firewall:</u> Crop calendars for wheat, corn, & sorghum and corn hazard/alarm model.
- Vegetation Indices (polar-orbiting satellites)
 - GAC (8-km) (behind firewall)
 - SPOT-VEG (1-km)
 - MODIS (250-m)
 - Daily MODIS
 - Aqua and Terra (250-m)
 - Lake/Reservoir Heights
 - TOPOX/Poseidon, Jason-1, Jason-2
 - GFO
 - ERS, ENVISAT


FAS/IPAD & NOAA/CPC Are Partners with USAID's FEWS-NET (Africa & beyond)

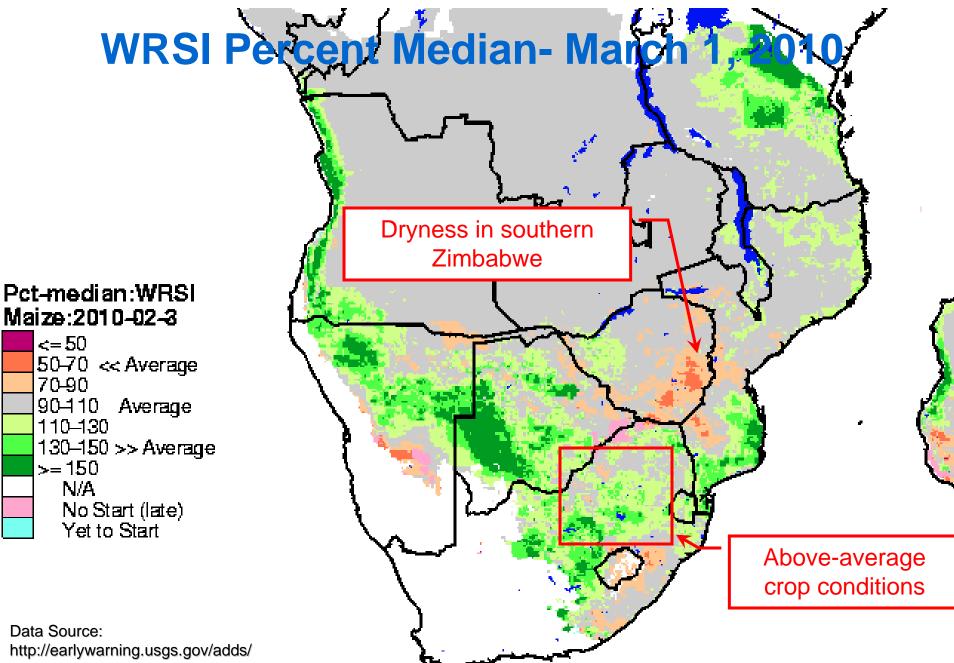
NOAA CPC Source: http://www.cpc.ncep.noaa.gov/products/fews/AFR_CLIM/afr_clim_season.shtml

Growing Seasons for Other Continents?


Growing Season Products (4-6 months) for South America and other continents??

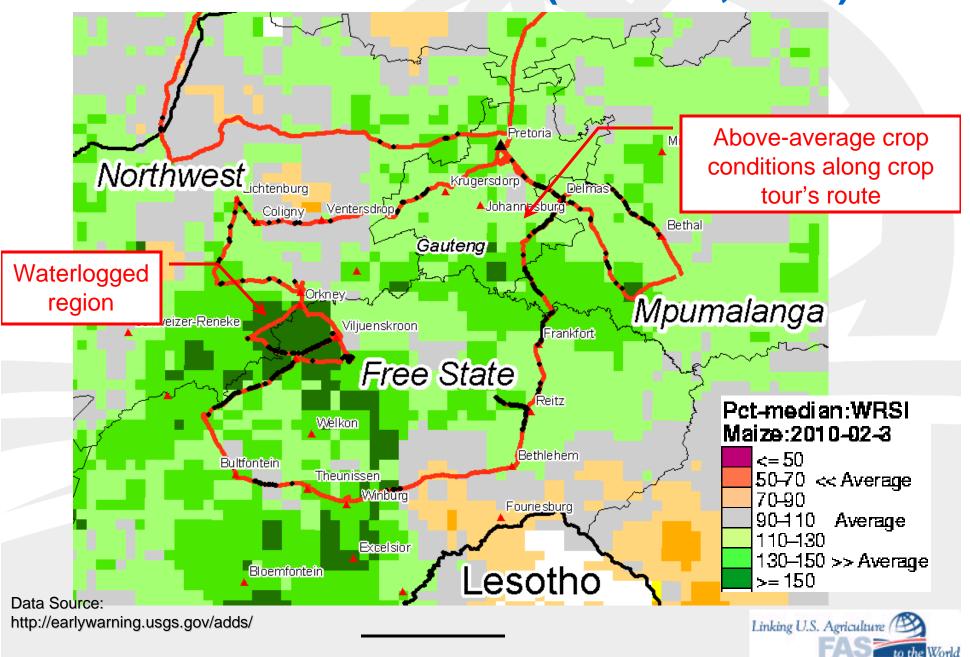
NOAA CPC Source: http://www.cpc.noaa.gov/products/ analysis_monitoring/regional_monitoring/south_america.shtml

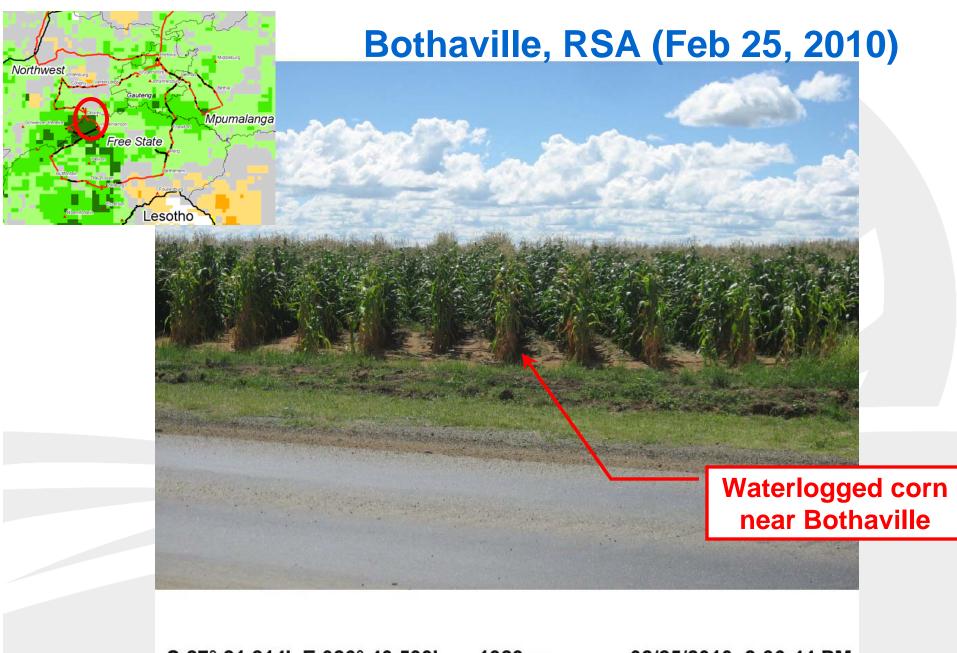
USDA/FAS/OGA/IPAD



Southern Africa El Niño Comparison

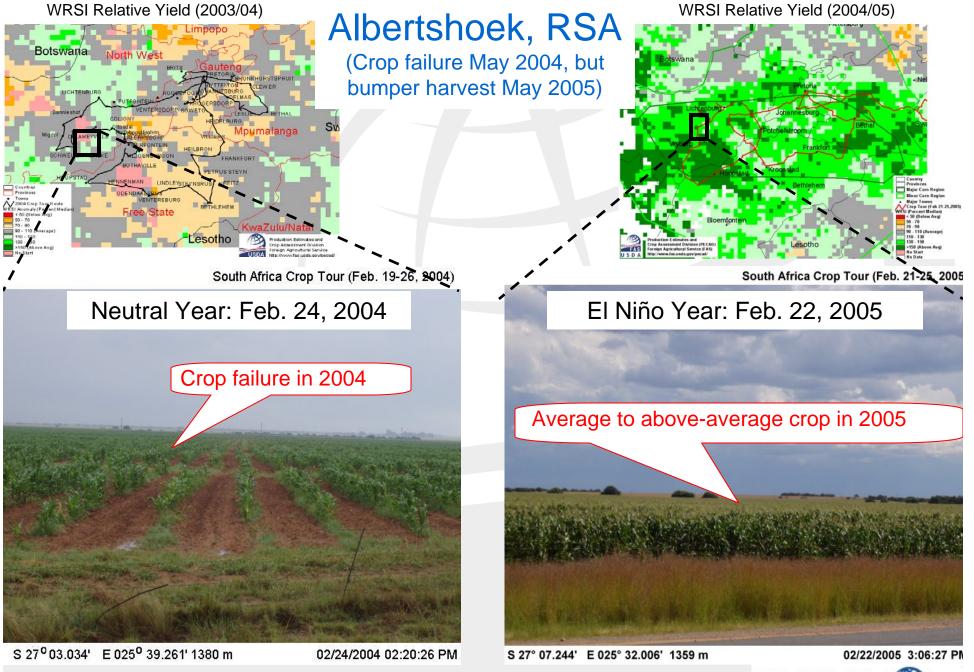
nking U.S. Agriculture /


NOAA CPC Source: http://www.cpc.ncep.noaa.gov/products/fews/AFR_CLIM/afr_clim_season.shtml



Data Source: http://earlywarning.usgs.gov/adds/

WRSI Percent Median (March 1, 2010)



S 27° 21.214' E 026° 40.599'

1323 m

02/25/2010 2:36:44 PM

GPS and digital camera data integrated with relative-yield model.

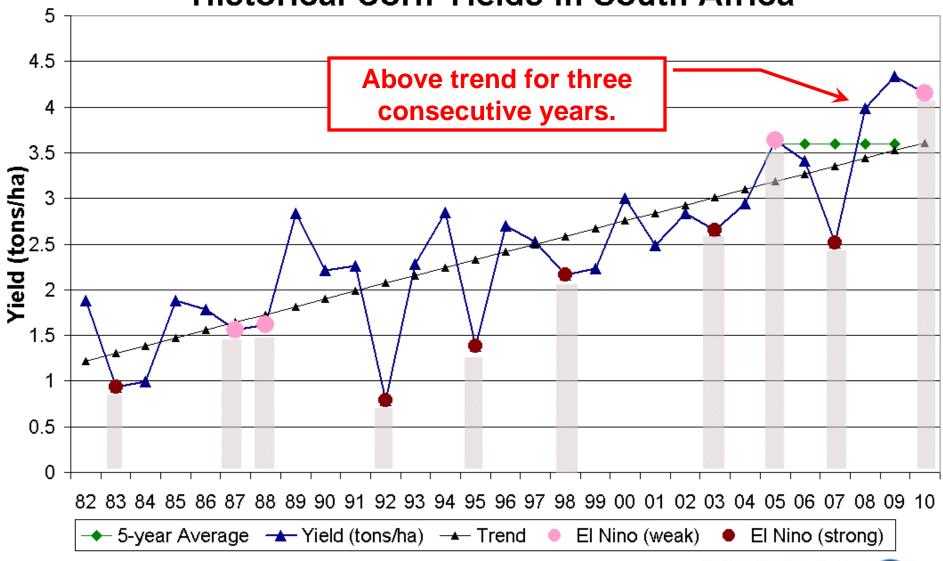
WRSI (March 20, 2007) – El Niño Year

South Africa Botswana Numerous late-planted fields died from water stress in Lichtenburg March, 2007. Ventersdorp A Johannesburg Delmas Delareyville Ottosdal Klerksdorp Heilbron Frankfort Hoopstad Hennenman **Crop Tour Route** (Feb 19-22, 2007) Countries Major Corn Region Minor Corn Region Towns Percent Median (WRSI) <= 50 50 - 70 << Average 70 - 90 90 - 110 Average 110 - 130 130 - 150 >> Average 150 - 250Yet to Start No Start 02/21/2007 8:47:49 AM S 27° 17.184' E 026° 48.634' 4454 ft Linking U.S. Agriculture WRSI Data Source: http://igskmncnwb015.cr.usgs.gov/adds/

Historical Pacific warm (red) and cold (blue) episodes based on a threshold of +/- 0.5 °C for the Oceanic Nino Index (ONI) [3 month running mean of ERSST.v3b SST anomalies in the Nino 3.4 region (5N-5S, 120-170W)], calculated with respect to the 1971-2000 base period. For historical purposes El Niño and La Niña episodes are defined when the threshold is met for a minimum of 5 consecutive over-lapping seasons.

Year	DJF	JFM	FMA	MAM	AMJ	MJJ	JJA	JAS	ASO	SON	OND	NDJ
2002	-0.1	0.1	0.2	0.4	0.7	0.8	0.9	1.0	1.1	1.3	1.5	1.4
2003	1.2	0.9	0.5	0.1	-0.1	0.1	0.4	0.5	0.6	0.5	0.6	0.4
2004	0.4	0.3	0.2	0.2	0.3	0.5	0.7	0.8	0.9	0.8	0.8	0.8
2005	0.7	0.5	0.4	0.4	0.4	0.4	0.4	0.3	0.2	-0.1	-0.4	-0.7
2006	-0.7	-0.6	-0.4	-0.1	0.1	0.2	0.3	0.5	0.6	0.9	1.1	1.1
2007	0.8	0.4	0.1	-0.1	-0.1	-0.1	-0.1	-0.4	-0.7	-1.0	-1.1	-1.3
2008	-1.4	-1.4	-1.1	-0.8	-0.6	-0.4	-0.1	0.0	0.0	0.0	-0.3	-0.6
2009	-0.8	-0.7	-0.5	-0.1	0.2	0.6	0.7	0.8	0.9	1.2	1.5	1.8
2010	1.7		\									
2011												
2012												
2013												
2014												
2015												
2016												
2017												
2018			NOAA/	CPC Sou	ırce:							
2019				ww.cpc		oaa d						
2020			ov/proc	luoto/on	alveis	manit						
2021	ov/products/analysis_monit											
2022	oring/enso_advisory/index.											
2023			shtml									
2024												
2025												
2026										Linking l	J.S. Agricultu	ne AS
2027										N.	FAS	to the Wor

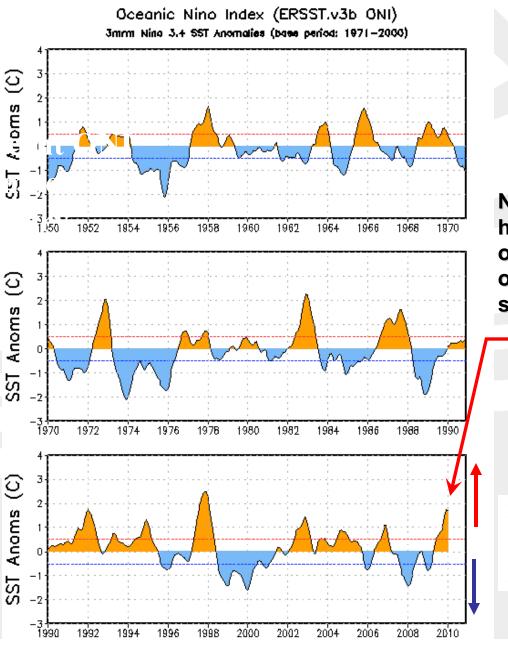
Historical El Niño and La Niña Episodes


Based on the ONI computed using ERSST.v3b

NOTE:

After updating the ocean analysis to ERSST.v3b, a new La Niña episode was classified (ASO 1962-DJF 1962/63) and two previous La Niña episodes were combined into one single episode (AMJ 1973- MAM 1976).

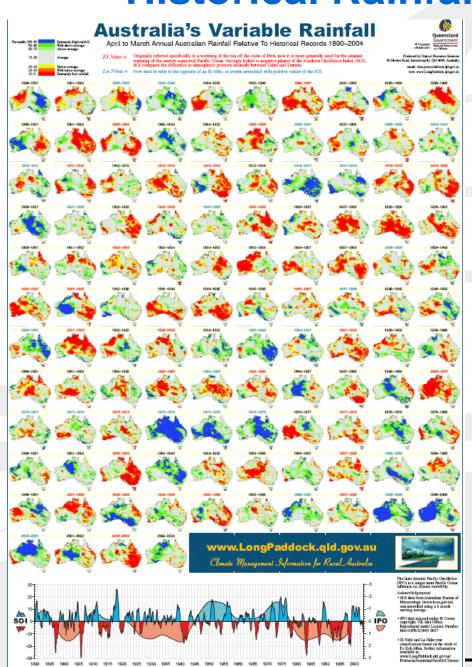
	Highest		Lowest
El Niño	ONI Value	La Nina	ONI Value
JAS 1951 - NDJ 1951/52	0.8	ASO 1949 – FMA 1951	-1.7
MAM 1957 – MJJ 1958	1.7	MAM 1954 – DJF 1956/57	-2.1
JJA 1963 – DJF 1963/64	1.0	ASO 1962 – DJF 1962/63	-0.8
MJJ 1965 – MAM 1966	1.6	MAM 1964 – DJF 1964/65	-1.1
OND 1968 – MJJ 1969	1.0	NDJ 1967/68 – MAM 1968	-0.9
ASO 1969 – DJF 1969/70	0.8	JJA 1970 – DJF 1971/72	-1.3
AMJ 1972 – FMA 1973	2.1	AMJ 1973 – MAM 1976	-2.0
ASO 1976 – JFM 1977	0.8	SON 1984 – ASO 1985	-1.0
ASO 1977 - DJF 1977/78	0.8	AMJ 1988 – AMJ 1989	-1.9
AMJ 1982 – MJJ 1983	2.3	ASO 1995 – FMA 1996	-0.7
JAS 1986 – JFM 1988	1.6	JJA 1998 – MJJ 2000	-1.6
AMJ 1991 – JJA 1992	1.8	SON 2000 – JFM 2001	-0.7
AMJ 1994 – FMA 1995	1.3	ASO 2007 – AMJ 2008	-1.4
AMJ 1997 – AMJ 1998	2.5		
AMJ 2002 – FMA 2003	1.5	NOAA/CPC Sourc	
MJJ 2004 – JFM 2005	0.9	http://www.cpc.nd ov/products/analy	-
JAS 2006 - DJF 2006/07	1.1	oring/enso_adviso shtml	

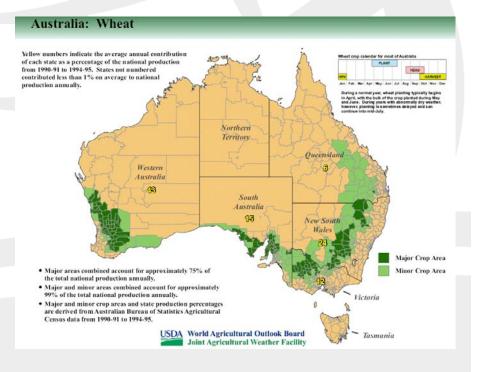

Historical Corn Yields in South Africa

Data Source: Historical yield data from USDA's PSD Online and El Nino classification from NOAA's Climate Prediction Center (CPC)

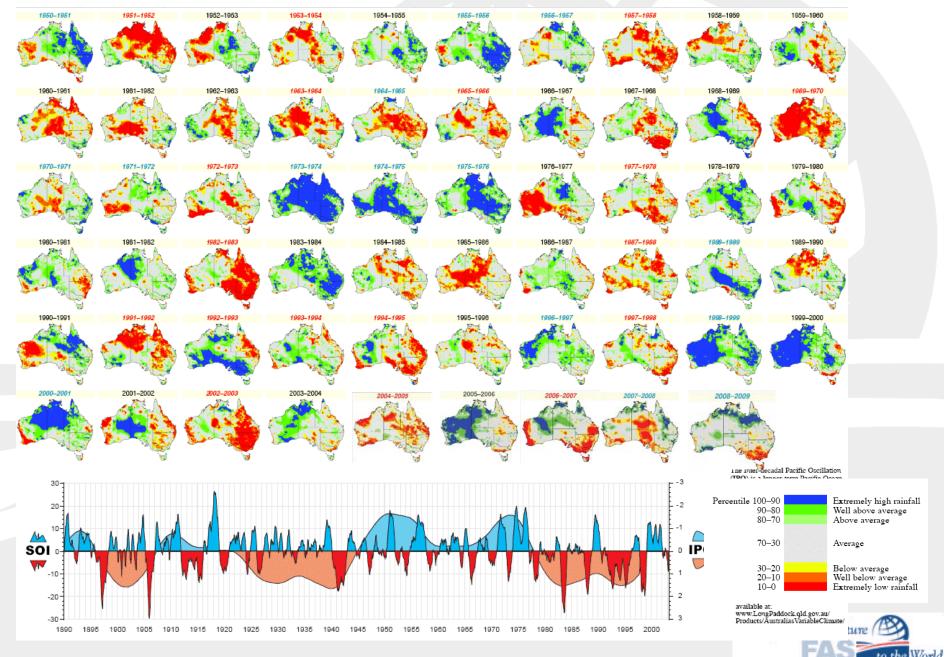
ONI (°C): Evolution since 1950

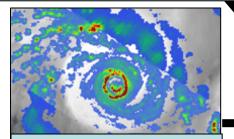
NOAA/CPC Source: http://www.cpc.ncep.noaa.g ov/products/analysis_monit oring/enso_advisory/index. shtml


Waterlogged corn fields in South Africa when should be drought.

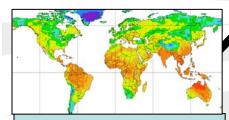

El Niño neutral

La Niña

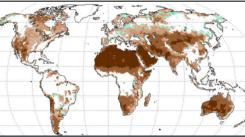

Historical Rainfall in Australia

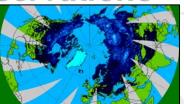


Historical Rainfall in Australia

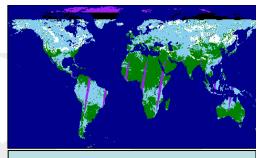


Vegetation/Carbon (Landsat, AVHRR, MODIS, VIIRS, MetOp, DESDynl, ICESat-II, HyspIRI, LIST, ASCENDS)


Precipitation (TRMM, GPM)

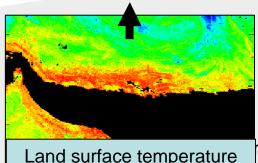

Radiation (CERES, *CLARREO*)

Modified from NASA- Peters-Lidard

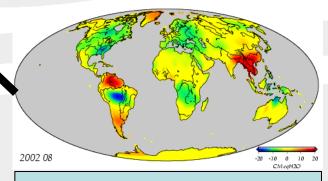

Near Future Observations

Surface soil moisture (SMMR, TRMM, AMSR-E, SMOS, Aquarius, SMAP)

Snow water equivalent (AMSR-E, SSM/I, SCLP, GCOM-W, MIS)



Snow cover fraction (MODIS, *VIIRS, MIS*)



Water surface elevation (Jason-2, SWOT)

Land surface temperature (MODIS, AVHRR,GOES,...)

Terrestrial water storage (GRACE, GRACEII)

Possible CPC Assistance for Improving Global Agriculture Monitoring

- Improve <u>daily</u> global station gauge network from WMO/GTS, NWS & NOAAPORT/JAWF.
- Integrate daily global station network into daily CMORPH product (action: AFWA/NASA/NOAA)
- Set-up global growing season product for each continent
 - similar to RFE Africa/FEWSNET seasonal products at CPC.

Summary OGA/IPAD & FAS Web Outreach

- FAS PS&D On-line
 - http://www.fas.usda.gov/psd/psdselection.asp
- FAS (attache reports)
 - http://www.fas.usda.gov/scriptsw/attacherep/default.asp
- OGA/IPAD analyst updates
 - http://www.pecad.fas.usda.gov/search.cfm
- OGA/IPAD Crop Explorer (weather & NDVI)
 - http://www.pecad.fas.usda.gov/cropexplorer/index1.cfm
- OGA/IPAD Archive Explorer (AWiFS Landsat images)
 - http://www.pecad.fas.usda.gov/remote.cfm
- OGA/IPAD PSD Mapper
 - http://www.pecad.fas.usda.gov/ogamaps/
- OGA/IPAD Photo Gallery (geo-referenced)
 - http://www.pecad.fas.usda.gov/photo_gallery/pg_regions.cfm?CE_Region_ID=eafrica
- OGA/IPAD Tropical Cyclone Monitor
 - http://151.121.3.217/TropicalCycloneMonitor/
- GLAM-MODIS Web Products-NASA/USDA
 - MODIS (2002-present) time series data
 - http://pekko.geog.umd.edu/usda/test/
 - Daily MODIS data from Rapid Response System
 - http://www.pecad.fas.usda.gov/cropexplorer/modis_summary/index.cfm
 - Global Reservoir Monitor
 - http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/
 - NASA Earth Observatory's Agriculture Hazards
 - http://earthobservatory.nasa.gov/NaturalHazards/category.php?cat_id=6

