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[1] We have conducted an experiment to assess the real time skill in monthly and seasonal
predictions based solely on patterns of antecedent hydrological information over the United
States. The hydrological information is contained in a proxy for soil moisture at 102
locations over the lower 48 states. This soil moisture is calculated over the years 1931 to
present from a local hydrological equation taking monthly precipitation (P) and temperature
(T) as input, and producing soil moisture (w), evaporation (E), runoff (R), and loss to
groundwater (G) as output. The initial condition (IC) for the forecast procedure is soil
moisture over the United States at the end of the month (w30). We constructed an analogue
to the w30 fields, i.e., made linear combinations of soil moisture fields at the same time of
year in years past to reproduce the IC towithin a small tolerance. The coefficients assigned to
the years past are then made to persist, and the subsequent development in the historical
years is linearly combined to form a forecast. This method has been running at CPC in real
time since 1998, and we added 1981–1997 in ‘‘retroactive real time’’ mode to form a large
enough sample. In total, we considered both seasonal and monthly forecasts at leads of �1
to +6 months for 1981–2001, for the elements w30, E, T, and P. From the outset, we wanted
to investigate nonlocal forecast methods, considering local effects, on evaporation and
temperature mainly, as being established already and well documented [Huang et al., 1996].
In a nonlocal method we entertain the possibility of precipitation (the response) falling
downstream of a soil moisture anomaly (forcing). We found that we have about a 0.6
correlation in forecastingmonthly soil moisture with a lead of onemonth (i.e., July at the end
of May). This figure is higher in spring and somewhat lower in the early fall. The capability
to forecast evaporation anomalies is very seasonal. During the cold half of the year, when E
anomalies resemble T anomalies, the correlation is only 0.2–0.3, but in summer, when E
anomalies resemble w anomalies, the skill of forecasts goes up to 0.6. We thus have some
insight into patterns of anomalous water vapor input from the land surface into the lower
atmosphere on a continental scale. Skill of forecasting T is modest, reaching 0.2–0.3 in
many months and seasons, but there is no clear seasonal dependence that relates to the
presumed physics of land atmosphere interactions. Skill in forecasting P is quite low, barely
0.1 in correlation, but +ve in all months and seasons. We did alternative experiments
where the constructed analogue was built on E, T, or P instead of w and verified the forecast
of all elements likewise. We found initial w to be the best for forecasting w itself and indeed
for forecasting the other fields as well! This is important testimony that soil moisture is
indeed the key, as has been suspected by many for ages. INDEX TERMS: 1812 Hydrology:

Drought; 1860 Hydrology: Runoff and streamflow; 1866 Hydrology: Soil moisture; 3322 Meteorology and
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1. Introduction

[2] The purpose of this paper is mainly to describe the
results of real time monthly and seasonal forecasts for the
United States based on antecedent surface hydrological
conditions. As is well known the water contained in the soil,
down to some depth, can change the partitioning of incom-
ing energy between sensible and latent heat fluxes. Therefore
knowledge of soil moisture at the initial time could be a
useful predictor for temperature (T) and precipitation (P) at a
later time, especially when the incoming solar energy is large
(summer). There are several additional or competing phys-
ical impacts from wet soil, such as changes in greenness,
albedo, emissivity and atmospheric clouds and turbidity
which could change either the overall energy coming in
and/or its partitioning among sensible and latent heat fluxes.
Although the physical arguments apply qualitatively to a
wide range of timescales, it should be made clear that, unless
stated otherwise, we use monthly mean or seasonal mean
data, either observations or model generated data.
[3] The task we have undertaken over a multi-year

period, which coincided more or less with the GCIP years,
consisted of (1) creating a data set of calculated soil
moisture covering the United States over a sufficient
number of years, sufficient being many decades at least,
(2) designing methods to make T and P forecasts,
(3) implementing items 1 and 2 into a reliable real time
activity, and (3) the verification of forecasts thereof.
[4] The creation of the first soil moisture data set (1931 to

present) followed the method described by Huang et al.
[1996] (hereinafter referred to as H96) and will be described
briefly in section 2. Sometimes it is called the ‘‘CPC soil
moisture’’ and it plays an important role in the real time
National Drought Monitor [Svoboda et al., 2002]. A much
improved and much more comprehensive and higher-reso-
lution data set based on LDAS [Mitchell et al., 2000; Fan et
al., 2003] is available for 1948–1998, but for a description
of our activities during the now finished GCIP era we use
the H96 ‘‘leaky bucket,’’ and keep the LDAS results for
GCIP’s follow-up: GAPP.
[5] Among the methods used to make forecasts we

should distinguish local from nonlocal methods. In local
methods the direct nearby impact of soil moisture on T and
or P matters. Local effects have been gauged for ages [Reed,
1925; Namias, 1952] generally by local contingency tables
of some sort, or time lagged correlation of, for instance, a
proxy for soil moisture and temperature at the same posi-
tion. Our ‘‘local’’ results have already been described by
H96 and can be summarized in the following few sentences.
As for temperature prediction, antecedent precipitation, or,
even better, antecedent soil moisture has a significant
negative correlation with temperature in many parts of the
United States, thus leading to a well known and easy to
understand prediction rules: When it has been dry (wet),
chances are it will be warmer (colder) than average at the
same spot in the next month and season. These ‘‘chances’’
vary in fact with geographical location, the season, and the
lead of the forecast [Huang and van den Dool, 1993; H96].
In this paper we seek to go beyond local effects and local
forecast methods.
[6] An important negative result of H96 is that local

correlations do not show usable local relations that may

aid in forecasting precipitation. The physical interpretation
is not difficult. While a reduced (enhanced) sensible heat
flux over wet (dry) soil leads to an obvious lowering
(elevation) of air temperature (the easy forecast), the simul-
taneously enhanced (decreased) latent heat flux may not
cause enhanced (decreased) P anywhere nearby. The physics
of precipitation takes time, involves upper level flow,
and advection may steer and disperse the consequences
downstream. Therefore the impact on P, if detectable, has
to be primarily nonlocal. Quite possibly nonlocal impacts
of soil moisture on temperature (and other atmospheric
variables) exist also.
[7] It is a great challenge to detect the nonlocal impacts of

soil moisture anomalies. Without nonlocal effects the role of
soil moisture will ultimately be only marginally interesting
as a scientific endeavor, because there would be only the
local autocorrelation timescale of soil moisture as memory of
the system, and, as far as we know, only a local impact on
temperature. However, when rain were to fall downstream of
the area of forcing, soil moisture anomalies can move around
in response and achieve, in principle, far longer predictabil-
ity times, somewhat in the way a moving cyclone has more
predictability than its local (Eulerian) autocorrelation would
suggest. (By moving soil moisture we do not mean under-
ground motion, but apparent movement in soil moisture
caused by the precipitation.) Demonstration of nonlocal
impacts, on precipitation in particular, is thus very important
in assessing the ultimate importance of the lower boundary
condition over land for seasonal forecasting. A suggestion of
nonlocal impacts in parts of the United States was given by
Cayan and Georgakakos [1995]. While numerical modeling
approaches [Kanamitsu et al., 2002, 2003] are certainly
helpful, and the H96 soil moisture anomalies have been
(and are being) transplanted into GCMs as initial conditions
[Fennessy et al., 2000, 2003] we here describe a technique
that is rooted in observations from beginning to end.
Specifically, we use a forecast method called constructed
analogue (CA), which has been used with some success for
global SST forecasts [van den Dool, 1994; van den Dool and
Barnston, 1995]. This method, explained briefly in section 4,
is applied here to U.S. soil moisture as a predictor. We have
made CA forecasts based on soil moisture in real time since
early 1998. Retroactively, we made forecasts over 1981–
1997. In all we thus have the period 1981–2001 to discuss
forecast skill of the CAmethod. In doing so, we will keep the
physical chain of events in mind. That is, in addition to
forecast skill for T and P we also keep track of forecast skill
in soil moisture itself, and, most notably, evaporation, since
this is how the impacts on the atmosphere are supposed to
come about in the first place.
[8] We will not go into any detail about the operational

implementation, item 3, even though that may have been the
most time consuming task by far. For reference and to see
the most recent land hydrology diagnostics and forecasts,
see the web link http://www.cpc.ncep.noaa.gov/soilmst/
index_jh.html.
[9] We should mention up-front three limitations, some

by our choice, some unavoidable. First we focus exclusively
on soil moisture as the only predictor; that is, we ignore
global sea-surface temperature (SST) used in operation at
the CPC, where various tools are routinely combined into an
official forecast. Second, we accept the arbitrary limitation
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from a physical point of view of using soil moisture over the
48 contiguous states only, with abrupt discontinuities in
lower boundary forcing near all political and geographical
borders. Third, we use a forecast method that works ‘‘at the
pattern level,’’ and may neglect local effects, some of which
are very real (H96).
[10] A final comment: ‘‘Soil moisture’’ is a bit of a

catchword. All aspects of surface hydrology in general
should be of interest to meteorologists and hydrologists,
but in terms of forecasting subsequent T and P only the soil
water in the upper 1 to 2 meters that could potentially re-
evaporate back into the atmosphere really matters. Hence
the fixation on ‘‘soil moisture,’’ which, moreover, is not
even measured but calculated.
[11] The paper is organized as follows. The model and the

observations are described in section 2. The continental
hydrological balance as estimated by the Huang et al. [1996]
hydrological model is presented in section 3. Section 4
features the details about the Constructed Analogue method,
while the verification is given in section 5.

2. Data and Soil Hydrology Model

[12] The study of the surface hydrology invariably starts
with an equation like

dw=dt ¼ P� E� R� G ð1Þ

where

w soil moisture in a single column of depth 1.6 meter,
mm;

P precipitation, mm/month;
E evaporation, mm/month;
R runoff, mm/month;
G loss to groundwater, mm/month.

Equation (1) is applied locally. All quantities are positive,
and P is taken to be the input-source, while E, R and G are
the loss terms. H96 designed a water balance model; that is,
E is calculated (adjusted Thornthwaite) via observed T, and
R (surface and base runoff separately) and G are parame-
terized, such that we have 5 tunable parameters in the
expressions for R and G. We take P as observed. The depth
of 1.6 meter came about as follows. Tuning the model (see
H96) to runoff of several small river basins in eastern
Oklahoma resulted in a maximum holding capacity of
760 mm of water. Along with a common porosity of 0.47
this implies a soil column of 1.6 meter. This depth seems
reasonable for our goals since evaporation of moisture from
deeper levels must be small.
[13] Given all terms on the right hand side of equation (1)

can integrate w forward in time for as long a period and at
as many locations as one has data for. The calculations are
done here using monthly data for 344 U.S. Climate Divi-
sions during 1931 to present. While the hydrological model
makes small time steps, the month is the basic unit of time
used here in the sense that the input data is monthly
averaged; units will be mm/month. The results for 1931
are discarded because of spin-up. For other details, see H96.
[14] There are a number of weaknesses with a model as

simple as equation (1). (1) There is no vertical moisture

profile; the bucket is just one depth, like a mixed layer.
(2) There is no separate equation for snow and ice. P is
added to the w budget as a liquid at all times, even in
winter. (3) The soil properties and other physiographic
properties are assumed to be constant in space and basically
tuned to small stream runoff in eastern Oklahoma. A reality
check may be in order. We here present a comparison of
calculated soil moisture to observations made at 16 sites
in Illinois [Hollinger and Isard, 1994], over a period of
18 years. We divided the state into three portions (north,
central and south), and averaged over the 4–5 stations in
each. Figure 1 shows on the right the climatological annual
cycle (1984–2001) for the upper 1 meter. Below 1 meter
observed variations are minimal. The model is, however,
made for 1.6 meters depth without a vertical profile, so we
multiplied the calculated values by a rather arbitrary factor,
0.6/0.8 on the left/right of Figure 1. (Hidden in the fudge
factor 0.6 is the model’s shortcoming of too large interan-
nual soil moisture variation.) In spite of one to two month
phase errors, which were noted also in H96’s Figure 1
(which was through 1991 only), the annual cycle is pass-
able, least so in the north. The departures from the 1984–
2001 monthly climatology for the three regions appear
reasonable as well (see the left-hand side of Figure 1);
the anomaly correlation is about 0.60–0.75 for all regions.
Perhaps we should expect no better. In spite of (compen-
sating) systematic errors in E and (R + G), see section 3,
our soil moisture seems very reasonable, at least in Illinois
on independent data.
[15] Even though there is legitimate doubt whether

w resembles true soil moisture in all seasons in all climates
it should be kept in mind that the calculated w contains
reality in that it is derived from a history of previous
observed P and T.
[16] To recapitulate the data situation, on the input side

we have Climate Divisional monthly P and T. On the output
side we have monthly w, E, R, G. Of these, only P, T, w and
E will be used below. The period is 1932 to present. We
frequently use soil moisture at the end of the month,
denoted as w30: Note that this is not a monthly average.
All data sets are available via ftp from http://www.cpc.
ncep.gov/soilmst/index_jh.html.
[17] In the real time setting we also have a daily

integration for the period since the end of the last full
calendar month up to yesterday 12Z using daily precipita-
tion analyses [Higgins et al., 1996, 2000]. The purpose is
to bring w as close as possible to the forecast target. It
does happen occasionally that recent heavy rains change
materially a soil moisture anomaly pattern that had been
in place earlier. However, in this paper we only discuss
forecasts that start from the end of the calendar month
(using w30) for 1981–2001. Many of the subsequent
calculations with P, T, E and w30 are made with 102
‘‘super’’ CDs. The 102 CDs are a combination of the 344
original CDs, such that the 102 are more or less equal area
[He et al., 1998].
[18] For later reference and as an example Figure 2 (lower

panel) shows the soil moisture anomaly over the United
States at the end of April 2000. (Anomaly means a depar-
ture from a thirty-year climatology.) In April 2000, soil was
drier than normal over a large area of the SE and mid-west,
with wetness straddling to its west from OK to SD.
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Typically, this field has large-scale aspects, as well as many
local details.

3. Hydrological Balance Over the Continental
United States and the Mississippi Basin

[19] It is of interest to discuss the hydrological balance
suggested by equation (1) combined with the input data sets

such as we used them (readers interested in forecast aspects
only may skip section 3). Table 1a shows monthly and
annual values for all variables averaged over the United
States for 1932–2000. On average we have about 330 mm
of soil moisture in the bucket. In the annualmean, when dw/dt
is zero, the 65 mm/month that comes down as precipita-
tion on the United States is used, according to this model,
as 26 mm/month for evaporation, 13 mm/month for small

Figure 1. A comparison of the climatological annual cycle (right) and anomalies (left) in soil moisture
in the upper one meter over the period 1984–2001, calculated by equation (1), dashed line, and as
observed (full line) in Illinois. The three panels are for north, central and south Illinois. The units are mm.
To facilitate the comparison, the calculated values are multiplied by 0.8 (right) and 0.6 (left), respectively.
See color version of this figure in the HTML.

GCP 12 - 4 VAN DEN DOOL ET AL.: PERFORMANCE CONSTRUCTED ANALOGUE



stream runoff and 26 mm/month for loss to groundwater.
Over the Mississippi drainage basin (the main GCIP ob-
jective) these numbers are not very different, i.e., 66(P),
27(E), 12(R) and 28(G) mm/mo, see Table 1b. Compared to
Table 2 of Roads et al. [2003] our simple model has
reasonable P (of course, this is input), w is somewhat
lower, R seems reasonable, but E appears much lower than
most other models, while G (not explicitly present in other
models) makes up the difference. While the unobservable G
as a loss to ground water makes some sense for small-scale
hydrology, it may be best to look upon R + G as runoff on
continental scales. After all one cannot recharge ground-
water forever, so this water has to go somewhere. Our

results indicate we thus have a model that is strikingly low
on E and high on runoff (R + G). The soil moisture is lower
by 25% than that in most models described by Roads et al.
[2003], but since equation (1) does well against observation
in Illinois (see Figure 1), the other models may be too wet.
[20] The comparison to the VIC hydrological model

[Liang et al., 1994] is the most pertinent since it too was
forced with observed P, but even that model has about
50mm/month as annual mean E as per Table 2 of Roads et
al. [2003]. Our low E may be caused by the absence of an
explicit vegetation factor in Thornthwaite’s expression.
However, this cannot be the full reason since even if we
evaporated at full potential all the time we would have no

Figure 2. The calculated soil moisture anomaly for 30 April 2000 in mm over the continental United
States. Anomaly is relative to a thirty-year climatology. A smooth version truncated to 30 EOFs is shown
at the top, while the raw field is in the bottom panel. The contour interval is 20, and negative contours are
dashed. A color scheme is applied for values in excess of 25, 100 (absolute value). See color version of
this figure in the HTML.
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more than 56mm/month which is still less than the actual
evaporation in some of the other models quoted by Roads et
al. [2003]. In all likelihood our model is too low at E and
high at R + G, but the sum of E, R and G is reasonable. In a
comparison involving many more land models the parti-
tioning of (annual) P into E and (R + G) had an enormous
range [Chen et al., 1997], and the H96 model is not out of
range. Unfortunately, the absence of ground truth measure-
ments of E for any length of time over a large area is a very
serious impediment in judging surface hydrology models.
[21] Table 1a also shows the annual cycle of the variables

involved in the U.S. averaged hydrological balance accord-
ing to this model. For the continent as a whole P does not
vary all that much over the course of the annual cycle. E
obviously has a very pronounced annual cycle with a
maximum (minimum) when the temperature is highest
(lowest). Soil moisture itself has a range of 70 mm nation
averaged. The sum of P-E-R-G equals dw30/dt by defini-
tion, so as long as (E + R + G) > P soil moisture decreases
during that month. The minimum in w is reached in
September. Soil water is recharged from October through
March when P exceeds the loss terms E, R and G, hence a
maximum inw inMarch. For theMississippi basin (Table 1b)
much the same can be said except that P has a clearer annual
cycle with a maximum in June (90 mm/mo) and a minimum
in February (46 mm/mo).
[22] For later reference we also mention the aggregate

inter-annual standard deviation of monthly means, see
Table 2. First we calculated locally the variance of any

variable X as var(s,m) = � {X(s, j, m) � Xclimo(s, m)}2,
where m is month (1..12) and s is a space index (1..102) and
summation is over j = 1932–2000. We then summed
var(s,m) over s and m, and divided by total number of
years, locations (102) and months (12). A final square root
yields the inter-annual standard deviation. For T, P, w30, E,
R, G, in this order we found a standard deviation of 1.8�C,
37.2 mm/month, 51.3 mm, 5.4 mm/month, 13.4 mm/month,
and 3.9 mm/month, respectively. The anomalies in soil
moisture, of typical magnitude 51.3 mm, will drive the
forecasts discussed below. Note that the standard deviation
of P is typically 7 times larger than those of E in our
calculations. That is, with a view toward recycling, the
interannual variation of E falls completely short of explain-
ing quantitatively the interannual of variation of P. This
statement is still true, even if E (and its standard deviation)
were twice as large. Table 2 shows the standard deviation by
month (in that case var(s,m) is summed only over s). Note
that both w and P have the lowest standard deviation in
September when w itself is lowest also, while E has the
highest standard deviation in June and July when E itself is
high, but w (from which it draws) is on the way down.
[23] One may wonder what is the relationship between

the variance in P (37.2 mm/mo forcing) and w (51.3 mm
response). Because E, R and G have all a strong element of
negative feedback on w, one could simplify equation (1), in
anomaly form, to first order as

dw=dt ¼ P� lw ð2Þ

Table 1b. Same as Table 1a, but Now for the Mississippi Drainage Area

Month T, �C P, mm/month w30, mm E, mm/month R, mm/month G, mm/month P-E-R-G, mm/month

1 �3.0 49.6 357.1 1.5 12.4 28.0 7.7
2 �0.7 46.7 359.5 2.8 13.1 28.4 2.5
3 4.0 64.5 370.2 8.2 16.7 28.9 10.8
4 10.1 72.0 374.0 22.5 16.0 29.5 4.0
5 15.7 88.5 375.2 42.3 15.2 29.7 1.3
6 20.5 90.6 363.1 60.6 12.7 29.2 �12.0
7 23.3 82.6 342.6 64.5 10.6 27.9 �20.3
8 22.4 74.4 326.4 55.5 8.5 26.5 �16.1
9 17.8 69.1 324.0 37.4 8.0 25.8 �2.1
10 11.7 55.3 326.0 19.4 7.4 25.7 2.7
11 4.3 53.7 338.6 5.8 8.4 26.3 13.1
12 �1.0 50.3 349.6 1.8 10.2 27.3 11.0

Year 10.4 66.4 350.5 26.9 11.6 27.8 0.2

Table 1a. U.S. Mean Monthly Values of Temperature and All Components of Surface Hydrologya

Month T, �C P, mm/month w30, mm E, mm/month R, mm/month G, mm/month P-E-R-G, mm/month

1 �0.3 62.5 351.4 2.8 17.8 27.3 14.6
2 1.9 56.4 357.7 4.6 17.3 28.1 6.4
3 5.9 65.7 365.6 10.0 19.0 28.7 8.0
4 11.0 63.6 361.7 22.7 15.9 28.8 �3.8
5 16.0 73.3 352.8 40.0 13.7 28.3 �8.7
6 20.5 74.6 334.1 54.6 11.4 27.2 �18.6
7 23.2 69.4 311.0 57.4 9.5 25.5 �23.0
8 22.4 65.5 294.7 49.7 8.0 24.0 �16.1
9 18.4 63.9 292.4 35.0 7.8 23.2 �2.2
10 12.7 56.5 298.7 19.2 7.6 23.4 6.4
11 6.0 60.9 317.7 7.0 10.3 24.4 19.1
12 1.3 62.8 336.7 3.0 14.7 26.0 19.1

Year 11.6 64.6 331.2 25.5 12.8 26.2 0.1
aPeriod mean is taken over 1932–2000.
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where all variables are anomalies, and l is a coefficient that
relaxes w toward 0 (=climatology). Simplifying land surface
hydrology to a Markov process has been done before by
Delworth and Manabe [1988], H96, and Koster and Suarez
[2001]. Equation (2) is also identical to a mixed ocean layer’s
temperature subject to random heat forcing [van den Dool
and Horel, 1984]. We proceed from here assuming P is white
noise forcing for�t = 1 month. Under equation (2), the soil
moisture is a reddened version of precipitation. The
variance in w is given by the usual sw

2 = sP0
2 /(1 � rw

2),
where P0 = P/(1 + l/2) is rescaled monthly P (we discretized
equation (2) with an implicit scheme); one can alternatively
write sw

2 = sP
2/(2l). The soil moisture autocorrelation rw is

given by (1 � l/2)/(1 + l/2). The larger rw the more sw
2 gets

amplified relative to sP0
2. Given that the month-to-month

autocorrelation in w is close to 0.82 (annually averaged) the
damping l is about 0.22 month�1 and the effective
timescale of soil moisture anomalies is order 4 months. In
some areas and some portions of the annual cycle these
figures may be very different, but in general an order
4-month memory seems reasonable.
[24] Since we intend to use only soil moisture anomalies

as predictor one may well question whether we really need
the ‘‘full’’ hydrological equation (1). We might not have
been that much worse off for the P and T prediction to be
discussed below by using equation (2) instead of equation (1),
and using a reasonable l. However, in that case we could
not have commented on verification of E forecasts of
course. Moreover, equation (2) is an approximation
for anomalies only, so we need the full equation (1) to
study the climatological annual cycle of the hydrological
components.
[25] Plenty of exceptions to the validity of equation (2)

may also be noted, even for anomalies [see also Koster and
Suarez, 2001]. In the cold season the anomaly in E is
determined by temperature, so the �lw breaks down as a
parameterization for E. During periods of significant P, the
parameterized R is too nonlinear to fit a�lw approximation.
[26] The approximate validity of equation (2) suggests

that the T input into equation (1), via E, is not all that
important for the evolution of soil moisture anomalies. This
can also be surmised from Table 2, where we noted that the
standard deviation of E is very much smaller than that of P.
This suggests that P is, by and large, the process that forces
w anomalies. The only role for E is that of a mild feedback

on w, so as to limit the excursions of w away from its
climatology; modeling this feedback, to first order, does not
require knowledge of T.

4. Constructed Analogue Method

4.1. Diagnostic Aspects

[27] Given is a data set X(s,j,m) of monthly data. X is a
function of space s (102 positions), year j (1, N; N = 66
(1932–1997)) and month m (1–12). Given is an initial
condition (IC) XIC(s, j0, m), for example the most recent
realization of X, where, in real time, j0 is outside the range
j = 1..N. A monthly climatology is removed from the data;
henceforth X shall be the anomaly. A constructed analogue
is defined as

XCA s; j0;mð Þ ¼
XN

j¼1

aj X s; j;mð Þ ð3Þ

where the coefficients a are determined so as to minimize
the ms difference between XCA(s, j0, m) and XIC(s, j0, m).
Since the X(s, j, m) are not orthogonal states the weights aj

cannot be found trivially; in fact, no unique solution exists.
An approximate solution to this problem is given by van
den Dool [1994]. The resulting equation is the classical:

A a ¼ b ð30Þ

where the N by N symmetric covariance matrix A has the
elements a(i, j) formed from the inner products � X(s, i, m).
X(s, j, m) for all combinations of i and j, summation is over s,
and i and j are years in the range 1..N. Similarly, the vector b
has elements �X(s, j, m).XIC(s, j0, m), while the vector a is
what we solve for.
[28] Part of the approximations underlying equation (30)

is that all fields X need to be truncated in EOF space,
keeping a number of modes that is at most order N/2; here
we keep 30 modes. With 30 modes we explain 90%
(summer) to 93% (winter) of the historical (1932–1997)
soil moisture variance, but on the initial condition, which is
not part of the EOF calculation, this figure is closer to 85%
and moreover varies considerably from situation to situa-
tion; situations of weak anomalies are hard to ‘‘explain’’ by
EOFs. Figure 2 (top) shows what happens when a field

Table 2. Standard Deviation of Monthly Mean Variables Around Their Local Climatological Mean, Averaged Over

the United States

Month T, �C P, mm/month w30, mm E, mm/month R, mm/month G, mm/month P-E-R-G, mm/month

1 2.8 42.4 56.8 2.5 21.6 4.4 29.5
2 2.6 36.6 53.8 3.0 18.5 4.3 26.4
3 2.1 36.4 52.4 4.5 17.4 4.1 26.2
4 1.6 34.2 51.1 5.1 13.3 4.0 26.4
5 1.5 36.7 50.0 7.0 10.7 3.8 30.7
6 1.4 35.9 49.1 7.8 8.2 3.7 30.1
7 1.1 31.9 45.5 7.9 6.4 3.6 28.0
8 1.2 30.5 42.4 6.9 5.0 3.3 27.8
9 1.3 38.4 47.0 5.4 6.5 3.3 32.5
10 1.5 39.4 52.3 4.5 6.8 3.7 33.4
11 1.8 41.2 55.4 3.1 12.8 4.1 33.1
12 2.2 40.4 57.2 2.1 19.0 4.3 30.4

Year 1.8 37.2 51.3 5.4 13.4 3.9 29.6
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(such as Figure 2 (bottom)) is truncated to 30 EOFs
(calculated from 1932–1997). The large-scale features are
well maintained, but local features, as big as half a state, can
be seriously compromised.
[29] A detailed example may be helpful. For the soil

moisture anomaly in April 2000 in Figure 2, the coefficients
aj are given in Table 3. With this set of weights, the field
shown in Figure 2 can be reproduced to within a few mm,
i.e., very accurate. Note the following: (1) the weights are
all small (�0.20); that is, there are no good natural ana-
logues (in that case there would be one a = 1 and all the
other a = 0) in a system with that many degrees of
freedom and less than a century of data [van den Dool,
1994]. (2) The weights can be negative; that is, we follow a
linear approach once the climatology is subtracted. (3) The
sum of the a is not constrained to be zero (it actually would
be if the anomaly was relative to 1932–1997), nor (4) is the
sum of absolute a constrained to unity (here a large 3.90).
(5) In order to keep the amplitude of forecasts in check we
want the sum of a2 to be less than unity. (A large a2 points
to an unstable solution.) This is achieved by sufficiently
‘‘ridging’’ the covariance matrix A, i.e., adding small
positive constants to the main diagonal of A [van den Dool,
1994]. In the last column of Table 3 we have 10-year sums
of the weights so as to gauge any inter-decadal dependency.
On this occasion, the 1940s are slightly favored.

4.2. Forecast Aspects

[30] Equation (3) is only diagnostic, just stating that
within truncation to 30 EOFs the current (or any) condition
can be expressed as a linear combination of conditions
observed in other years at the same date. We now seek a
forecast at lead t of variable Y (which could be X itself) as
follows:

YF s; j0;mþ tþ 1ð Þ ¼
XN

j¼1

aj Y s; j;mþ tþ 1ð Þ ð4Þ

That is, we have the initial weights persist and make linear
combinations of the anomalies in Y that followed in the 66
historical years. (If m + t + 1 > 12, the Y fields would be in
the next year (j + 1), and m + t + 1 � 12 would be the
forecast month.) The ‘‘lead’’ t, in units of months, is
defined, as per CPC nomenclature, as the amount of time

between the end of the month (of construction) and the
first moment of validity. Thus the +1 in expressions like
m + t + 1 in equation (4). For example, a monthly forecast
for July 2000 made at the end of April has lead 2. A
seasonal forecast for JJA 2000 has lead 1 (in units of
months). At lead �1 we deal with ‘‘specification,’’ i.e.,
calculate the field of variable Y given a constructed
analogue to a simultaneously observed field X. Backcasts
(not discussed) occur when the lead is larger negative.)
Admittedly, there is an ambiguity as to whether the fields Y
on the rhs of equation (4) should be truncated to within the
‘‘same’’ EOF space (if the latter notion is even defined). In
this paper we made forecasts with the raw data for Y,
accepting a nonzero noise component, which is considerable
because soil moisture has many degrees of freedom (H96).
[31] How well does equation (4) work? In case X = Y =

w, one can verify the soil moisture forecast; that is, the left-
hand side of equation (4), against the observed w(s, j0, m +
t + 1). In case X = w, and Y = T or P or E, one can verify
temperature, precipitation or evaporation forecasts against
observations. (Keep in mind that w and E ‘‘observations’’
are calculated from T and P observation; they are not
directly observed.) The verifying observations are not
truncated in EOF space, but always the ‘‘true raw’’ data.
[32] Note that equation (4) is not formulated so as to

minimize the mean square error in the predictand Y. The
weights aj are unaware of the forecast target. This may
explain rather large forecast anomaly amplitudes, even in
low skill situations. In this sense CA differs from any
traditional statistical method. One advantage of the proce-
dure is that we cannot possibly be over-fitting the relation-
ship between predictor X and predictand Y. A different
advantage is that consistency among variables is main-
tained. For instance a linear combination of pressure and
wind fields maintains the quasi-geostrophic nature of the
wind-pressure relationship.

4.3. Example and Nonlocalness of CA Forecast

[33] Using the weights in Table 3 the JJA T and P 2000
forecast is given in Figure 3 (left column), along with the
verifying observations for JJA2000 (right column). By the
standards of seasonal forecasting the JJA2000 case was very
successful, particularly on P. We will discuss the skill of this
particular forecast later. Here we want to highlight the
nonlocalness of the forecast, both in T and in P. Relative

Table 3. Weights a Assigned to Each Year’s End of April Soil Moisture Anomaly so as to Reproduce the U.S. Soil Moisture Anomaly

on 30 April 2000a

aj

10-year � a2 3 4 5 6 7 8 9 0 1

1930s–1940s �0.01 �0.09 0.01 �0.01 0.00 �0.04 �0.04 0.08 0.02 0.03 �0.06
1940s–1950s 0.10 �0.01 �0.05 0.02 �0.09 �0.03 �0.01 �0.08 �0.13 �0.05 �0.33
1950s–1960s �0.03 �0.04 0.17 0.07 0.13 �0.10 0.07 �0.13 �0.01 0.00 0.13
1960s–1970s �0.02 0.11 �0.12 �0.19 �0.11 0.06 0.04 �0.06 0.07 0.04 �0.18
1950s–1980s �0.02 0.03 0.13 �0.08 0.00 0.05 �0.01 �0.11 0.11 �0.01 �0.09
1980s–1990s �0.05 �0.06 0.00 �0.05 0.04 0.08 0.01 0.06 0.11 �0.11 0.03
1990s �0.10 �0.01 0.12 �0.01 0.03 0.04 NA 0.07
� a �0.25
� a2 0.37
�jaj 3.90

aYears (j) run from 1932 to 1997. Column headings refer to years; for example, ‘‘2’’ indicates 1932, 1942, 1952, etc. The weights are dimensionless
numbers. There are 66 weights. If the initial condition is in the 1981–1997 (example 1993) period, then a weight is assigned to 1998 and no weight to 1993
(cross-validation).
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to the soil moisture configuration in Figure 2 large anoma-
lies in T and P appear outside areas where soil moisture
anomalies are large. Even the sign may conflict with a pure
local interpretation - for instance a warm JJA on top of wet
soil in Southwestern SD. A local regression (not shown)
would show weak anomalies, such that +ve (�ve) T
forecast anomalies, where significant, coincide with
�ve(+ve) soil moisture anomalies in the IC. The P forecast
by local regression would be zero anomalies everywhere
because of a lack of skill (H96).
[34] There is no question that the forecast is nonlocal, but

to drive the point home explicitly for precipitation Figure 4
(bottom) shows a hypothetical localized soil moisture
anomaly distribution in May. We placed a wet (or dry, since
the calculation is linear) patch at 100 W, 35 N with a radius

of 8 degrees (counting latitude and longitude degrees
equal). The central value is twice the local standard devi-
ation and the w30 anomaly decreases linearly to the rim.
Equally important: outside the patch w30 = 0. Figure 4 (top)
shows that there are weights that allow us to reproduce a
situation that never occurred (and never will). Figure 5
(bottom) shows the P forecast for June following a May
ending with the w30 field shown in Figure 4. P anomalies
	 30 mm (order 1 standard deviation) are shown (almost
entirely) downstream from the wet patch. (Winds at 700 mb
are normally from WSW). Nonlocalness of the forecast is
obvious. As a result of this configuration the soil moisture
anomaly will actually move to the Northeast, a little more
with each passing summer month (not shown). Indeed, CA
makes an attempt to integrate dw/dt = P-E-R-G empirically.

Figure 4. A hypothetical soil moisture anomaly for 31 May in mm. A version truncated to 40 EOFs is
shown at the top, while the intended wet patch is at the bottom. Contour interval is 20, only positive
contours. A color scheme is applied for values in excess of 25. See color version of this figure in the
HTML.
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It should be noted that the downstream P anomaly (in terms
of overall water mass) is much larger than the E anomaly
(which lies right on top of the patch; not shown). The
implication is that the atmosphere brings in large amount of
water from the sides, the Gulf of Mexico in particular. In
terms of standardized units, see Figure 5 (top), the ‘‘re-
sponse’’ of P to an isolated wet patch is not just ‘‘down-
stream’’ Figure 5 (top) shows some effects in terms of
enhanced/suppressed P (order 0.5 sd) upstream in Utah and
NM as well.
[35] The advantage of the hypothetical case is that forcing

and response are clearly separated, and attribution is unam-
biguous, while in a ‘‘real’’ case like April 2000 the
patchwork of +ve and �ve forcing covering the whole

domain makes it difficult to say what exactly forces the
rainfall anomalies in the JJA forecast in say Iowa. The
disadvantage of the hypothetical case is that we cannot
verify the subsequent forecast; it may be instructive, but
only the forecasts based on as realistic as possible w30 can
be verified against observations.

5. Results of Forecasts: 1981–2001

5.1. Details of Forecast and Verification

[36] Following the method given in section 4.1, equation
(3), we constructed an analogue to all 252 soil moisture
anomaly fields at the end of all months during 1981–2001.
The soil moisture fields are at the end of the month (rather

Figure 5. CA precipitation forecast for June following the hypothetical situation shown in Figure 3.
(top) Units in local standard deviation 
 100. (bottom) Units in mm. The contour interval is 25 (top
panel) and 15 (bottom panel), and negative contours are dashed. A color scheme is applied for values in
excess of 25 (top panel) and 15 (bottom panel). See color version of this figure in the HTML.
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than a monthly mean) in order to be as close as possible to
the forecast target. For example consider May 1993. Con-
struction for May 1993 means that we have 66 weights, one
for each end-of-May in the period 1932 to 1998, excepting
the year 1993 itself of course. Leaving out the year in
question is called cross validation (CV). We use 66 years;
the year 1998 would only get a weight when the IC is in the
range 1981–1997. In order to avoid common ‘‘compensa-
tion’’ problems with CV [Barnston and van den Dool,
1993] we expressed anomalies relative to 1951–1980; that
is, the climatology has no knowledge about 1993 (or any
other year in 1981–2001). Forecasts for T, P, w30 and E
were then made by linearly combining (keeping the weights
constant, see equation (4)), fields observed in the months
and seasons following the 66 historical Mays. We consider
leads from �1 to +6 months. The longer lead forecasts have
not been verified for the early part of 1981, so for a few
leads/target there are only 20 years.
[37] For June (say) at fixed lead t we have, in all,

21 forecasts, one for each year’s June. That is not much if
one wants to decide whether a correlation between forecast
and observed anomalies at a single location is significant. In
order to enlarge the sample we ‘‘pool’’ like forecasts for
neighboring months (seasons). For example, the t month
lead forecasts for June are combined with those for May and
July when calculating the correlation for June. Similarly,
JJA is combined with MJJ and JAS, in case of seasonal
forecasts. The pooling increases stability. The forecasts for
1998 and beyond are not influenced by CV considerations
because we used only past years, i.e., keep the covariance
matrix at 66 
 66 (we could have enlarged by one with each
passing year, but did not).
[38] We further use the following definitions:

Covariance cov f ; oð Þ ¼ � f zð Þo zð Þ; ð5Þ

where f is the forecast, o is observed, z is either time or
space, and summation is over all z, i.e., over 102 when z is
space, over 3 
 21 = 63 when z is time, or over 102 
 63
cases when we sum over both time and space. There is no
explicit weighting necessary, because the 102 positions are
considered equal area. There is implicit weighting in that the
large anomalies count for more in these calculations.
[39] The anomaly correlation is given by

r ¼ Cov f ; oð Þ
Cov f ; fð Þ 
 Cov o; oð Þf g1=2


 100 ð6Þ

5.2. Forecast Skill

[40] Figure 6 shows line graphs of the U.S. aggregate
correlation between forecast and observed for the variables
w30 and E. Soil moisture at a lead of one month; for
example, June at the end of April) can be forecast with a
correlation that varies from close to 0.7 in spring to less than
0.5 in fall. Verification scores of 0.6 sound rather high,
certainly compared to T and P, which are typically more like
0.1–0.3. There is undoubtedly a demonstrated capability to
know about future soil moisture anomalies (of the calculated
variety), given current conditions and a decent forecast
method. Coincidentally or not, the trace of skill follows
rather precisely the climatological mean soil moisture itself

as well as the annual cycle of the interannual standard
deviation (Table 2). That is, forecasting soil moisture
anomalies is most difficult when (1) the bucket is emptiest
and (2) when anomalies are smallest (least ‘‘signal’’).
[41] Converting the skill of soil moisture prediction into

something more useful depends on E as an intermediary.
Forecast skill for monthly evaporation (Figure 6) has a
rather dramatic maximum (0.65) in July and August.
In winter, when E anomalies are minimal, the skill is
just below 0.3. Elevation of skill above this background
0.3 level lasts from March through October. This seasonal-
ity is entirely reasonable from a physical point of view. As
is the case with w30, E is best predictable when a large
signal may occur, i.e., the time of year when both E and its
inter-annual variability (see Table 2) are large.
[42] Figure 7 shows the skill of forecasting monthly

mean evaporation during summer (target months May to
September) at leads from �1 to +6. One can see the skill
increase from 0.2 at long lead (i.e., from previous winter
w30) to close to 0.6 as one gets closer to the target. The
shortest lead of practical importance would be about 0.5.
The �1 lead is interesting to understand the CA method.
Given a very good constructed analogue to just w30 one
knows implicitly the evaporation during that same initial
month (at lead = �1) at a skill level of 0.6 to 0.7, i.e., not
perfectly. For comparison, persistence of E anomalies, as a
forecast method starts as ‘‘perfection’’ for lead �1, but
drops off much more rapidly, at least in the summer months,
than the CA forecast. That is, we are doing better than
persistence in forecasting E for any of the leads > �1.
[43] In conclusion, Figures 6 and 7 demonstrate a capa-

bility to forecast evaporation anomalies during summer.
This is the necessary physical link to explain any success
in forecasting T and P during these months.
[44] Figure 8 shows the skill of forecasts of seasonal

mean T and P at a lead of one month. Scores (correlation)

Figure 6. The skill of the one-month lead monthly
forecast of w30 (triangles, dashed line) and E (squares, full
line), as a function of the target month (1 = January, 12 =
December). For a better representation the December value
(at 0) and January value (at 13) are repeated. Skill is
expressed as correlation (times 100), which ranges from 0 to
100 (dimensionless). The period is 1981–2001. See color
version of this figure in the HTML.
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for temperature hover around 0.25 for much of the year,
with the exception of September and October when there is
a sharp minimum of only 0.10. Scores for seasonal mean P
are near 0.10 or slightly below. Because all 12 seasons are
positive there is no question that the correlations are
nonzero, even for P. Nonetheless, scores for P remain next
to useless. The seasonality of the scores, neither in P nor T,
gives much of a clue about the exact source of this skill. The
simple physical arguments in the first paragraph of the
introduction make us expect skill in summer, which we

found. However, the CA method on w30 somehow has as
much skill in winter as in summer. The source of skill in
winter is unlikely to be related to evaporation anomalies.
Rather the calculated w30 may reflect (1) snow cover or
lack thereof or (2) the circulation anomalies that caused the
P and T anomalies over the last 4–5 months.
[45] For both T and P the scores in Figure 8, although

very modest, are better than persistence from T and P
observations available at lead 1 (not shown). Moreover,
persistence has a different annual cycle than seen in Figure 8.
For instance, persistence in P is entirely absent in summer,
and around only around 0.05 in winter.
[46] In Figure 9 we show the scores for 1-month lead JJA

T and P forecasts for each year during 1981–2001. In this
case the covariance in equations (5) and (6) is summed only
over space. As is common with all forecast methods, the
skill fluctuates wildly (understanding this would be desir-
able, but beyond the scope of this paper) from case to case,
especially for temperature. A good aspect of CA is that real
terrible forecasts (highly negative correlations) are rare. JJA
in 2000, a forecast that was available in real time, shown in
Figure 3, worked out very well, both for P and T. Famous
years from a hydrological standpoint include 1993 and
1988. In neither year did we do well on P, but T in 1988
was one of the best. The forecast for summer 1998, the first
we made in real time, was interesting because it followed
the El Nino winter 1997/98. During 1998 the 66 weights
continued to be positive, on average, for historical El Nino
years all the way through August, thus suggesting a degree
of determinism in the forecast and reasonable skill as well.
The physics appear to be that the soil moisture condition in
spring, left behind by a prominent winter El Nino winter
precipitation anomaly pattern, gets carried over into summer
by land surface feedbacks.
[47] One can display the correlation in many different

ways. So far we showed line graphs for the United States as
a whole for a fixed lead as a function of month/season

Figure 8. The skill of one-month lead seasonal forecasts
of temperature (triangle) and precipitation (squares), as a
function of target season (1 = DJF, 12 = NDJ). For a better
representation the NDJ value (at 0) and DJF value (at 13)
are repeated. Skill is expressed as correlation (times 100),
which ranges from 0 to 100 (dimensionless). The period is
1981–2001. See color version of this figure in the HTML.

Figure 7. The skill of monthly E forecasts verifying from
May to September, as a function of lead. Line for
persistence has squares and for constructed analogue
triangles. Skill is expressed as correlation (times 100),
which ranges from 0 to 100 (dimensionless). The period is
1981–2001. See color version of this figure in the HTML.

Figure 9. The skill of one-month lead seasonal forecasts
of temperature (triangle) and precipitation (squares) for JJA,
year-by-year for 1981–2001. Skill is expressed as correla-
tion (times 100), which ranges from 0 to 100 (dimension-
less). The year is indicated as year-1900; that is, 81 means
1981. See color version of this figure in the HTML.
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(Figures 6 and 8), as a function of lead for a fixed target
(Figure 7), and as a function of year for a fixed target and
lead (Figure 9). For the forecasters, another useful way is
skill in map-form. That is, we now sum the covariance in
(5) only over time. We have made maps of skill for T and P,
for all leads from �1 to +6 months, for all verifying months
and seasons. The full display can be seen at ftp://
ftpprd.ncep.noaa.gov/pub/cpc/wd51hd/soil/skill.html. An
example is given in Figure 10, where we show skill
(correlation) for AMJ at a lead of one month. The real time
forecaster would use these skill maps as a mask, i.e., mask
out from the latest forecast for AMJ those areas that by this

verification have no skill at all. In this way, the verification
over 1981–2001 (soon 2002) functions as an a-priori skill
estimate for, say, future AMJs. For this season the North
central states and the Northwest enjoy some skill for
temperature, while P correlation reaches 0.35 only in 3 or
4 states.

6. Conclusions

[48] We have conducted an experiment to assess the real
time skill in monthly and seasonal predictions based solely
on patterns of antecedent hydrological information over the

Figure 10. Example of the spatial distribution of skill (correlation times 100) of seasonal forecasts for T
(top) and P (bottom). Contours are 20, 35, 50, etc., with color scheme coinciding. The target season is
AMJ, and the lead is 1 month. Maps like this have been prepared for all target seasons and months and
leads from �1 to +6. See color version of this figure in the HTML.
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limited domain of the United States. The hydrological
information is contained in a proxy for soil moisture at
102 locations over the lower 48 states. This soil moisture is
calculated for 1931 to the present from a local hydrological
equation taking monthly precipitation (P) and temperature
(T) as input, and producing soil moisture (w), evaporation
(E), runoff and loss to groundwater as output. The initial
condition (IC) for the forecast procedure is soil moisture at
the end of the month (w30). We constructed an analogue to
the w30 fields, i.e., made linear combinations of soil
moisture fields in the same months in years past so as to
reproduce the IC to within a small tolerance. The coeffi-
cients assigned to the years past are then made to persist,
and the subsequent developments in the historical years are
linearly combined to form a forecast. This method has been
running at CPC in real time since 1998, and we added
1981–1997 in ‘‘retroactive real time’’ mode to form a large
enough sample. In total, we considered both seasonal and
monthly forecasts at leads �1 to +6 months for 1981–2001,
for the elements w30, E, T and P. From the outset, we
wanted to investigate nonlocal forecast methods, consider-
ing local effects, on evaporation and temperature mainly, as
being established already and well documented [Huang et
al., 1996]. In a nonlocal method we entertain the possibility
of precipitation (the response) falling downstream of a soil
moisture anomaly (forcing).
[49] We found that we have about a 0.6 correlation in

forecasting monthly soil moisture with a lead of one month
(i.e., July at the end of May). This figure is higher in spring
and somewhat lower in the early fall. The capability to
forecast evaporation anomalies is very seasonal. During the
cold half of the year, when E anomalies resemble T
anomalies, the correlation is only 0.2–0.3, but in summer,
when E anomalies resemble w anomalies, the skill of
forecasts goes up to 0.6. We thus have some insight in
patterns of anomalous water vapor input from the land
surface into the atmosphere on a continental scale. Skill
of forecasting T is modest, reaching 0.2–0.3 in many
months and seasons, but there is no clear seasonal depen-
dence that relates unambiguously to the presumed physics
of land atmosphere interactions. Skill in forecasting P is
quite low, barely 0.1 in correlation, but +ve in all months
and seasons.
[50] We did alternative experiments where the con-

structed analogue was built on E, T or P instead of w, and
verified the forecast of all elements likewise. We found
initial w to be the best for forecasting w itself and indeed for
forecasting the other fields as well! This is important
testimony that soil moisture is indeed the key, as has been
suspected by many for ages.
[51] While CA is a powerful exploratory method, a

potential drawback is that one needs to truncate data in
EOF space in order to find solutions. With about 70 years of
data we feel comfortable retaining about 30 EOFs, which
generally explain from 90% (summer) to 93% of the soil
moisture variance. EOF truncation deleted many mainly
local features. So, in pursuing a remote response method we
shaved off a lot of the local information, which, as we know
(H96), contributes to forecast skill also. In view of Guetter
and Georgakakos [1996] the linearity of CA in combination
with EOF truncation may pose a particular problem if large-
amplitude wet anomalies occur on tiny spatial scales. Some

merging of local and nonlocal forecast methods may have to
be considered in practice.
[52] It is not clear as to why the low skill in T and P

especially is due to a low predictability ceiling in general or
a particular weakness in any of the building blocks used
here. Among the potentially weak points of our approach
we should include that soil moisture over the United States
only is an unrealistic limitation from a physical point of
view. Certainly land conditions over Canada and Mexico
should be included, and it may even be that a proper
evaluation of the role of soil moisture can only be made
when the lower boundary condition over the (nearby or
global) oceans are also included. On the other hand GCM
work along the same lines [Kanamitsu et al., 2003] reports
skill in T similar to what we found, but only in summer, and
absolutely no skill at all for P.
[53] Progress can be made along many lines. The most

obvious one is to improve the estimate of soil moisture.
Various land reanalyses are underway, yielding much more
detailed and physically realistic soil moisture over many
decades [Maurer et al., 2002; Fan et al., 2003]. The LDAS
experiments are geared toward making model consistent
soil moisture, so using full blown GCMs for a real time
forecast is an obvious alternative to CA. Ultimately, global
land surface conditions will be prepared for the whole
world, including a true assimilation of soil data [Walker
and Houser, 2001], but this may be a few years away.
Merging lower boundary condition over the ocean and land,
in the context of the CA method, is another point to
consider. Anomalies in evaporation over land near the
ocean need to be merged with E anomalies over the ocean
itself, for the system to make physical sense. Of course, if
predictability is fundamentally limited to start with, none of
these improvements may yield much new forecast skill.
Kanamitsu et al. [2003] report zero skill in P. A recent
study [Koster et al., 2003] found empirical evidence of
feedback of soil moisture onto precipitation over the United
States to be only in July, and only in the center of the
country.
[54] There is no question that the CA forecast is nonlocal,

and this aspect may well be realistically modeled by CA;
however, this does not prove that the forecast is, or should
be, skillful. If the forecast is too sensitive to the details of
the initial soil moisture distribution we may not have any
skill at all, no matter how well we model the physics. This
could be a problem of just the CA method (i.e., maybe CA
is too sensitive), or for all methods, we do not know. One
has to realize that the notion of predictability of the first
kind, i.e., sensitivity to uncertainty in the IC, has to be
extended here to uncertainties in the initial lower boundary
condition as well. Indeed, when moving around the hypo-
thetical anomaly in Figure 4 over a few degrees in all
directions leads to a marked variation in P response one
month later (not shown), suggesting tremendous sensitivity.
The question as to how accurately we will ever know soil
moisture is well beyond current insights.
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