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ABSTRACT: Droughts are a worldwide concern, thus assessment efforts are conducted bymany centers around the world,

mainly through simple drought indices, which usually neglect important hydrometeorological processes or require variables

available only from complex land surface models (LSMs). The U.S. Climate Prediction Center (CPC) uses the Leaky

Bucket (LB) water-balance model to postprocess temperature and precipitation, providing soil moisture (SM) anomalies to

assess drought conditions. However, despite its crucial role in the water cycle, snowpack has been neglected by LB andmost

drought indices. Taking advantage of the high-quality snow water equivalent (SWE) data from The University of Arizona

(UA), a single-layer snow scheme, forced by daily temperature and precipitation only, is developed for LB implementation

and tested with two independent forcing datasets. Compared against the UA and SNOTEL SWE data over CONUS, LB

outperforms a sophisticated LSM (Noah/NLDAS-2), with the median LB versus SNOTEL correlation (RMSE) about 40%

(26%) higher (lower) than that from Noah/NLDAS-2, with only slight differences due to different forcing datasets. The

changes in the temporal variability of SM due to the snowpack treatment lead to improved temporal and spatial distribution

of drought conditions in the LB simulations compared to the reference U.S. Drought Monitor maps, highlighting the

importance of snowpack inclusion in drought assessment. The simplicity but reasonable reliability of the LB with snowpack

treatment makes it suitable for drought monitoring and forecasting in both snow-covered and snow-free areas, while only

requiring precipitation and temperature data (markedly less than other water-balance-based indices).
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1. Introduction

Droughts are one of the more widespread natural disasters

affecting society. Their impacts extend to ecosystems, agri-

culture, industrial production, power generation, and water for

human consumption, with societal effects even beyond the

directly affected area or after its recovery (Mishra and Singh

2010; Sutanto et al. 2019; Van Loon 2015). Furthermore, in-

creased temperatures and evapotranspiration demandwill lead

to more frequent droughts lasting for longer periods with

subsequent larger societal impacts (Naumann et al. 2018;

Mukherjee et al. 2018; Trenberth et al. 2014; Dai and Zhao

2017). Hence development and improvement of drought as-

sessment tools would benefit the entire society.

However, the lack of a universal definition of drought is one

of the biggest obstacles in its assessment (Lloyd-Hughes 2014;

Wilhite and Glantz 1985; Mishra and Singh 2010). Historically,

droughts have been classified in different types, such as me-

teorological, hydrological, agricultural, groundwater, and so-

cioeconomic droughts (Mishra and Singh 2010; Bloomfield and

Marchant 2013; Thomas et al. 2017). For this reason, a large set

of indices and frameworks for drought assessment have been

developed depending on the hydrometeorological or envi-

ronmental variables of interest, each with unique strengths

and weaknesses (Heim 2002; Mishra and Singh 2010).

Among the hydrometeorological variables, soil moisture

(SM) is a very suitable one for assessing drought conditions, as

it incorporates antecedent conditions and recent precipitation,

indicates the water storage available for vegetation, and even

impacts the streamflow (Sheffield et al. 2004). However, accurate

soil moisture measurements are usually scarce, thus many of the

most commonly used drought indices account only for precipi-

tation, e.g., the standardized precipitation index (SPI; McKee

et al. 1993). Conversely, much more comprehensive approaches

have also been developed to account for more terms in the water

balance, generally relying on simulated quantities from land

surface models (LSMs), such as the soil moisture deficit index

(SMDI; Narasimhan and Srinivasan 2005) or the standardized

moisture anomaly index (SZI; Zhang et al. 2015, 2019).

Although comprehensive indices overcome several of the

known deficiencies of the simpler ones, they also introduce un-

certainties present in the suite of variables needed. However,

they usually lack the flexibility provided by intermediate indices

to be fed with more accessible data (usually precipitation and

temperature), such as the Palmer drought severity index (PDSI;

Palmer 1965), which uses a simplified water balance to account

for the moisture anomaly index. This flexibility is particularly

important, for instance, for drought forecasting at seasonal and
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subseasonal scales, when the most reliable predictions are often

the result of postprocessing of dynamic models, statistical esti-

mations, and/or more recently machine learning models.

Furthermore, such predictions are typically available for

just a small number of variables, not necessarily including the

full suite required by the complex drought indices.

The PDSI is physically based and requires only precipitation

and temperature, and is therefore among the most widely used

drought indices around the globe. However, it still has some

important caveats (Zhang et al. 2015), including the oversim-

plification of the hydrological model, the high sensitivity to the

parameter calibration, its fixed temporal scale, and the lack of

snowpack treatment, among others. In the same spirit, the

Climate Prediction Center (CPC) from the National Oceanic

and Atmospheric Administration (NOAA) uses their Leaky

Bucket (LB) water balance model (Huang et al. 1996; van den

Dool et al. 2003) to assess drought as their contribution to the

U.S. Drought Monitor (U.S.-DM; Svoboda et al. 2002). The

drought assessment is performed through the analysis of soil

moisture at a different range of temporal and spatial scales,

derived from the postprocessing of gridded temperature and

precipitation via the LB. The simplicity of this model and its

reasonable performance allow the CPC to assess drought

conditions by forcing LB with several different input datasets,

including gridded observation-based data, land surface model

outputs, and corrected numerical weather forecasts and climate

predictions, for both monitoring and forecasting. However, LB

still shares some of the same caveats as the PDSI.

Snowpack acts as a natural reservoir of water, introducing a

delay between the winter snowfall and the water availability

during spring or summer, impacting the annual cycle of soil

moisture, surface streamflow, and even groundwater. It also

acts as an insulator of the soil, preventing the evaporation of

moisture from the underlying ground. Through these impacts,

snowpack not only affects the current availability of water, but

also the reference climatology of soil moisture and streamflow.

In snow dominated basins, years with below normal maximum

snow water equivalent (SWE) can result in earlier summer

low-flow occurrences, coinciding with below normal minimum

streamflow (Jenicek et al. 2016) and soil moisture storage.

However, if SWE deficits occur due to warmer winter tem-

peratures (warm snow drought), as opposed to below normal

winter precipitation (dry snow drought), smaller snow accu-

mulation can be related to the lower ratio of snowfall to total

precipitation and/or quicker snow melting (Harpold et al.

2017a; Blahu�siaková et al. 2020). Such differences in snowpack

dynamics have diverse impacts on reservoir operations, re-

quirement and availability of water for irrigation, and ecosys-

tem functioning, including increased wildfire risk (Westerling

et al. 2006).

Despite the recognized impact of snowpack on the water

balance, and consequently droughts (e.g., Van Loon and Van

Lanen 2012; Staudinger et al. 2014; Zhang et al. 2019; Trenberth

et al. 2014), it has been usually neglected in the drought as-

sessment, including the CPC-LB. Thus, some efforts have been

taken to develop new drought indices accounting for snow

processes. Staudinger et al. (2014) proposed an extension to SPI,

the standardized snowmelt and rain index (SMRI), requiring

only temperature and precipitation to derive snowmelt by

means of a simple degree-day snow model. Zhang et al. (2019)

added snow processes to the standardized moisture anomaly

index (SZI; Zhang et al. 2015) but require additional variables,

including snow water equivalent (SWE), from very complex

LSMs. Huning and AghaKouchak (2020) performed a global

analysis of snow drought using the SWEI, a standardized

drought index directly using SWE data. Before these recent

studies, very few indices accounting for snow were developed

(e.g., Doesken et al. 1991), mostly due to the lack of snow

data.Recently, the University of Arizona (UA) released a very

high-quality snow dataset (Broxton et al. 2019) at 4-km resolu-

tion over the conterminous United States (CONUS), with daily

data from 1982 to the present. This dataset passed several

quality-control tests (Broxton et al. 2016a,b;Dawson et al. 2018),

including comparisonswith SWE from the Snowpack Telemetry

(SNOTEL) network and an independent comparison with

gamma-ray SWE (Cho et al. 2020), positioning it as a reliable

gridded dataset for SWE and snow depth over CONUS. This

dataset, in conjunction with the high-quality PRISM dataset for

precipitation and temperature, allows us to more precisely ex-

plore the relationships between temperature, precipitation,

snowfall and snow ablation, at daily scale.

Recognizing the importance of simple tools for drought as-

sessment, requiring only commonly available variables while at

the same time accounting for themost important water balance

terms, the main goal of this study is to improve the drought

assessment in the CPC through the development and imple-

mentation of a snowpack scheme within the LB. To that end,

we will first evaluate the performance of the snow scheme,

second assess its impact on soil moisture, and last test if this

improves the drought assessment.

2. Methods

a. Data

Weuse the UA 4-km daily SWE dataset (Broxton et al. 2019)

from January 1982 to December 2016 over CONUS (Broxton

et al. 2016a; Dawson et al. 2017; Zeng et al. 2018) to guide the

snow schemedevelopment (October 1984–September 1989) and

for SWE evaluation of the LB simulations (with snowpack

treatment; October 1994–September 1999, and October 2005–

September 2010). This dataset incorporates all the available data

from the Snow Telemetry (SNOTEL) network of the

Natural Resources Conservation Service (NRCS) and from

the Cooperative Observer Network (COOP), as well as tem-

perature and precipitation from the PRISM Climate Group.

The high quality of this product and its advantages over

other available datasets have been demonstrated in the past

through rigorous tests, including point-to-point interpolation

(Broxton et al. 2016a), point-to-pixel interpolation (Broxton

et al. 2016b), comparison against independent snow cover ex-

tent and airborne lidar measurements (Dawson et al. 2018),

and an evaluation against Gamma SWE (Cho et al. 2020)

performed by an independent research group. Hence, the UA

SWE dataset will be used as the ground truth for SWE.

Furthermore, data from the SNOTEL network for more than
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650 stations are also used for evaluation of LB SWE and for

reference comparison against the North American Land Data

Assimilation System version 2 (Noah/NLDAS-2) and the UA

product (Fig. S1 in the online supplemental material).

To force LB, two different datasets are employed to test the

robustness of the snowpack scheme to the forcing data. They

include the daily averaged precipitation and 2-m air tempera-

ture prepared by CPC for the 1/88 LB grid from the NLDAS-2

forcing data (Xia et al. 2009), referred to as ‘‘CPC forcing data’’

hereafter, and the PRISM 4-km daily near surface temperature

and precipitation (The PRISMClimateGroup 2004; Daly et al.

2008) for the same period as theUA-SWEdataset. The PRISM

dataset is also used to compliment the UA-SWE in the de-

velopment of the snow scheme.

For comparison, the 1/88 daily SWE data (represented by the

last hourly value of each day) from the NLDAS-2 (Xia et al.

2012a,b) utilizing the Noah2.8 land surface model (LSM) are

used. Noah is one of the widely used LSMs and it is utilized by

the NOAA National Centers for Environmental Prediction

(NCEP) for operational weather and climate prediction. It is

driven by precipitation, air temperature, wind, humidity, and

downward shortwave and longwave radiation fluxes at each

time step (e.g., 30min), with a detailed representation of most

of the water and energy cycle processes.

The percentage areas within each of the five drought categories

and the drought status maps for specific dates from January 2000

to present from the U.S.-DM (NDMC/NOAA/USDA 1999;

Svoboda et al. 2002) are used as a reference dataset to evaluate the

drought condition estimated from the LB soil moisture stan-

dardized anomalies. These five categories correspond to abnor-

mally dry (D0), moderate drought (D1), severe drought (D2),

extreme drought (D3), and exceptional drought (D4).

All of the above data are regridded using bilinear interpo-

lation to the LB 1/88 grid (Fig. 1). Daily climatologies are

computed for each grid from January 1982 to December 2016

and smoothed by retaining only the first six harmonics. To

compare the gridded data against the SNOTEL point obser-

vations, the values in the nearest pixel to each station are

chosen. The timing difference in the day definition between the

datasets (i.e., UA SWE and PRISM consider the day centered

at midnight while CPC and Noah/NLDAS-2 are centered at

noon) is neglected, as it is expected to have a negligible impact

on the analyses presented here.

b. Model description

NOAA/NCEP/CPC uses the Leaky Bucket model as a

temperature and precipitation postprocessing tool for com-

puting daily soil moisture at 1/88 grids over the CONUS

(Huang et al. 1996; van den Dool et al. 2003). The LB is forced

with daily precipitation and temperature only, and based on

mass conservation of soil moisture W within a single layer

of 1.6m:

dW

dt
5P2E2R2G , (1)

whereP is precipitation,E is evapotranspiration (as a function of

W and the temperature-dependent potential evapotranspira-

tion), R is surface plus subsurface runoff (depending on P and

W), and G is groundwater loss (as a function of W). However,

LB does not account for snow processes, which has been rec-

ognized as one of its limitations by van den Dool et al. (2003).

To improve the representation of soil moisture in areas with

snow, we have developed a one-layer snow scheme with a new

prognostic variable, snow water equivalent [SWE (mm)] for

LB (referred to as LBS hereafter, with ‘‘S’’ denoting snow).

The snow mass conservation at each grid is

DSWE

Dt
5 S2A , (2)

where S stands for snowfall (mm day21) and A for ablation

(mm day21), DSWE 5 SWE(t) 2 SWE(t 2 Dt) with a fixed

daily time step (Dt). The UA SWE and PRISM P and T data

enable us to find general relationships of S and A as functions

of P and T. For this purpose, the data were subset to that in

the five water years (WYs) from 1985 to 1989 (i.e., 1 October

FIG. 1. Area of study (conterminous United States). The red polygon encloses theWEST domain. Themaximum

daily SWE climatology (1982–2016) is shown, as obtained from the LB simulation (with CPC forcing data and

snowpack treatment). Grids with values lower than 3mm are masked out.
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1984–30 September 1989) over pixels where SWE was at least

5mm for at least 100 days and the maximum SWE was lower

than 300mm. To develop the parameterization for S, we con-

sider DSWE as the snowfall amount (i.e., neglecting the abla-

tion and snow advection) whenever precipitation P is greater

than 1mm and DSWE is positive. Figure 2a shows the snowfall

fraction of the total precipitation, DSWE/P, for those days as a

function of T. It can be seen that for T below218C, most of the

values are close to 1, while for T above 38C such fraction is

close to 0. Hence, we can parameterize S as

S5PK
SF
, (3)

K
SF

5

8>>>>><
>>>>>:

1, if T#T
SNOW

T
RAIN

2T

T
RAIN

2T
SNOW

, if T
SNOW

,T#T
RAIN

0, if T
RAIN

,T

, (4)

where KSF is the solid fraction of precipitation, computed with

the threshold values TSNOW 5 21.08C and TRAIN 5 3.08C.
Similarly, for days with P5 0mmday21, SWE. 0, and SWE

in the previous day being at least 30mm, we identify2DSWE as

the ablation. From Fig. 2b, ablation for T below 2108C is vir-

tually 0mmday21, while above 08Cablation increaseswithT. As

temperatures slightly above 08C are more common than the

higher ones when snow is present, a quadratic fit was chosen to

better represent them. Although ablation is very small for T

between2108 and 08C, it is not negligible as those temperatures

are very frequent over snow-covered areas, making the cumu-

lative effect nonnegligible; hence, a linear relationship between

T and A was chosen for T in this range. Therefore, we can pa-

rameterize A as

A5min

�
A*, A

MAX
,
SWE

Dt
1S

�
, (5)

A*5

8>>>>><
>>>>>:

0, if T#T
A

A
0
(T

A
2T)

T
A

, if T
A
,T# 0

aT2 1bT1A
0
, if 0,T

, (6)

where the last term in Eq. (5) is the total SWE available to be

melted that day, AMAX 5 20 (mm day21) is an overall upper

limit, A* is the potential ablation depending on T in Eq. (6),

TA5210 (8C),A05 0.2 (mm day21), a5 0.2 (mm day21 8C22),

and b 5 0.1 (mm day21 8C21).

Next, we compute the melting rateM (mm day21), the input

water to the soil Pinput (mm day21), and the snowpack con-

straint on the potential evapotranspiration PELBS (mm day21):

M5K
MLT

A , (7)

P
input

5 (12K
SF
)P1M , (8)

PE
LBS

5

�
0, if SWE$ 1

PE
LB

, if SWE, 1
, (9)

where KMLT 5 0.9.

The values for the seven new parameters introduced to LBS

were adopted based on the identified relationships from the

high-quality available data for the 5-yr period (WY1985–

WY1989) over all grid cells within CONUS. They are not

tied to any arbitrary geographical or climatological consider-

ation, nor specifically fitted to any individual dataset (e.g., to-

pography). By utilizing data over all of CONUS, across

different climate regimes and topography, the expectation is

that the scheme will be able to perform adequately on a

global scale.

Sensitivity tests were performed for the parameter ranges

summarized in the Table S1, where the selected values are also

provided. As expected, the scheme is sensitive to the temper-

ature thresholds (TSNOW and TRAIN) in the snowfall parame-

terization and to the ablation rate at 08C (A0). The soil

moisture in the LBmodel is also expected to be sensitive to the

melting fraction of the total ablation (KMLT), but the lack of

soil moisture measurements in snow-covered areas did not

allow us to test and calibrate it.

To keep the snowpack scheme simple and requiring only

daily temperature and precipitation, several assumptions

are made which partially explain the uncertainty in SWE.

Diurnal cycles of temperature and precipitation are neglec-

ted, which can lead to biases in the rain/snowfall partition-

ing. Air humidity is not considered either, which affects the

sublimation/melting partitioning, and has also been recognized

to impact the rain/snowfall partitioning (Wang et al. 2019;

Behrangi et al. 2018; Harpold et al. 2017b). Neglecting the

snowpack liquid water content (Techel and Pielmeier 2011),

partial melting/refreezing, and energy balance also introduces

uncertainty (Samimi and Marshall 2017), particularly for rain

FIG. 2. Estimations of snowfall and ablation functional forms for

the LB model. (a) Median [6standard deviation (STD)] of daily

SWE increments as fraction of the daily precipitation (DSWE/P),

presented as a function of temperature, binned every 0.58C.
(b) Median (6STD) of daily SWE decrements (2DSWE) as

function of temperature, binned every 0.58C. The red lines repre-

sent the functional form chosen for snowfall/ablation in the LBS

model. Based on data fromUA-SWE and PRISM from 1 Oct 1984

to 30 Sep 1989.
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on snow events. The lack of land cover consideration can also

limit the ability of the model to correctly represent the snow-

pack spatial variability. Finally, snowpack dynamics can vary

markedly between areas of seasonal versus ephemeral snow

(Petersky and Harpold 2018), which is also not explicitly

considered here.

LB on its own also has recognized weaknesses, including the

assumption of constant soil and other physiographic proper-

ties, as well as the lack of a vertical soil profile, energy balance,

and diurnal cycle considerations. Additionally, no lateral flow

between pixels is considered, preventing the downstream

pixels from capturing the runoff (including meltwater) from

upstream pixels. Despite all of its limitations, LB has been a

useful tool at CPC for decades for drought monitoring (based

on observed temperature and precipitation) and prediction

(as a simple postprocessing tool of forecasting model output of

temperature and precipitation), and for seasonal prediction

(using the soil moisture–based analogs), due to its reasonable

representation of soil moisture (e.g., Fan and van den Dool

2004; Fan et al. 2011; Fan and Van Den Dool 2011; Wang

et al. 2010).

c. Estimation of drought condition from LB simulated soil
moisture

In an attempt to mimic the U.S.-DM drought categories, soil

moisture standardized anomalies (SDAnoms; i.e., difference

between actual daily soil moisture and its mean climatology

value, normalized by the standard deviation) below 20.5,

20.8, 21.2, 21.5, and 21.9 were related to the categories D0,

D1,D2,D3, andD4. It is important to note that theU.S.-DM is a

multivariate and more subjective approach to drought moni-

toring, while the objective categories from LB consider soil

moisture only. Hence, the U.S.-DM is taken as a reference,

rather than ground truth, in the comparisons presented here.

3. Results and discussion

a. Snowpack representation over CONUS

To better assess drought based on the soil moisture from

LBS, it is first essential to ensure realistic representation of the

snowpack itself. A 5-yr evaluation period fromOctober 1994 to

September 1999 (or WYs 1995–99), which is different from the

calibration period (WYs 1985–89), is used to compare the SWE

results from LBS forced with the default CPC data (denoted as

LBS), LBS forcedwith PRISMdata [denoted asLBS (PRISM)],

and Noah NLDAS-2 outputs against the UA SWE dataset.

Figures 3a–d show that generally, LBS (PRISM) shows a

better performance than Noah/NLDAS-2, with much more

limited areas of large root mean squared errors (RMSEs) and

biases. For instance, the number of grid boxes with RMSE

values greater than 100mm are 513 and 2136 for LBS (PRISM)

and Noah/NLDAS-2, respectively. RMSE is much smaller for

LBS (PRISM), particularly over regions such as the Rockies,

thoughNoah performance is slightly better over the Northeast.

LBS (PRISM) exhibits a positive bias over the majority of the

country where the maximum daily climatological SWE is

higher than 100mm (Fig. 1), with the highest values over the

Cascades. Noah/NLDAS-2 SWE demonstrates a prevalent

negative bias, with greater magnitudes than LBS over the

Rockies, Cascades, and Sierra Nevada. Replacing the PRISM

P and T (used to develop the LBS) by the CPC P and T (used

operationally in the CPC, not used in the LBS development),

the LBS results still show an improved spatial representation of

SWE over the Noah/NLDAS-2 (Figs. 3e,f), although some

degradation is found, as expected, when compared to LBS

(PRISM). This demonstrates that the scheme can produce

reliable results with different datasets.

Time series of areal average SWE over the WEST domain

(Fig. 4a) show that both LBS simulations (CPC and PRISM

forcing data) present a closer fitting to the UA SWE than the

Noah/NLDAS-2, with much smaller RMSEs from LBS forced

with PRISM (6.6mm) and with CPC (7.9mm) than from the

Noah/NLDAS-2 (25.1mm). For New Hampshire (represent-

ing the East, Fig. 4b), both LBS results tend to overestimate

SWE, while Noah-NLDAS2 shows an underestimation. The

RMSE values from LBS simulations (38.0 and 42.7 mm,

for CPC and PRISM forcing) are higher than these from

Noah/NLDAS-2 (27.8mm). In contrast, the temporal vari-

ability is better represented by both LBS simulations, with

correlation coefficients of 0.97 for both, versus 0.89 for

Noah/NLDAS-2. Other states were also analyzed, with con-

sistently better performance than Noah/NLDAS-2 in the west,

while comparable in the east. For instance, for Michigan, the

RMSE values from LBS (PRISM), LBS, and Noah/NLDAS-2

are 11.4, 24.4, and 16.7mm, respectively.

The differences in SWE between both LBS simulations (i.e.,

forced with CPC and PRISM data), are mainly driven by the T

and P differences in the forcing datasets (Fig. S2). For the

evaluation period (i.e., WYs 1995–99), the CPC forcing data

show a wetter condition for most of the United States (but

usually not surpassing 0.4mm day21 of mean difference) than

the PRISM dataset (Fig. S2a). However, a drier condition over

the mountainous areas is observed, with mean differences as

large as 21.5mm day21 over Sierra Nevada and the Cascade

Mountains. For temperature (Fig. S2b), the CPC dataset

exhibits a warmer mean condition than the PRISM data over

most of the western United States (up to 38C for some areas),

with a few spots over portions of the western mountains with

the opposite behavior. In terms of root-mean-squared difference

(RMSD), the largest differences in precipitation are found

over the Cascades and Sierra Nevada, followed by the northern

Rockies (Fig. S2c). The largest RMSDs for temperature are

found in the intermountain region and to the east of the Rockies

(Fig. S2d). These disparities are consistent with the differences

in SWE between both LBS simulations shown in Fig. 3.

To expand the evaluation, a comparison of SWE from LBS,

LBS (PRISM), and Noah/NLDAS-2 against SWE point ob-

servations from the SNOTEL stations is shown in Fig. S1 for

the period WYs 2006–10. The median (mean) correlation co-

efficient across the more than 650 compared points is 0.89

(0.83) for both LBS and LBS (PRISM) (Figs. S1c,d), while the

RMSE is 119mm (172mm) for LBS and 114mm (175mm) for

LBS (PRISM). These results are better than those for the

Noah/NLDAS-2 (Fig. S2b) with the median (mean) correla-

tion being 0.65 (0.61) and the RMSE 153mm (203mm).
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Furthermore, the correlations in about 80% of the SNOTEL

points are higher for LBS than for Noah/NLDAS-2, and in

about 84% of the points for LBS (PRISM) (Fig. S1e). Similar

proportions of lower RMSE for LBS and LBS (PRISM) versus

Noah/NLDAS-2 are observed (Fig. S1f). For reference, the

UASWEproduct shows the best performance (Fig. S1a) with a

median (mean) correlation of 0.92 (0.86) and RMSE of

105mm (150mm).

b. Impacts of snow on soil moisture

As our snowpack treatment is developed for the CPC oper-

ational implementation, only the simulations with the CPC

forcing data are analyzed here. As the LB soil moisture was

evaluated before (Fan and van denDool 2004), herewe focus on

the snowpack effect on soilmoisture (Fig. 5).At the beginning of

the water year (1October; top row of Fig. 5), snowmelt from the

previous season leads to more soil moisture in LBS than in LB

over the mountainous areas in the western United States.

During winter (1 January; second row of Fig. 5), snow cov-

erage and snow water equivalent increase. Hence, LBS shows

considerably less soil moisture than LB in the snowy areas,

because snowfall is stored in the snowpack, not reaching the

soil. By 1 April (third row of Fig. 5), snow coverage extent has

decreased from that in January; however, SWE over the

mountains and in theNortheast is close to its annual maximum.

Accordingly, the soil moisture differences in such areas in-

creased to be as large as 100mm in magnitude, although

covering a smaller area of the United States. As the melting

season develops, the soil moisture differences between LBS

and LB decrease in magnitude, due to water previously stored

in the snowpack now reaching the soil. By 1 July (bottom row

of Fig. 5), the increase in soil moisture due to snowmelt in the

LBS is evident. This increased soil moisture lasts until the

beginning of the next water year in some areas.

These results demonstrate the expected decrease in soil

moisture during winter and increase in spring and summer due

to water storage in the snowpack. Next, we will address how

this impacts the drought assessment.

c. Impacts on drought assessment

For drought assessment, the standardized anomalies

(SDAnoms) of soil moisture (with the threshold values provided

FIG. 3. Spatial performance of SWE from LBS and Noah/NLDAS-2. Map of (left) RMSE and (right) bias of SWE from (a),(b)

Noah/NLDAS-2, (c),(d) LBS forced with PRISM, and (e),(f) LBS forced with CPC relative to the UA SWE, using all daily values from

WYs 1995 to 1999.
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in section 2c) have been used as a proxy for the drought condi-

tion at CPC. We use the same approach here for comparison

with the much more complex subjective analysis from the U.S.

Drought Monitor. As the U.S.-DM data are available only since

1 January 2000, the period covered in this analysis is 1 January

2000–31 December 2016.

LB is able to reasonably simulate the temporal evolution of

area percentageswith different drought intensities overCONUS

compared with U.S.-DM (Fig. 6a), with temporal correlations

for categories D0–D4 being 0.64, 0.61, 0.59, 0.55, and 0.42, re-

spectively. This supports the choice of such thresholds of

SDAnoms as a surrogate for the drought condition. The tem-

poral correlations between LBS and U.S.-DM are similar (0.63,

0.62, 0.61, 0.57, and 0.40). Figure 6b shows the differences be-

tween the percentage of covered areas mimicked by LBS and

LB within each category (the five colored rows on the y axis,

from D0 at top to D4 at bottom), as a function of time (hori-

zontal axis). Differences as large as 5% of the entire CONUS

area (dark red or dark blue) are seen for some categories. Such

changes are larger during the winter and spring seasons, with

some of them lasting longer, consistent with the snow season.

As the threshold selection is just informative, a more

quantitative analysis is performed directly using the SDAnoms

of soil moisture in Fig. 6c. As expected, the largest values of

both mean difference and RMSD are found in the snow ac-

cumulation and melting seasons (winter and spring/summer).

Here, the correlation between mean areal SWE anomalies

over CONUS (red line in Fig. 6b) and the mean difference of

SM SDAnoms is 20.86, aligned with the expectation of im-

proved drought condition in LBS (compared to LB) for years

with above normal SWE, and vice versa.

The spatial distribution of the temporal pixel-by-pixel RMSD

and mean differences (LBS-LB) of the standardized soil mois-

ture anomalies from both versions of the model are shown in

Fig. 7. The RMSD (Fig. 7a) shows a similar spatial pattern to the

climatological maximumSWE (Fig. 1), with high values over the

mountainous areas over the western United States. This pattern

highlights the importance of snowpack as a modulator of the

annual cycle of the water balance variables, with meaningful

changes in soil moisture over the snowy areas. The mean dif-

ferences between LBS and LB are generally small in magnitude

over most of the areas (mostly ranging between 20.1 and 10.1

SM standard deviations), with negative differences (meaning

drier in LBS) over the Rockies and Sierra Nevada mountains,

and positive differences (meaning wetter in LBS) over the

Cascades and the northeast United States (Fig. 7b).

d. Case studies: Water years 2010 and 2013

To better understand the snowpack impacts on drought

assessment, a more detailed analysis of different seasons was

performed over the entire CONUS for WYs 2010 (here) and

2013 (in the supplemental material, including Fig. S3). Figure 6a

shows that droughts weremostly localized and had relatively low

intensity over CONUS inWY 2010, while larger portions of the

United States were under drought conditions, including large

areas under the most severe categories of drought, during WY

2013. These two years also show important differences in the

mimicked drought categories simulated by LBS and LB

(Figs. 6b,c). LBS shows less area in the categories D0 and D1

than LB for WY 2010 and more area in all the categories

during WY 2013.

During early February 2010 (Fig. 8, left column), snowpack

was widespread over the United States, with negative SWE

anomalies over the Cascades and the Rockies (reaching up

to 2100mm) and northeast United States. In contrast, the

Sierra Nevada, the Utah–Arizona border, and the northern

Great Plains showed positive SWE anomalies. The negative

SWE anomalies in theWest are consistent with the widespread

abnormally dry area (D0) in the U.S.-DM, and so are those in

the northern portions of Minnesota and Wisconsin (Fig. 8d).

Overall, the original LB captures the general pattern of

drought condition over most of the United States (Fig. 8g).

However, it shows a severe deficit of soil moisture in the

northern border between Idaho and Montana, inconsistent

with the U.S.-DM, it does not identify the severe drought (D2)

condition in northernArizona/southernUtah, and it overestimates

FIG. 4. Temporal variability of SWE from the LBS and Noah/NLDAS-2 models. Temporal

evolution of areal average time series of SWE from LBS, LBS (PRISM), UA-SWE, and

Noah/NLDAS-2 from 1Oct 1994 to 30 Sep 1999, over (a) theWESTUnited States and (b) New

Hampshire.
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the drought condition in the Michigan/Indiana/Ohio region. With

the snowpack treatment, LBS results are more consistent with the

U.S.-DM, particularly over Nevada, Montana, and the eastern

United States (Fig. 8m). For the northern Arizona/southern Utah

area, the direction of the change is correct though too high, leading

to an overestimation of the drought severity.

In early April (Fig. 8, center column), the negative anoma-

lies of SWE expanded tomost of theUnited States, except over

the high elevations in the southern Rockies and Sierra Nevada

(Fig. 8b). The largest changes in the U.S.-DM analysis with

respect to early February are the increase in the drought se-

verity over the borders of Northern California and Nevada, in

part of the northern Rockies, as well as in the northern portions

ofMichigan, Pennsylvania and NewYork (Fig. 8e). The original

LB overestimates the intensification over the northern Rockies

and northeastUnited States, including theGreat Lakes area, but

represents quite well the condition on the California–Nevada

border (Fig. 8h). The large SDAnoms differences between LBS

and LB lead to a closer drought estimation of LBS (Fig. 8n) to

the U.S.-DM than the original LB, although some differences

still remain, most notably in Ohio and Kentucky.

In early June (Fig. 8, right column), after the melting season

ended inmost of theUnited States, negative anomalies of SWE

still remained in parts of the Cascades and northern Rockies,

while positive SWE anomalies persisted over the Sierra

Nevada and part of the Rockies (Fig. 8c). The drought condi-

tion in the U.S.-DM worsened over the eastern United States

but improved in the intermountain areas between the Rockies

and the Cascades/Sierra Nevada (Fig. 8f). LB shows similar but

amplified changes and it does not identify most of the

Vermont/New Hampshire/Maine areas in any drought cate-

gory (Fig. 8i). LBS in Fig. 8o shows slightly lower SDAnoms in

the easternmost part of the United States and larger ones over

mountainous areas in the West, making the simulated drought

conditions in the West (particularly over the northeastern

portion of Wyoming) and in the easternmost United States

slightly better.

Due to the lack of horizontal flow between grid cells in

LB/LBS, cells downstream of snowy areas do not benefit from

the introduced SWE representation and its meltwater runoff.

However, a subjective analysis of SWE anomalies can improve

the overall drought assessment, like that performed by the

U.S.-DM experts. As an example, no drought was identified in

the northeastern United States during February and only small

portions during April by the U.S.-DM (Figs. 8d,e). However,

the large negative anomalies of SWE during early April

FIG. 5. Impact of snow treatment on LB-simulated soil moisture. Daily climatology of (left) snow water equivalent, (center) soil

moisture fromLBS, and (right) soil moisture difference betweenLBS andLBon (a)–(c) 1Oct, (d)–(f) 1 Jan, (g)–(i) 1Apr, and (j)–(l) 1 Jul.

Climatology was computed between 1 Jan 1982 and 31 Dec 2016. Grays areas are masked out as in Fig. 1.
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(Fig. 8b) probably contributed to a drier condition during the

following summer, coincident with the large D0 area identified

for the northeast in June (Fig. 8f). Conversely, the positive

SWE anomalies over Sierra Nevada probably helped to miti-

gate the dry condition in central California. This drought/SWE

dynamic is better captured by LBS (Figs. 8m–o) than by the

original LB (Figs. 8g–i).

For WY2013 (supplementary discussion S1 and Fig. S3), the

addition of snowpack treatment led to a better representation of

the drought condition over themountainous areas in theWest and

in eastern United States, although it introduced some overesti-

mation of the drought condition in the northern Great Plains.

4. Further discussion

As LBS includes the explicit representation of all relevant

components of the water balance of a soil bucket (precipita-

tion, snowpack, evapotranspiration, surface and subsurface

runoff, and groundwater loss) and does not include arbitrary

geographical or climatological considerations, it is expected to

be applicable over CONUS and globally. Indeed, we have

conducted the preliminary analysis of global application of

LBS, finding that spatial and temporal variability of snowpack

is adequately represented. Figure S4 shows that the snowpack

impacts on soil moisture seasonality over the Northern

Hemisphere are consistent with those presented for CONUS.

More detailed analysis is being conducted for future work.

It is important to note that because of its many simplifica-

tions (e.g., single-layer soil, no energy balance considerations,

no diurnal cycle, etc.), LBS is not appropriate for hydrological

simulations in general (e.g., streamflow), land surface model-

ing or land-atmosphere coupled modeling where both land

surface water and energy balances must be maintained (which

can be done by complex LSMs only, such as Noah). However,

the improved performance of LBS compared to Noah in sim-

ulating SWE suggests that further evaluation of Noah snow-

pack simulations (e.g., following the analysis in Fig. 2) will be

helpful for Noah model improvement. Furthermore, reason-

able agreement of LBS with the drought condition from the

U.S. Drought Monitor and its consistency when forced with

different datasets justifies its usage for both drought monitor-

ing (using observation-based temperature and precipitation

data) and prediction (using postprocessed temperature and

precipitation data from numerical models for daily to seasonal

forecasts).

Furthermore, LBS can be a useful tool to stakeholders, as

the analysis of SM and SWE values and anomalies will provide

information not only on the current water availability within

the soil, but also the water storage in the snowpack that can

inform water availability during and after the melting season.

For example, this can help reservoir managers to balance the

need of maximizing the water storage to satisfy the require-

ments of their users, against the safety measure of leaving ca-

pacity to avoid overflows, and to reduce the uncertainty in the

spring/summer inflows (Harpold et al. 2017a). An analysis of

SWE can also help to inform the wildfire stakeholders, as an

early snowmelt has been associated to increased wildfire risk in

the following seasons (Westerling et al. 2006).

FIG. 6. Impacts of the snow treatment in the Leaky Bucket model on drought assessment. (a) Time series of the

percentage area of CONUS in each drought category of the U.S. Drought Monitor (top) and the mimicked

equivalent time series from the standardized soilmoisture anomalies in the LB simulation (bottom). (b)Differences in

the time series of percentage of covered area in the mimicked drought categories from LBS minus LB (five colored

rows, with category D0 at the top and D4 at bottom); areal averaged SWE anomalies from LBS over CONUS are

superimposed (red line, right axis). (c) Time series of spatial mean difference (black line; left axis) and RMSD (red

line; right axis) of standardized soil moisture anomalies (LBS 2 LB) over CONUS.
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On the other hand, the uncertainties associated with LBS

and discussed in section 2b must be carefully considered. In

particular, the lack of lateral flow between grid cells prevents

the model from spreading the benefits of a reliable snow rep-

resentation to the downstream valleys. Furthermore, as our

development of the snow scheme is based on pixels with an

average of at least 20 days per year of snow cover, relative

uncertainties are expected to be larger over areas with inter-

mittent snow coverage.

5. Conclusions

We have developed a simple one-layer snow scheme for

implementation in the CPCLeaky Bucket (LB), currently used

to postprocess temperature and precipitation for operational

drought assessment through analysis of soil moisture anoma-

lies. This snow treatment introduces SWE as an additional

prognostic variable, and both this scheme and LB are driven by

daily precipitation and temperature data only. Although sim-

ple, LB with the snow treatment (i.e., LBS) accounts for most of

the water balance processes, allowing for a more comprehensive

drought assessment than the commonly used indices (e.g., SPI or

PDSI), without requiring a large suite of variables used in more

recent indices (e.g., SZI).

LBS performs well against the UA SWE dataset (e.g.,

RMSE of ;7mm over the West United States; Figs. 3 and 4)

and SNOTEL observations (e.g., median correlation among

the more than 650 stations of 0.89; Fig. S1). In particular, the

simple LBS performs better than a complex LSM (Noah/

NLDAS-2) in both spatial and temporal SWE variability

when forced with the PRISM or CPC data (based on the

NLDAS-2 forcing data), supporting its usability with different

datasets. Hence the snowpack treatment in the LBS adds a new

advantage to the CPC efforts in drought assessment, as it

provides the valuable output of a reliable SWE and its anom-

alies that could also be used to further improve the multivari-

able analysis of droughts.

As expected, snowpack changes the soil moisture seasonality

in themodel. First, snowpack decreases soil moisture over snow-

covered areas in winter due to snowfall/water storage in the

snowpack (rather than reaching the soil), even counteracting the

snowpack’s inhibition of evapotranspiration. The storedwater in

FIG. 7. Maps of the temporal RMSD and mean difference of soil moisture standardized

anomalies. (a) Map of the RMSD and (b) map of the mean difference (LBS2 LB), computed

pixel by pixel for the period 1 Jan 2000–31 Dec 2016.
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the snowpack becomes available in the melting season, increasing

soil moisture. Over mountainous areas, the snowpack impact on

soil moisture can carry over to the following Water Year.

Compared with the U.S.-DM data, our snowpack treatment

improves the LB simulation of the temporal and spatial dis-

tribution of drought conditions overall (Fig. 8 and Fig. S3). This

justifies an increased confidence in the drought assessment

derived from the Leaky Bucket postprocessing over snow-

covered regions. This will contribute to the drought assessment,

as the soil moisture anomalies from LBS represent the contri-

bution of CPC to the multiagency U.S. Drought Monitor.

Because of the results reported in this study, our snowpack

scheme has been implemented in the CPC operational LBS runs,

and results are freely available at https://www.cpc.ncep.noaa.gov/

products/Soilmst_Monitoring/index.shtml. Furthermore, an ex-

pert subjective analysis of both SM and SWE can inform

stakeholders not only about the current drought status, but

also about the expected spring/summer drought condition

FIG. 8. Impact of snow treatment in LBS on the drought condition inWY 2010.Maps of (a)–(c) SWE anomalies, (d)–(f) areas under the

five categories in the U.S. Drought Monitor, (g)–(i) SDAnoms of soil moisture from the LB (colored by the mimicked thresholds for the

DM categories), (j)–(l) difference in SDAnoms of soil moisture (LBS-LB), and (m)–(o) the SDAnoms of soil moisture from LBS in early

(left) February, (center) April, and (right) June when the U.S.-DM data were available.
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during and after the melting season for snow dominated

basins.
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