Changes in Weather and Climate [™] Patterns during El Niño and La Niña

THE FL NIÑO-YO

The Pacific jet stream responds by strengthening & extending eastward during El Niño (weakening & retracting westward during La Niña).

Changes in the jet lead to changes in temperature and precipitation patterns, hence changes in the number & intensity of weather events, including extremes. 10/23/2020

Uncoupled El Niño Warming

Zeng-Zhen Hu¹ Michael J. McPhaden², Arun Kumar¹ Jin-Yi Yu³, Nathaniel C. Johnson⁴

- 1. Climate Prediction Center, NCEP/NWS/NOAA, College Park, MD 20740, USA
- 2. NOAA Pacific Marine Environmental Laboratory (PMEL), Seattle, Washington 98115, USA
- 3. Department of Earth System Science, University of California, Irvine, CA 92697-3100, USA
 - 4. Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, and NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08540, USA

What is the uncoupled El Nino warming?

An uncoupled warming event is defined as an

event with

▶(a) Monthly mean Niño3.4 index ≥ 0.5°C; ▶(b) Central Pacific OLR (CP_OLR) index >0.0; ▶(c) (a) & (b) persist for at least 3 consecutive months.

Uncoupled El Nino: small SSTA zonal gradient & positive OLR

Pacific-North American (PNA) Pattern

Without tropical convection, there will be NO extratropical response.

Wang, C. Three-ocean interactions and climate variability: a review and perspective. Clim Dyn 53, 9–5136 (2019). https://doi.org/10.1007/s00382-019-04930-x 10/23/2020

- Coupled composite is more significant than uncoupled one;
- CPC official forecast skill of T/P in El Nino is higher than uncoupled one;
- So we must distinguish uncoupled El Nino from coupled one.

Fig. S3. Time series of unfiltered (red) and residual (blue) zonal SST gradient index for (a) SON and (b) all three-month seasonal means.

Johnson et al. GRL 2019: zonal SST gradient index is defined as the difference between the standardized SSTA averaged over a box near Papua New Guinea ($10^{\circ}S-10^{\circ}N$, $130^{\circ}E-170^{\circ}E$) and the standardized SSTA averaged over a box in the central Pacific $10^{\circ}S-10^{\circ}N$, $180^{\circ}-140^{\circ}W$).

Lead-time dependent prediction skill of CFSv2 predicted Niño3.4 (bar) and zonal gradient of SSTA (the central (5°S-5°N, 160°E-160°W) minus the eastern (5°S-5°N, 120°W-90°W) tropical Pacific; line) indices. The skill is defined as the linear correlation between the ensemble mean of 20 forecast members and observations in Jan 1982-Dec 2018

Summary and Conclusions

- In addition to various flavors of ENSO, oceanic warming in the central and eastern tropical Pacific sometimes is not accompanied by corresponding atmospheric anomalies, i.e., atmosphere and ocean remain uncoupled.
- Such uncoupled warm events happened in 1979, 2004, 2014, and 2018. A weaker zonal gradient of SSTA across the tropical Pacific compared with that in a conventional El Niño may partially account for the decoupling.
- Without coupling, the impact of the El Nino warming on extratropical climate may also be different from that of its coupled counterpart, implying an additional challenge for seasonal climate prediction.
- The enlarged zonal contrast trend across the tropical Pacific may be associated with more frequent uncoupled El Nino warming since
 1999/2000.

