



# SUB-SEASONAL FORECASTING USING LARGE ENSEMBLES OF DATA-DRIVEN GLOBAL WEATHER PREDICTION MODELS

JONATHAN WEYN1\*, DALE DURRAN1, RICH CARUANA2

- University of Washington, Seattle, WA
   Microsoft Research, Redmond, WA
- \* Current affiliation: Microsoft

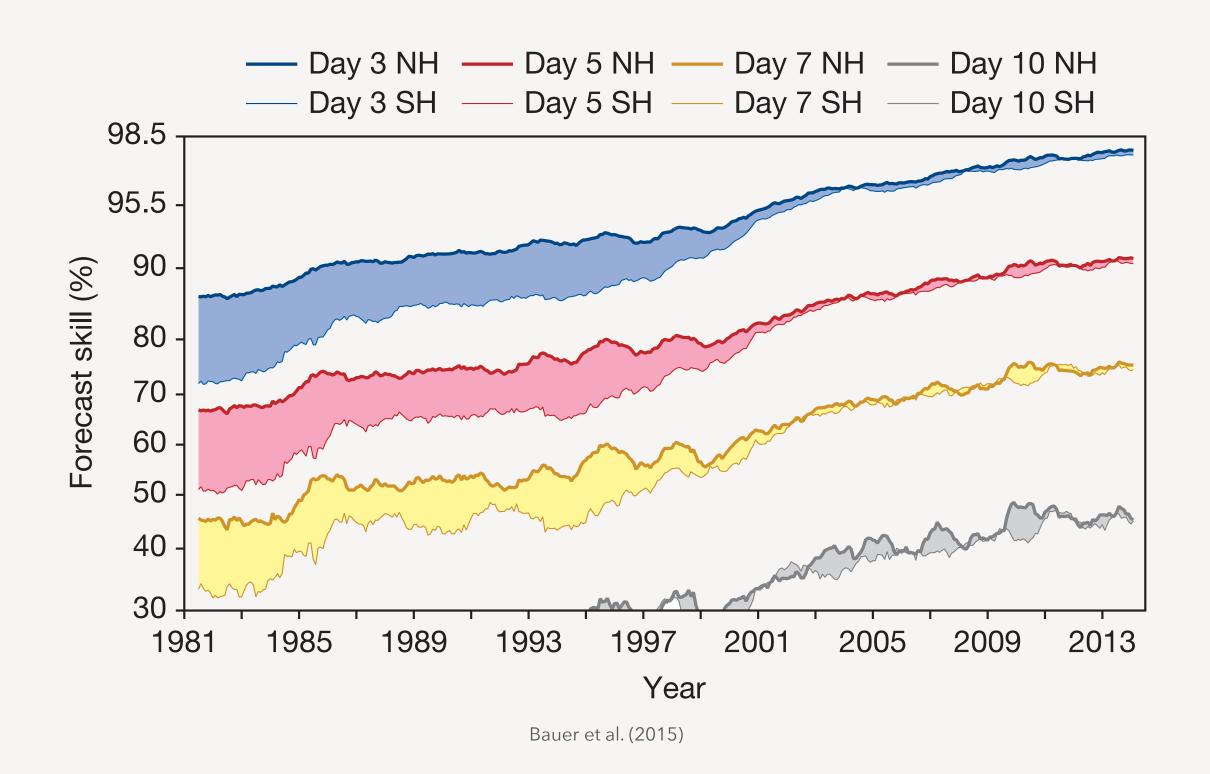






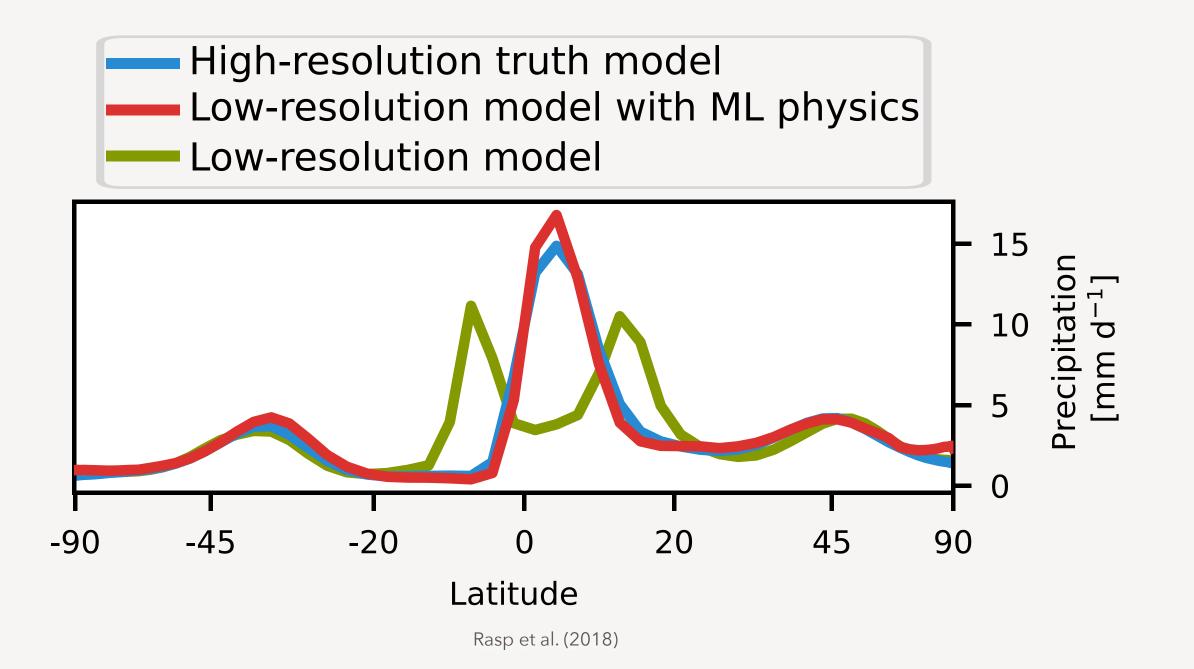
### NWP: A "QUIET REVOLUTION"

- Weather forecasting has gradually increased in accuracy, due to:
  - Vast advances in numerical representation of atmospheric physics and numerical methods
  - Large network of data collection from satellites
  - Supercomputing power
- Is it possible to stretch these improvements even further by applying modern machine learning techniques?



#### EXPLOSION IN APPLICATION OF ML IN METEOROLOGY

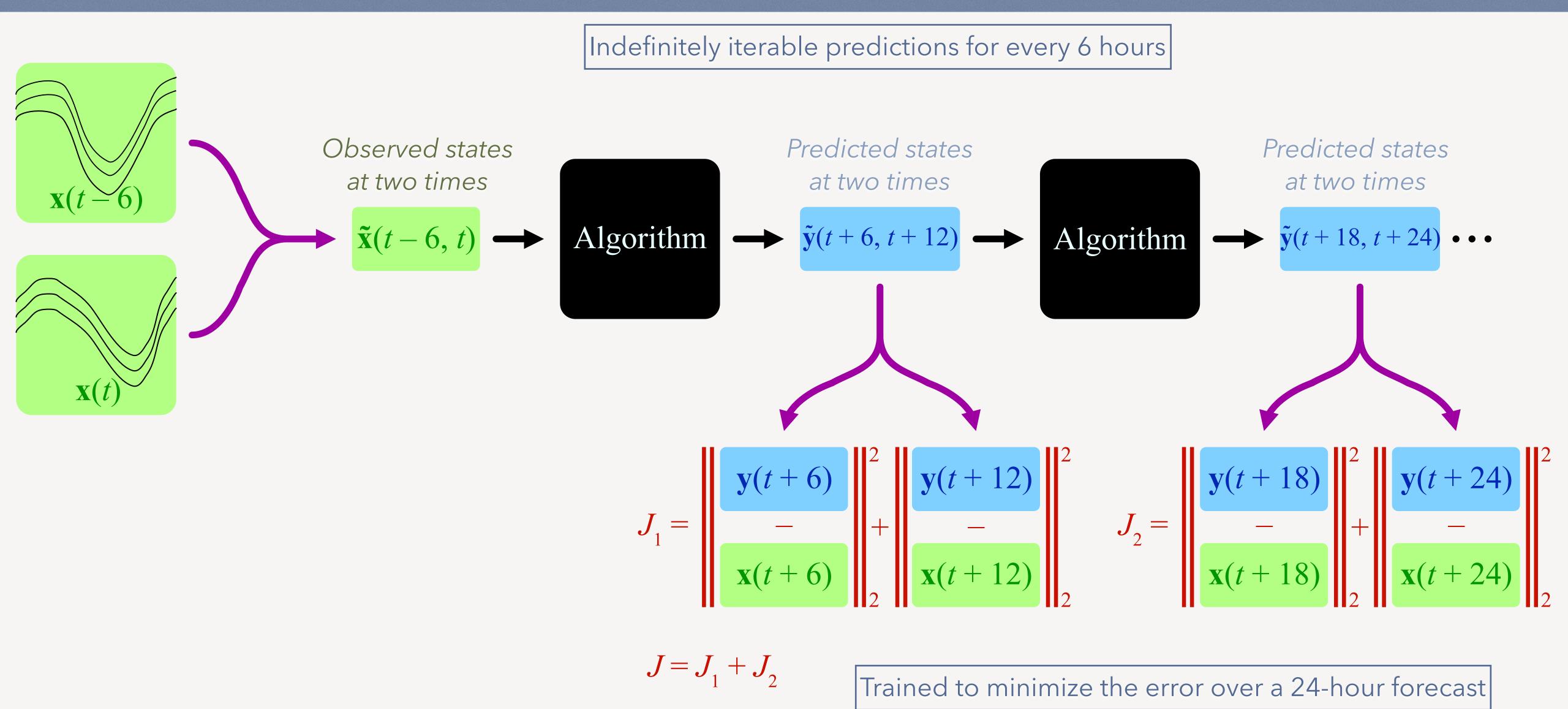
- Post-processing NWP models (Rasp and Lerch 2018)
- Identification and prediction of extreme weather events (Racah et al. 2017, Lagerquist et al. 2019, Herman and Schumacher 2018)
- Improving physical parameterizations in NWP models, and improving their computational efficiency (Rasp et al. 2018, Brenowitz and Bretherton 2018, McGibbon and Bretherton 2019)



# WHAT IF MACHINES COULD PREDICT THE EVOLUTION OF THE ENTIRE ATMOSPHERE?

- We developed our Deep Learning Weather Prediction (DLWP) model
  - Use deep convolutional neural networks (CNNs) on a cubed sphere grid
  - While this is essentially replacing NWP models with deep learning, there are important caveats
    - only a few variables: not a complete forecast
    - subject to using training data dependent on state-of-the-art data assimilation

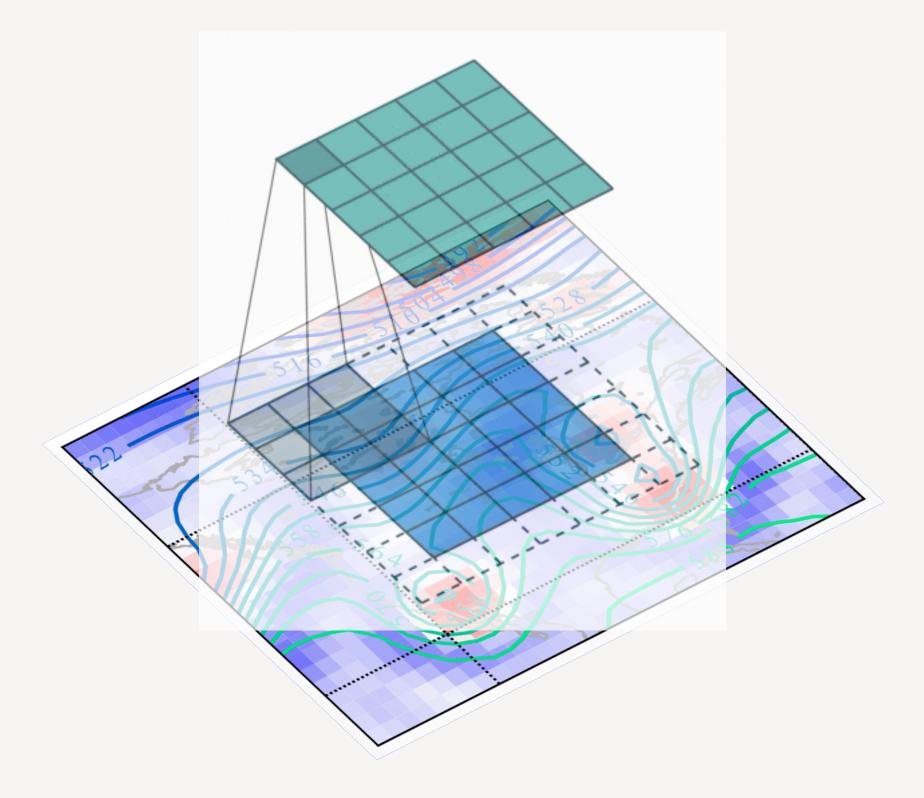
#### INTRODUCTION



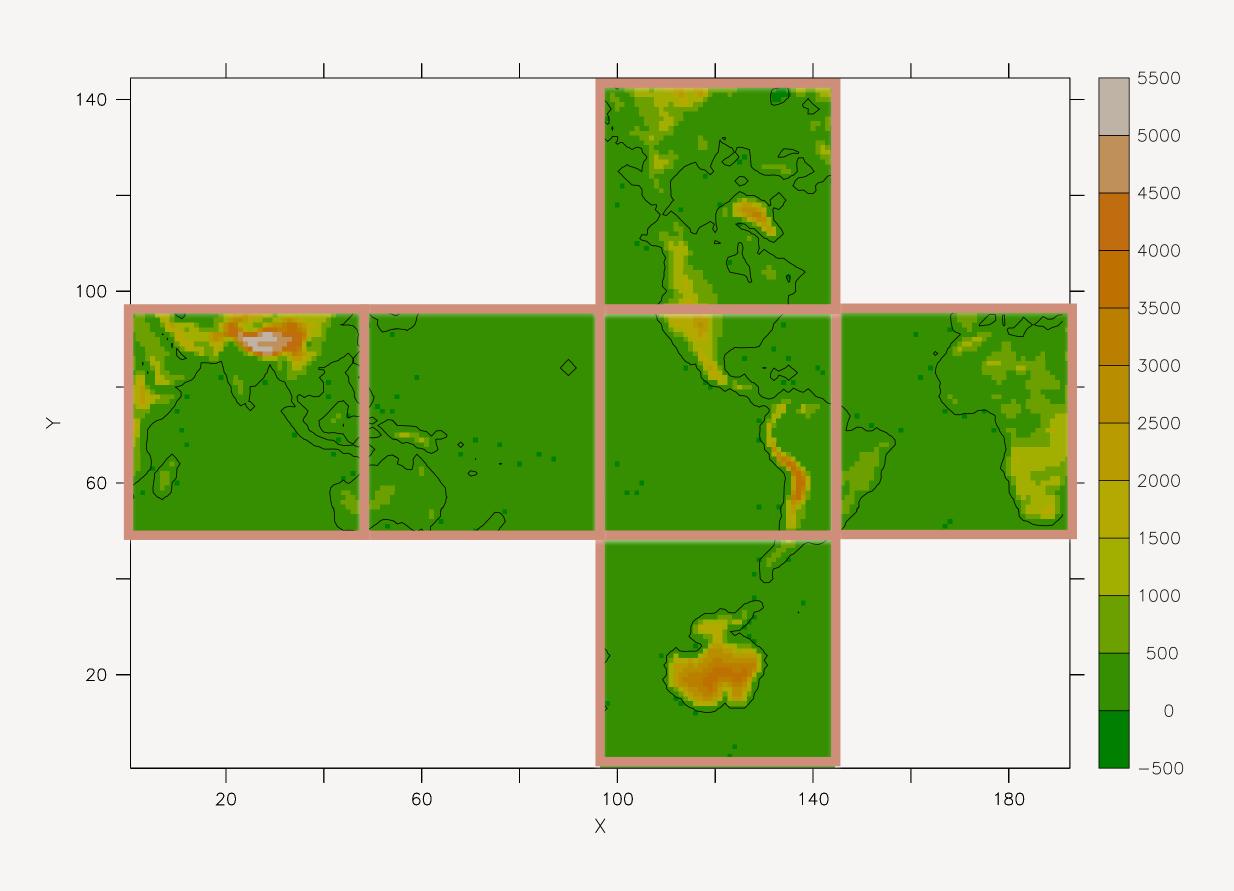
#### CONVOLUTIONAL NEURAL NETWORKS

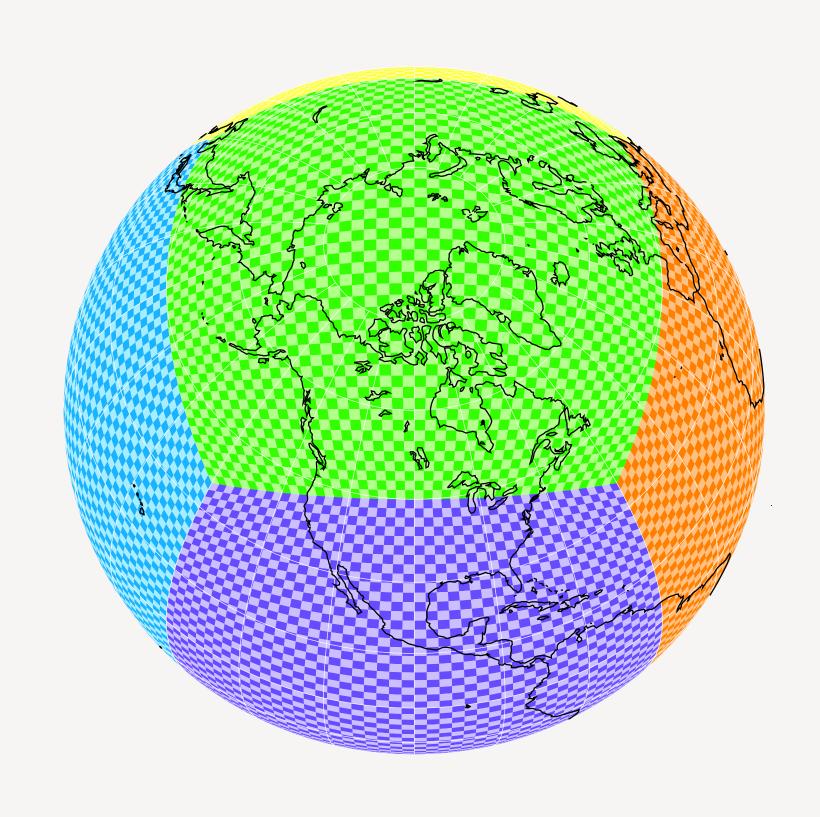
#### CNNs

- are ideally suited for "images" on a grid
- account for local spatial correlations
- identify patterns, edges, shapes
- However, equirectangular (latitude-longitude) images have heavy distortion near the poles



## CONVOLUTIONS ON THE CUBED SPHERE



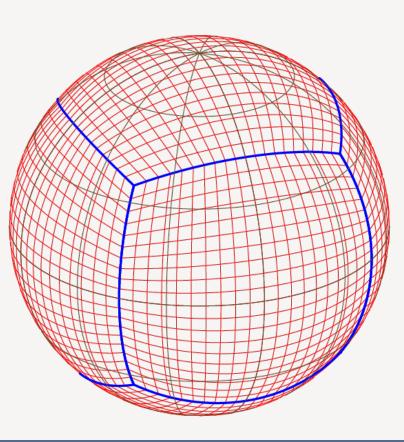


https://extranet.gfdl.noaa.gov/~atw/ferret/cubed\_sphere/

#### DATA

#### • ECMWF ERA5 input fields (6)

- ~1.4° resolution; 6-hourly time step
- $Z_{500}$ ,  $Z_{1000}$
- 300-700 hPa thickness
- 2-m temperature
- Total column water vapor
- T<sub>850</sub>



#### Prescribed fields (3)

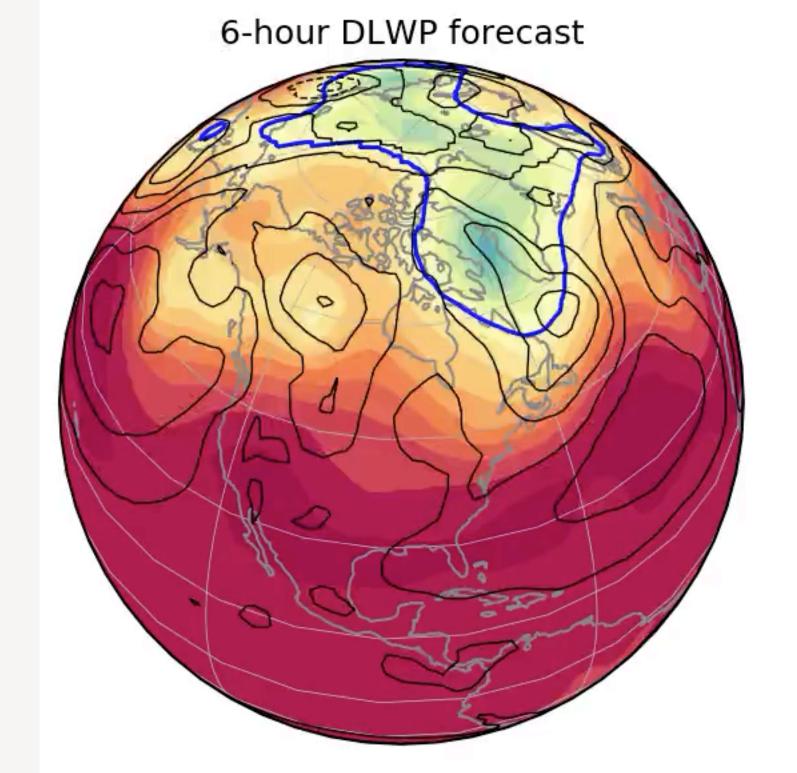
- TOA incoming solar radiation
- land-sea mask
- topography

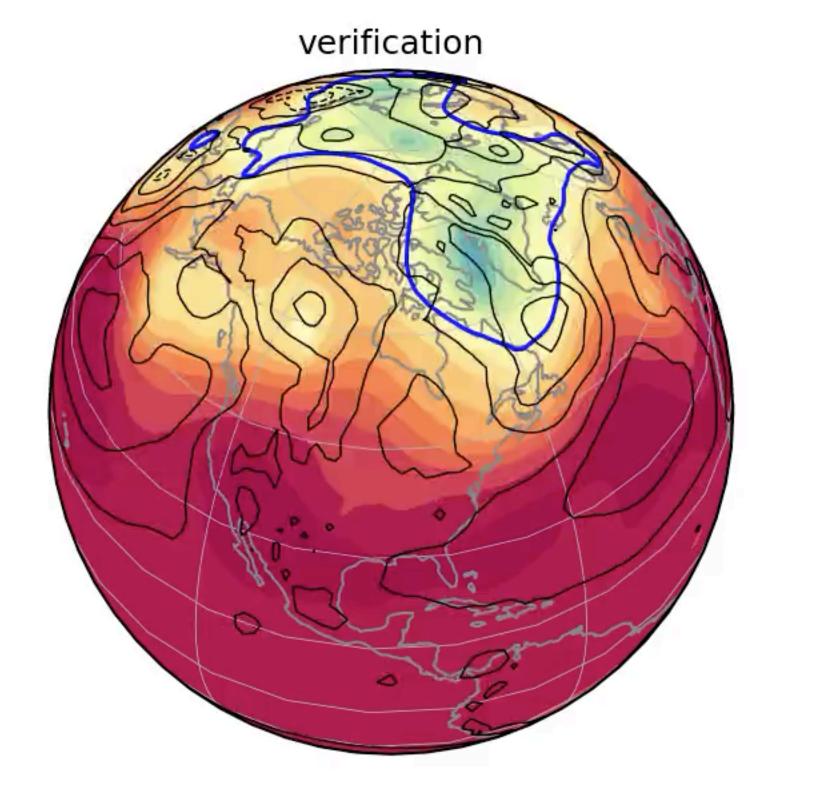
#### Data sets

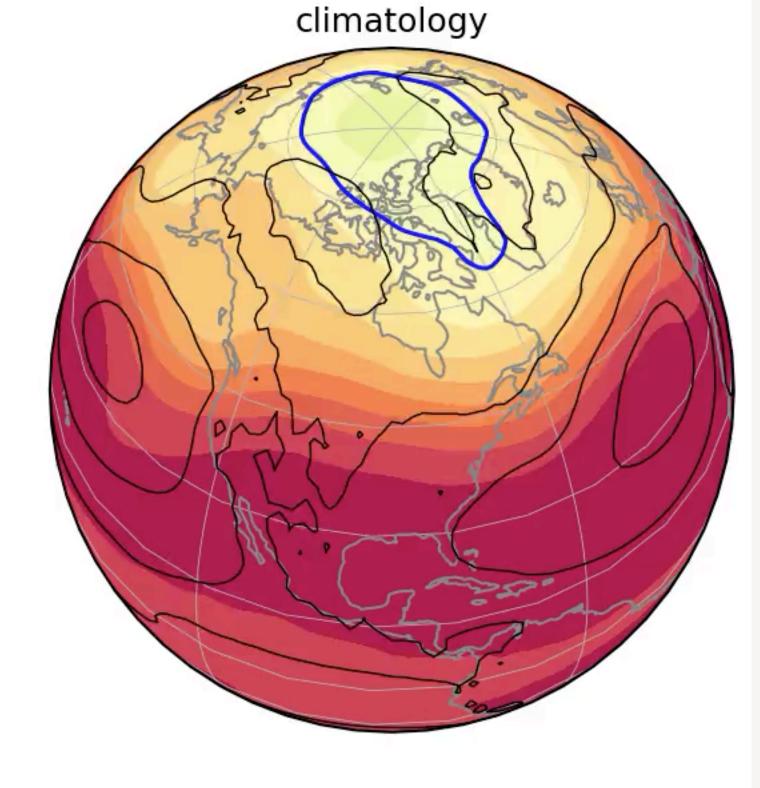
- Train: 1979-2012; validate: 2013-16
- Evaluate: twice weekly in 2017-18

#### ML MODEL

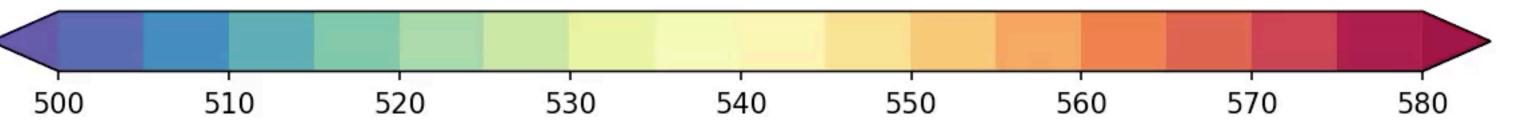
Valid: 2017-07-04 06:00 Z







DLWP produces realistic, albeit smoothed, atmospheric states.



Colors: 500-hPa geopotential height, dkm

Contours: 1000-hPa geopotential height, every 100 m, dashed=negative

https://www.dropbox.com/s/xmi0v81fbcw4t1r/Weyn\_ms02.mp4?dl=0

# Can our DLWP model form the basis for a good-performing large ensemble prediction system?

- DLWP is inferior to NWP models. Why bother?
  - The larger the ensemble, the better!
  - DLWP has a significant computational advantage
    - How long would it take to run a 1000member ensemble of 1-month forecasts at 1.5° resolution?
      - 10 minutes
      - Single workstation with GPU
    - In comparison, a comparable dynamical model would take about 16 days



Morris MacMatzen / Getty via Vox

## **OBTAINING CORRECT ENSEMBLE SPREAD**

|                         | NWP                                                                                                                       | DLWP                                                                                                                                                 |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Observation uncertainty | <ul> <li>Perturb initial conditions</li> <li>Ensemble 4DVAR</li> <li>SVD</li> </ul>                                       | <ul> <li>Perturb initial conditions</li> <li>ERA5 ensemble</li> <li>NOT optimal!</li> </ul>                                                          |
| Model uncertainty       | <ul> <li>Stochastically perturbed parameterization tendencies (SPPT)</li> <li>Stochastic KE backscatter (SKEB)</li> </ul> | <ul> <li>Random seeds in training</li> <li>random data sampling</li> <li>random weight         initialization</li> <li>"swapping" physics</li> </ul> |

## DLWP VERSUS THE ECMWF ENSEMBLE

|                                 | DLWP                 | ECMWF                                             |
|---------------------------------|----------------------|---------------------------------------------------|
| Variables                       | 6 2-D variables      | 9 prognostic 3-D variables,<br>91 vertical levels |
| Resolution                      | ~160 km              | ~18 km (36 km after day 15)                       |
| Other physics                   | 3 prescribed inputs  | Many parameterizations                            |
| Coupled models                  | None                 | Ocean, wave, sea ice                              |
| Initial condition perturbations | 10 (ERA5)            | 50 (SVD/4DVAR)                                    |
| Model perturbations             | 32 "stochastic" CNNs | stochastic physics<br>perturbations               |
| Ensemble size                   | 320 (+ control)      | 50 (+ control)                                    |

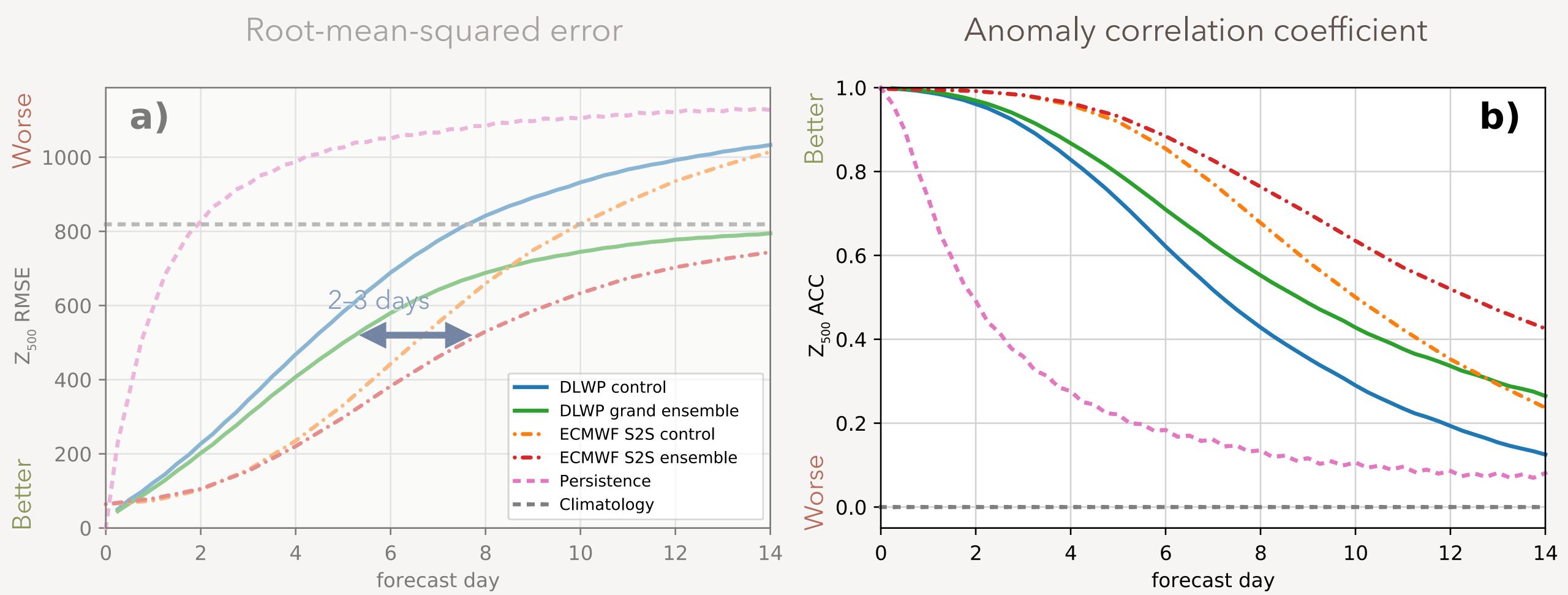
### Average forecast error in 500-hPa geopotential

#### Root-mean-squared error



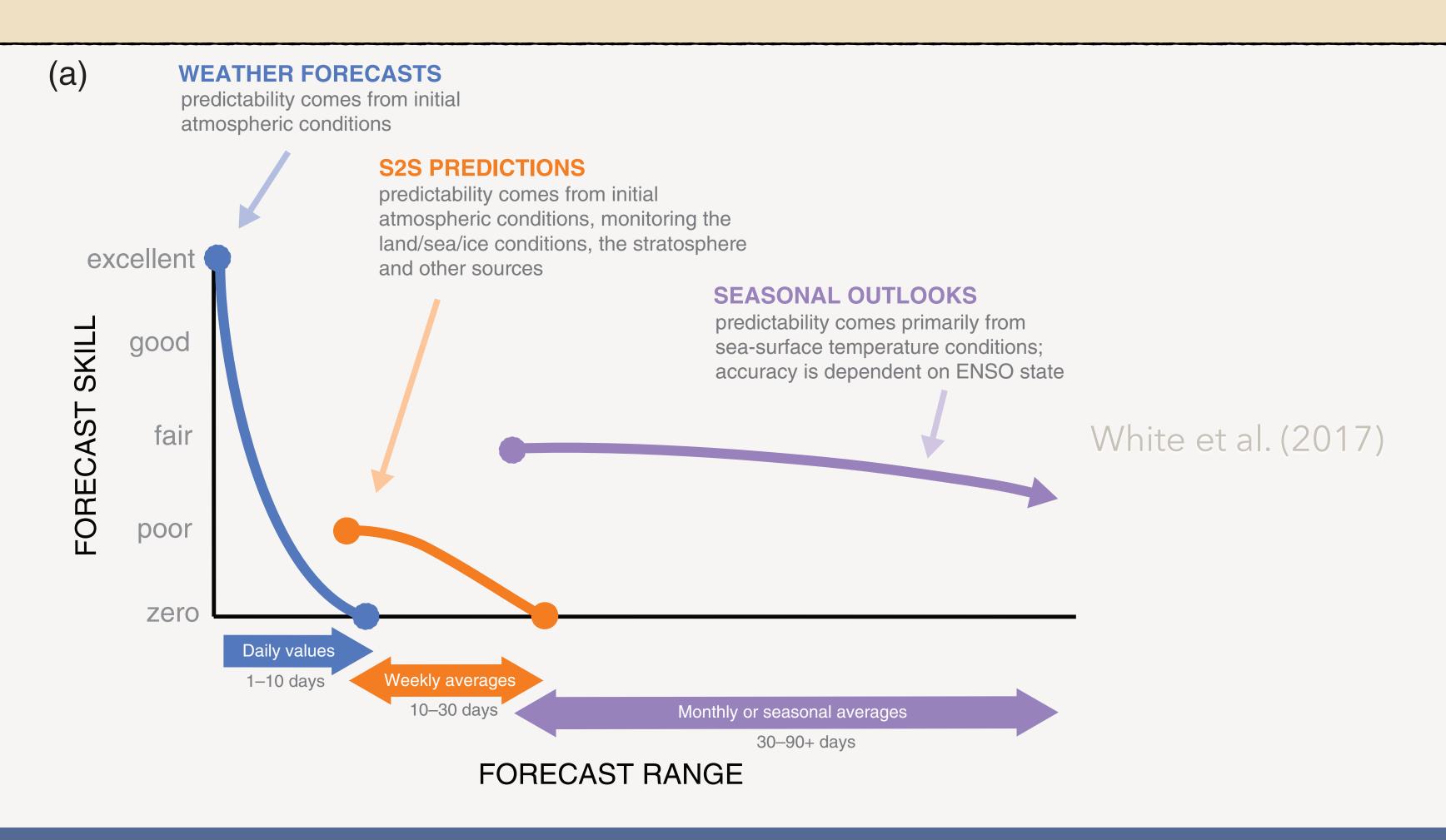
The DLWP ensemble only lags the state-of-the-art ECMWF ensemble by 2-3 days' lead time.

## Average forecast error in 500-hPa geopotential



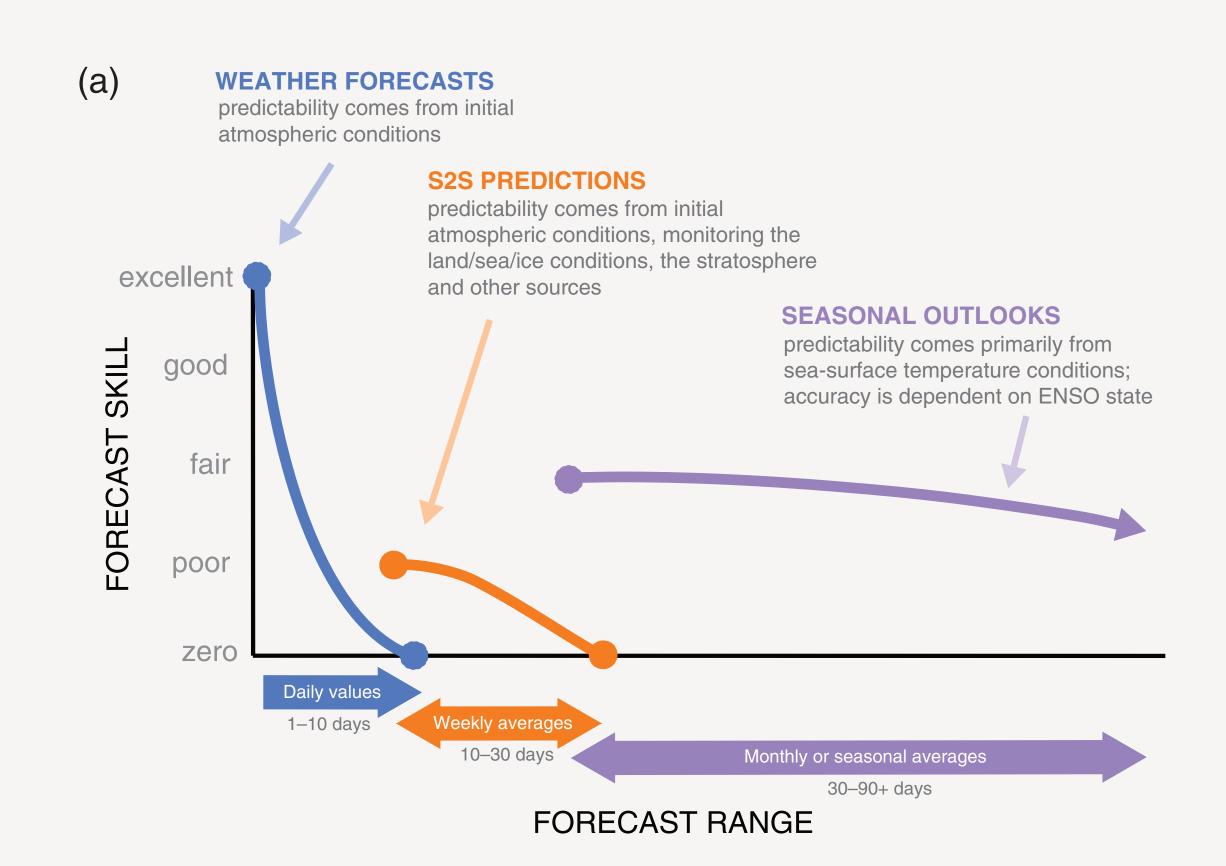
The DLWP ensemble only lags the state-of-the-art ECMWF ensemble by 2-3 days' lead time.

Can our large ensemble produce skillful sub-seasonal-to-seasonal (S2S) forecasts?



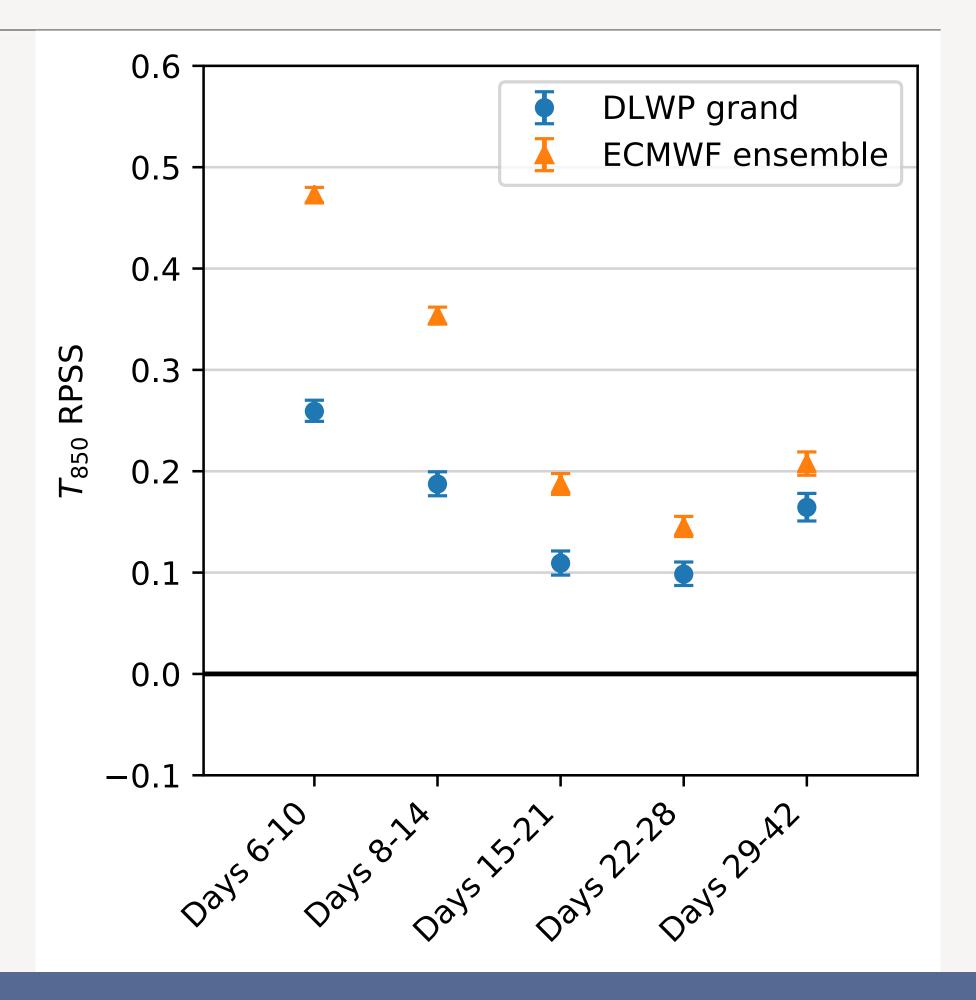
#### SUB-SEASONAL-TO-SEASONAL FORECASTING

- DLWP cannot be expected to compete with the state-of-the-art
- DLWP is lacking
  - an ocean model
  - land surface parameters e.g. soil moisture
  - sea ice
- We also do not forecast precipitation with the current model iteration
- Cannot represent physics of MJO or ENSO



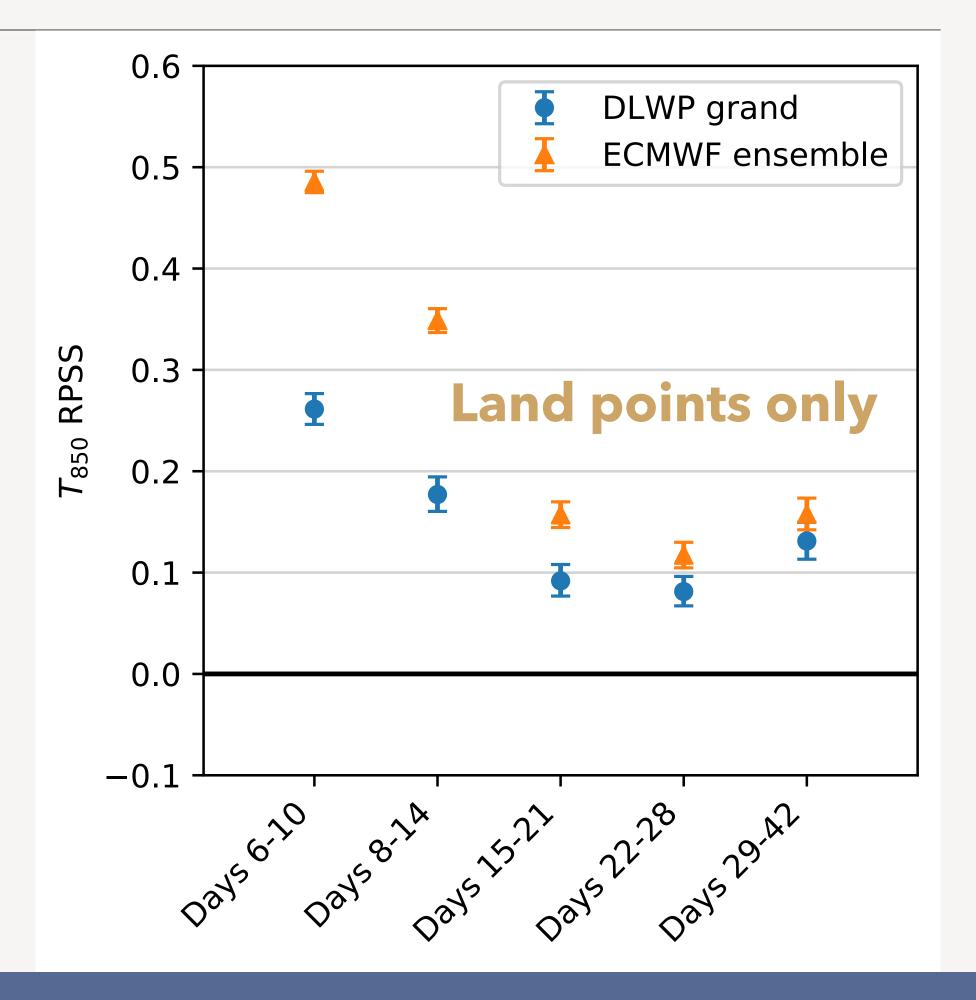
#### PROBABILISTIC SKILL SCORES OF S2S FORECASTS

- Ranked probability skill score (RPSS)
  - Three equally-probable terciles relative to a 1981-2010 climatology
    - below-, near-, and above-normal
  - Forecast probability is the fraction of ensemble members
  - Evaluate squared error of forecast probability versus observed category
  - Normalize relative to random chance prediction
  - Perfect score is 1, higher is better, negative score is no skill relative to random chance



#### PROBABILISTIC SKILL SCORES OF S2S FORECASTS

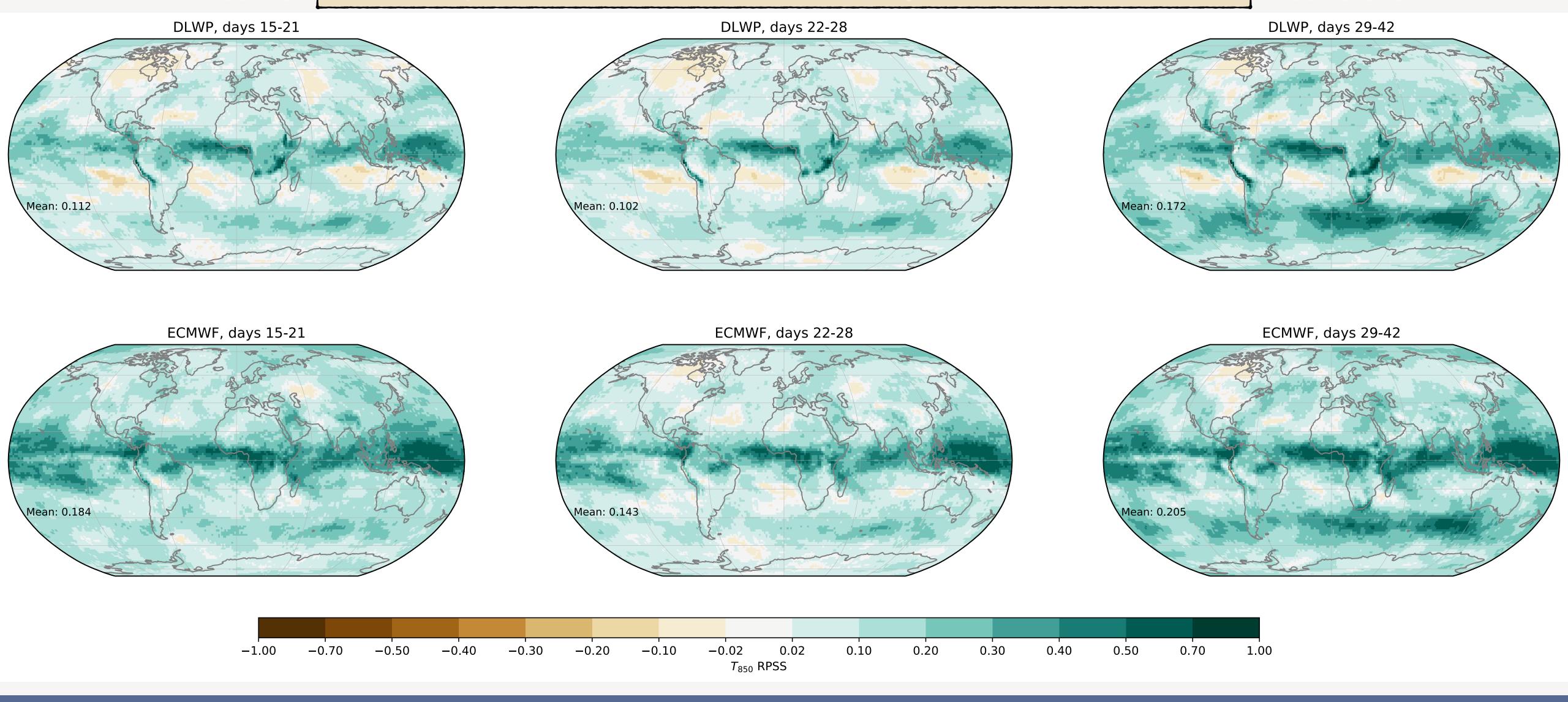
- Ranked probability skill score (RPSS)
  - Three equally-probable terciles relative to a 1981-2010 climatology
    - below-, near-, and above-normal
  - Forecast probability is the fraction of ensemble members
  - Evaluate squared error of forecast probability versus observed category
  - Normalize relative to random chance prediction
  - Perfect score is 1, higher is better, negative score is no skill relative to random chance

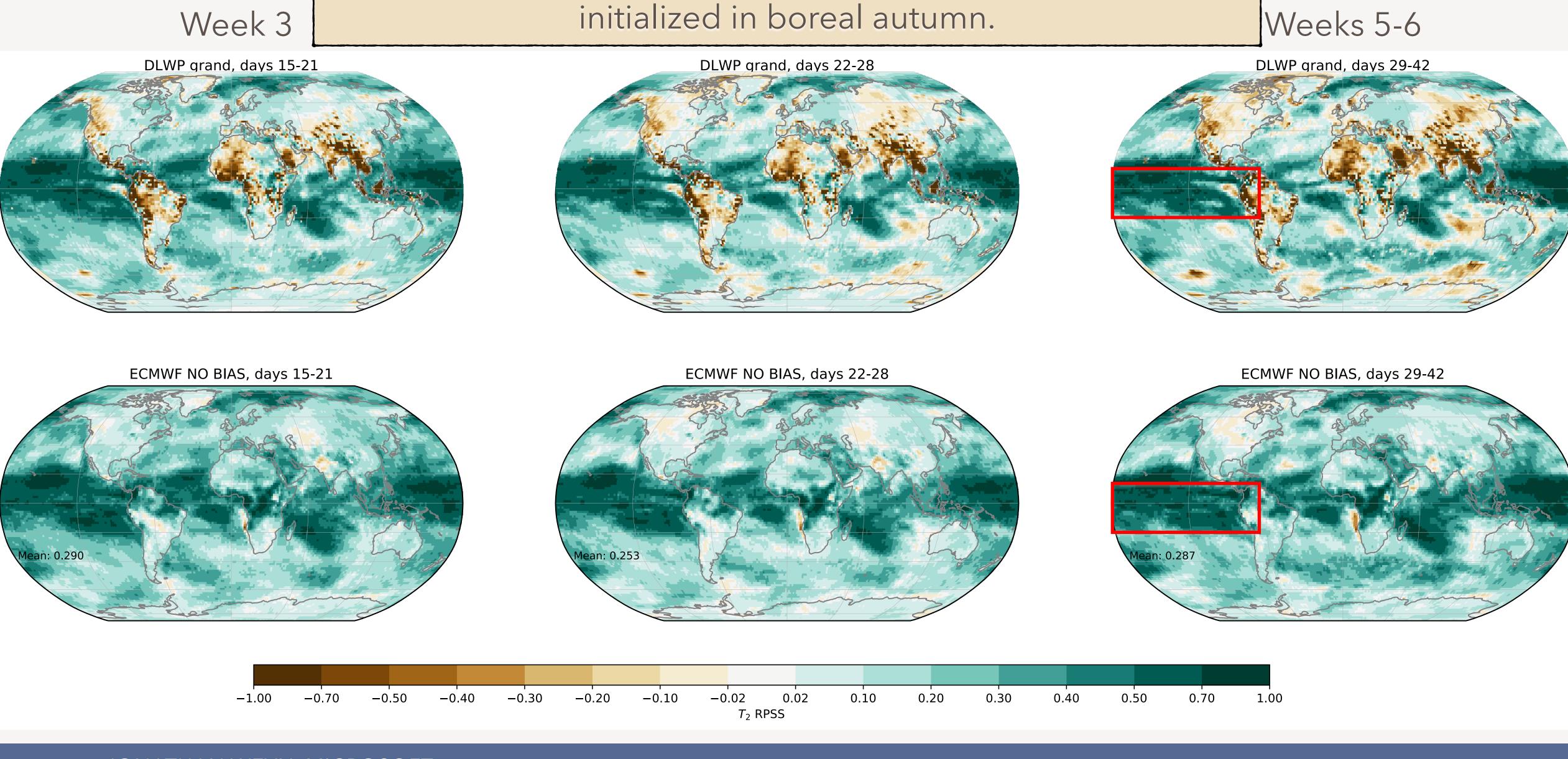


Week 3

While most skill comes from the tropics, the DLWP ensemble has positive skill scores over nearly all land masses.

Weeks 5-6

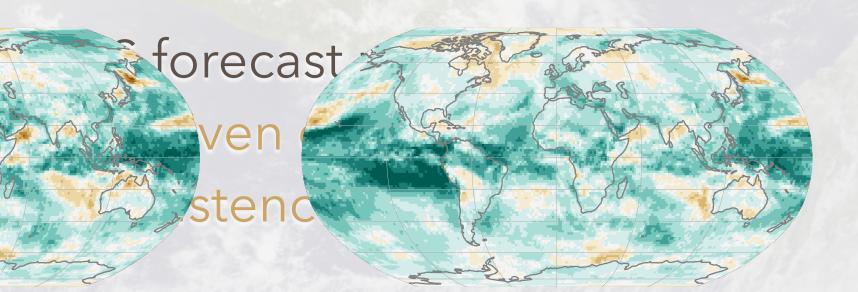


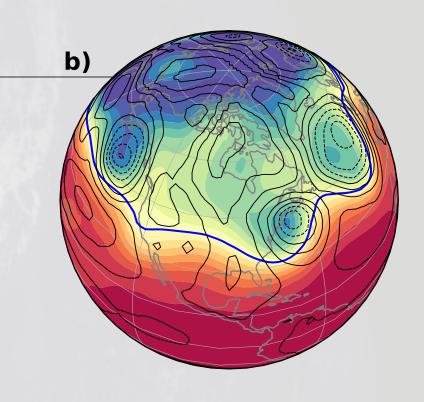


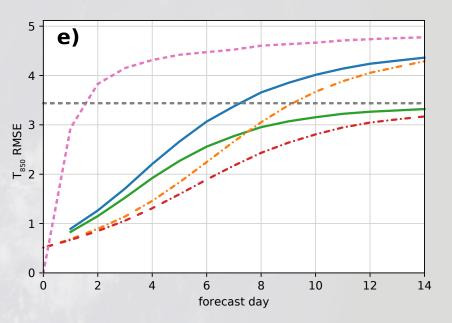
DLWP fails to predict the onset of ENSO patterns in forecasts

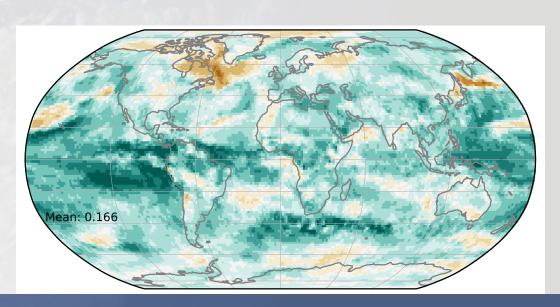
#### **TAKE-AWAYS**

- Purely data-driven algorithms (CNNs) can produce realistic, indefinitely-stable global weather forecasts with skill that only lags the state-of-the-art ECMWF model by 2-3 days of lead time.
- By leveraging initial-condition perturbations and the internal randomness of the CNN training process it is possible to produce a high-performing ensemble of data-driven weather models that requires several orders of magnitude less computation power than comparable dynamical models.
- For weekly-averaged for skill gap for dynamical useful skill relative to c











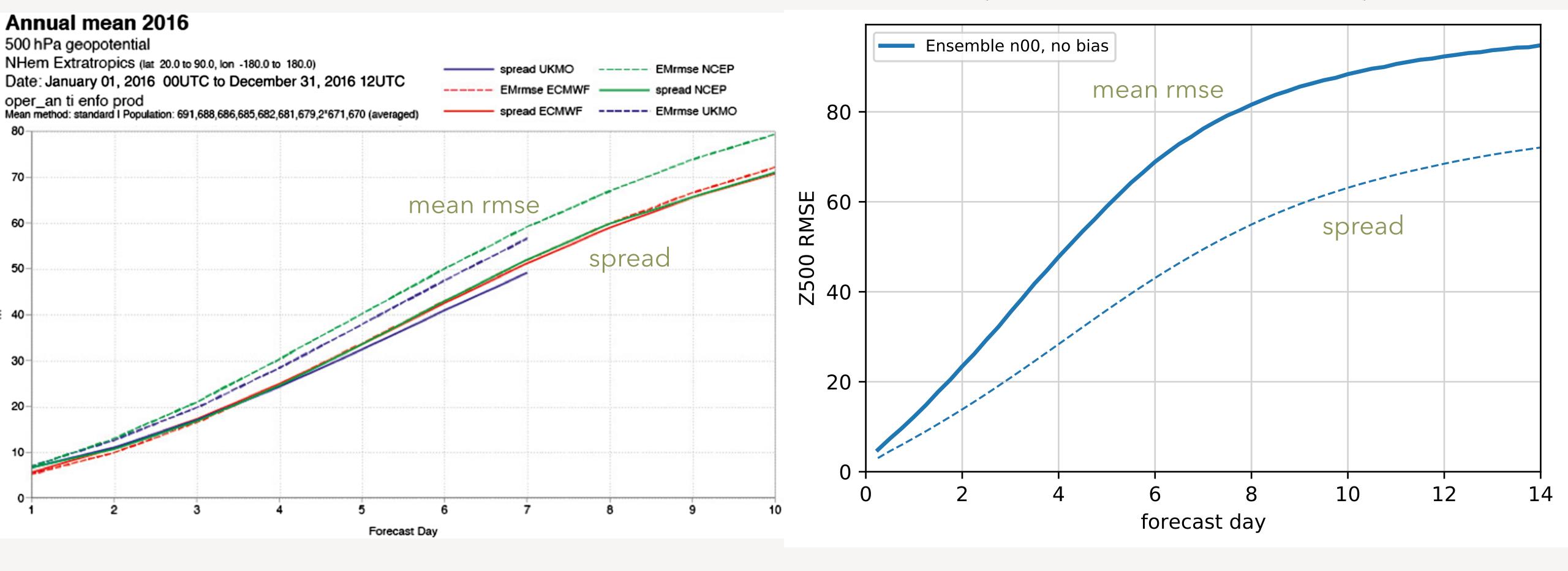
# **EXTRA SLIDES**

#### THE FUTURE FOR DLWP

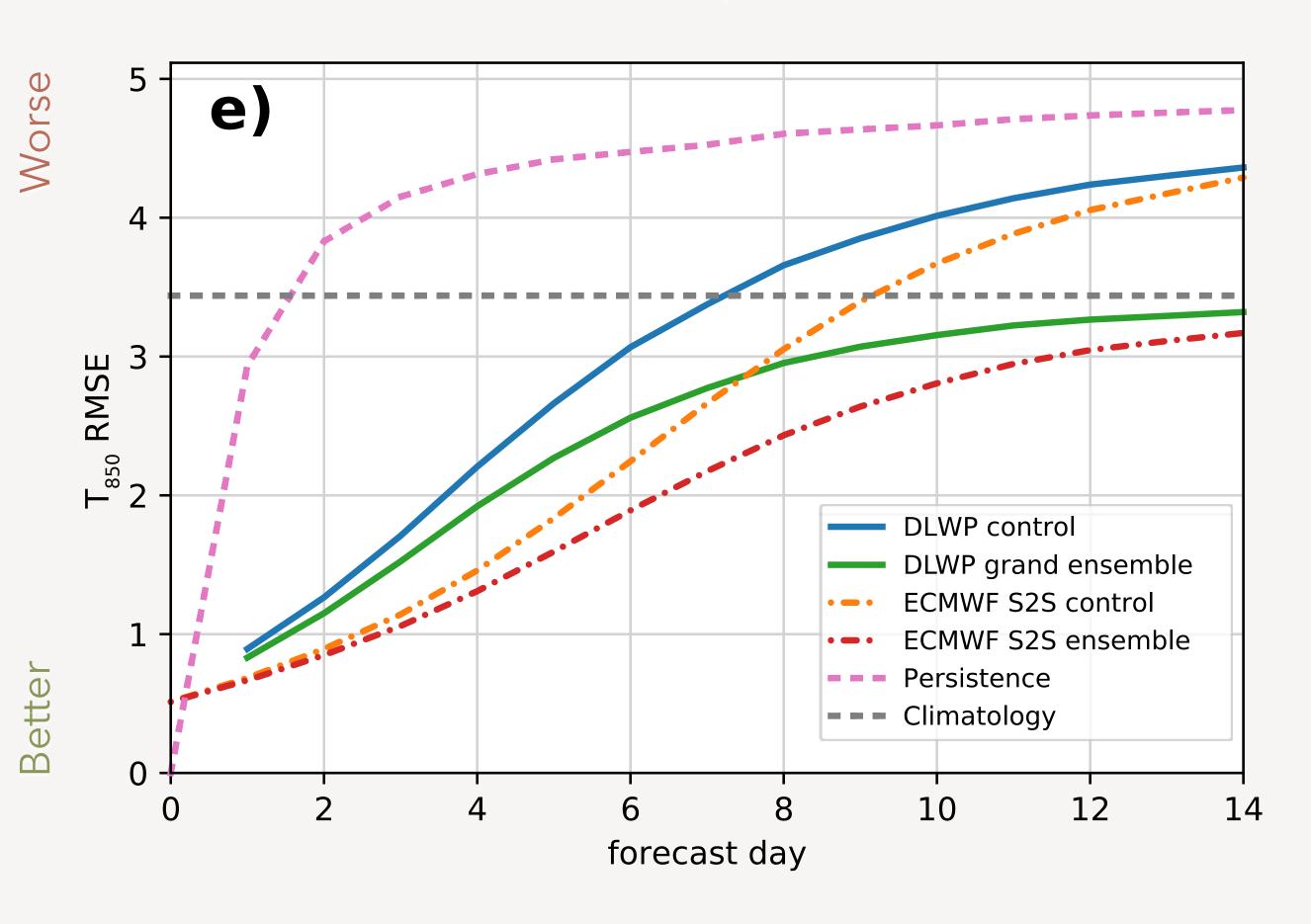
- Continue to further improve the model by adding more atmospheric variables and further tuning the CNNs
  - Add ocean, land surface models
- Forecast precipitation, notably tropical convection
- Improving prediction of extreme events
- Using DLWP for idealized case studies or as an adjoint model
  - evaluate how the machine learned to forecast the weather
  - study atmospheric predictability

#### OPERATIONAL ENSEMBLES (NCEP, UKMET, ECMWF)

# 32-MEMBER ENSEMBLE TRAINED WITH RANDOM SEEDS (NO INITIAL-CONDITION SPREAD)

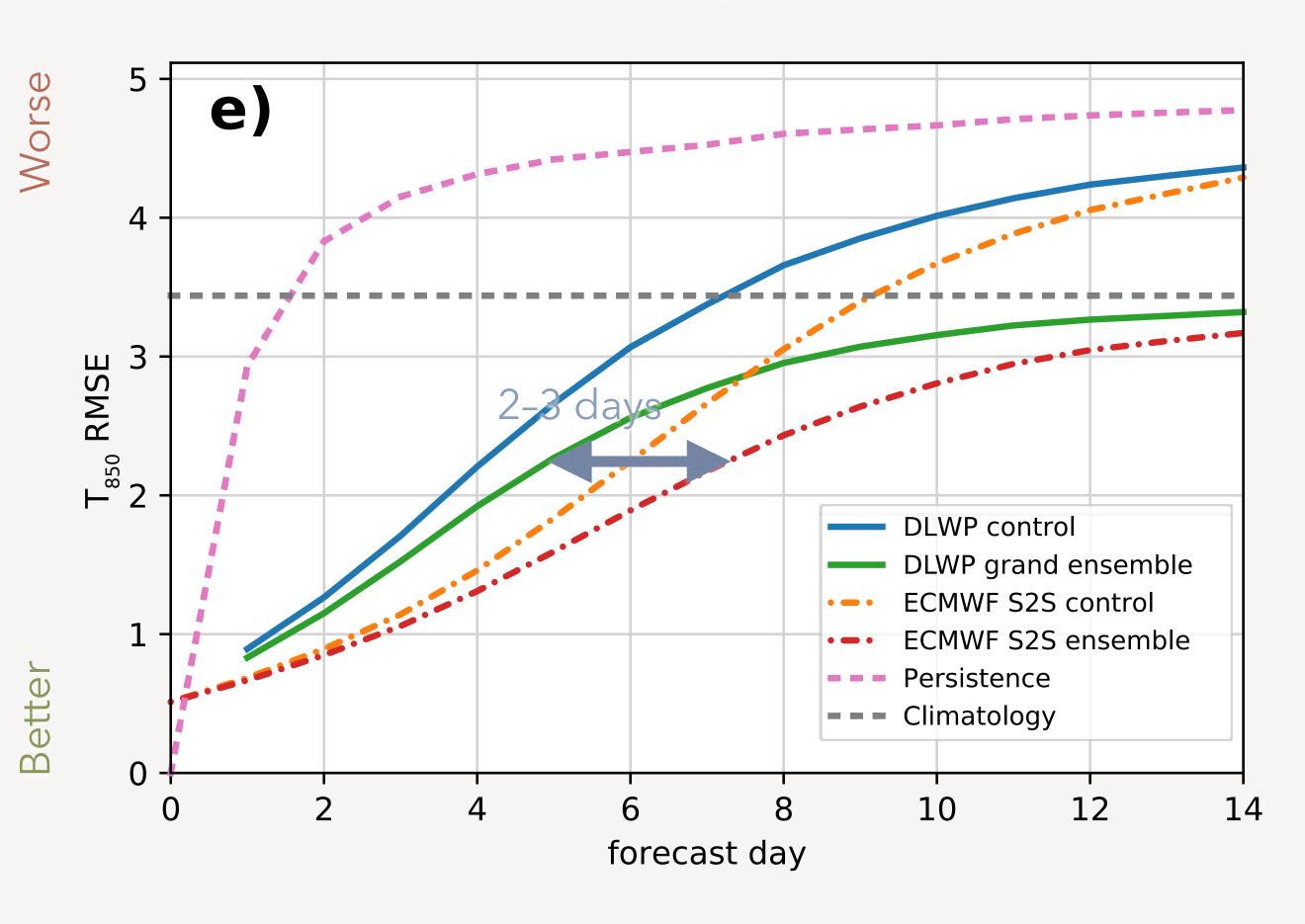


#### Root-mean-squared error



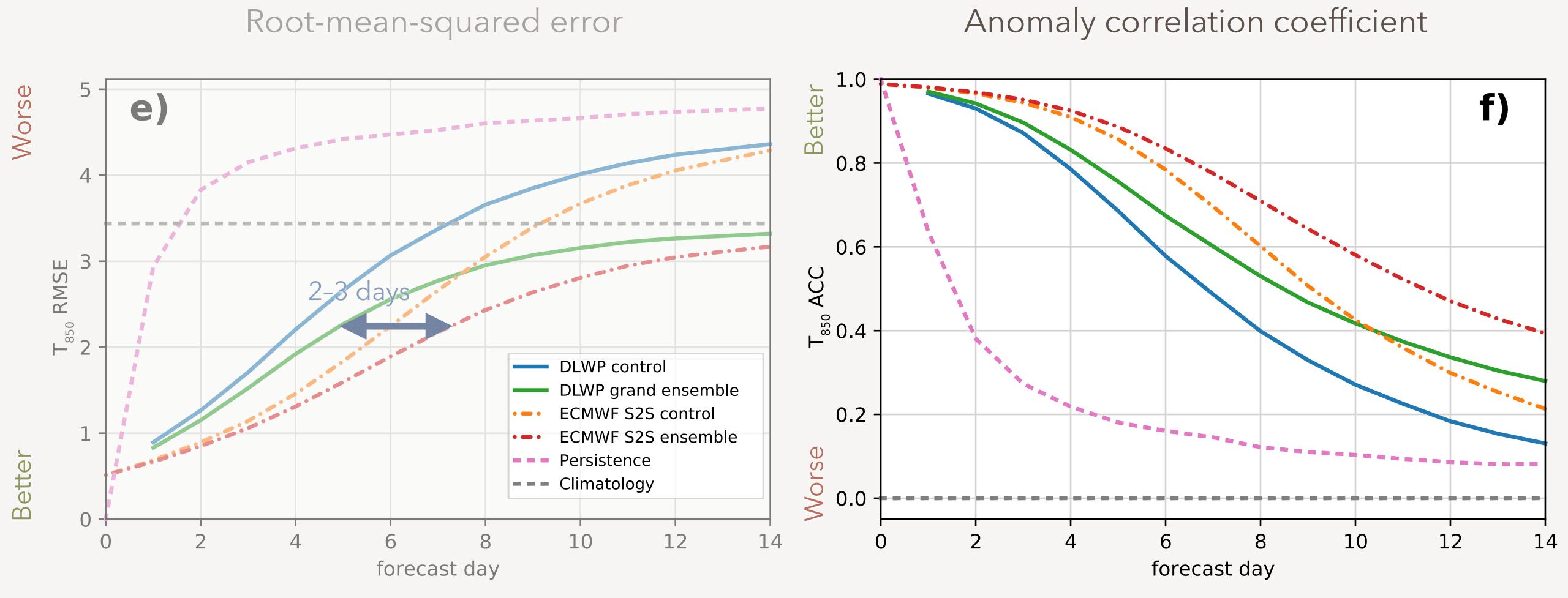
The DLWP ensemble mean provides notable skill improvement over the deterministic forecast.

#### Root-mean-squared error

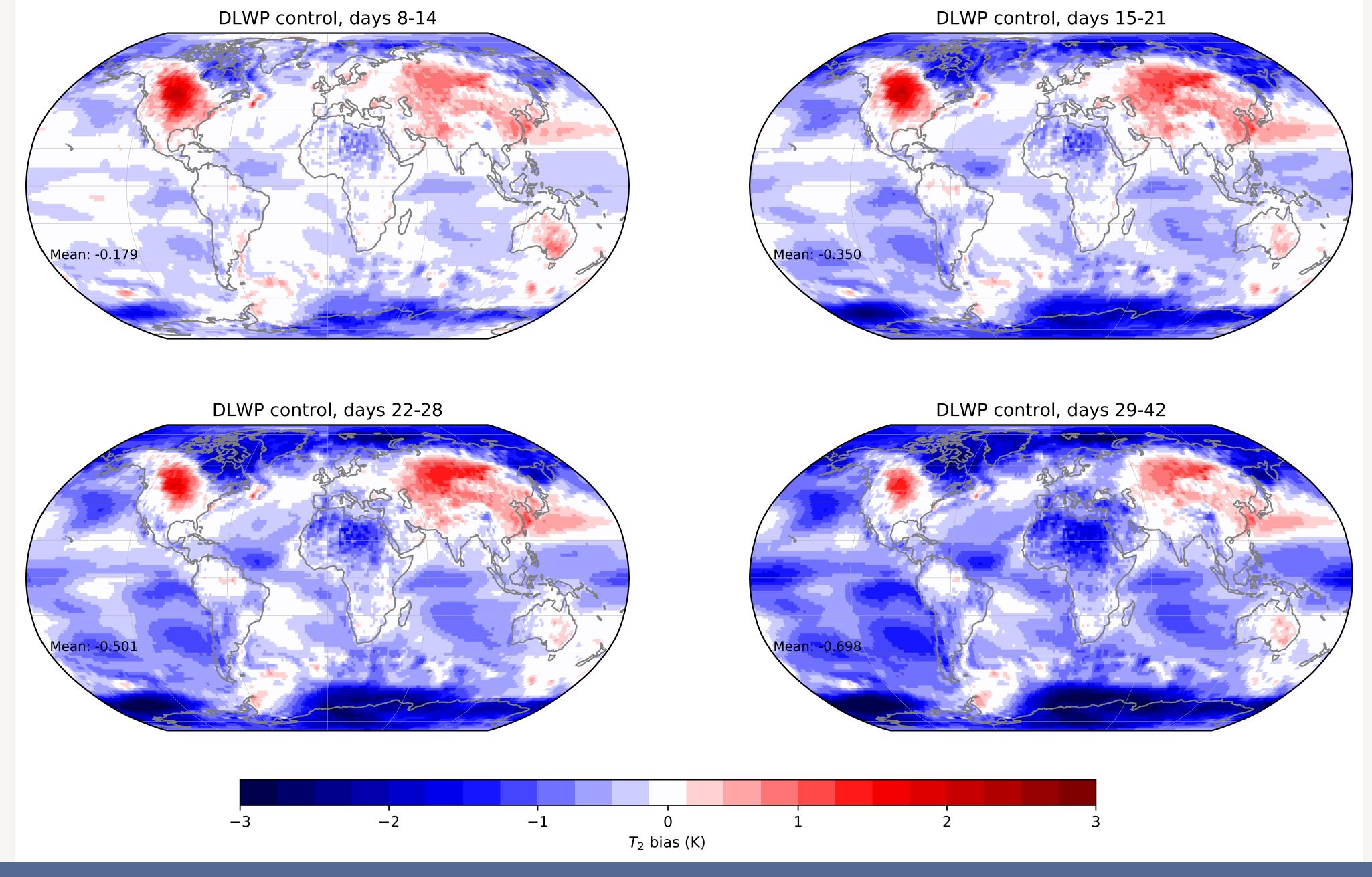


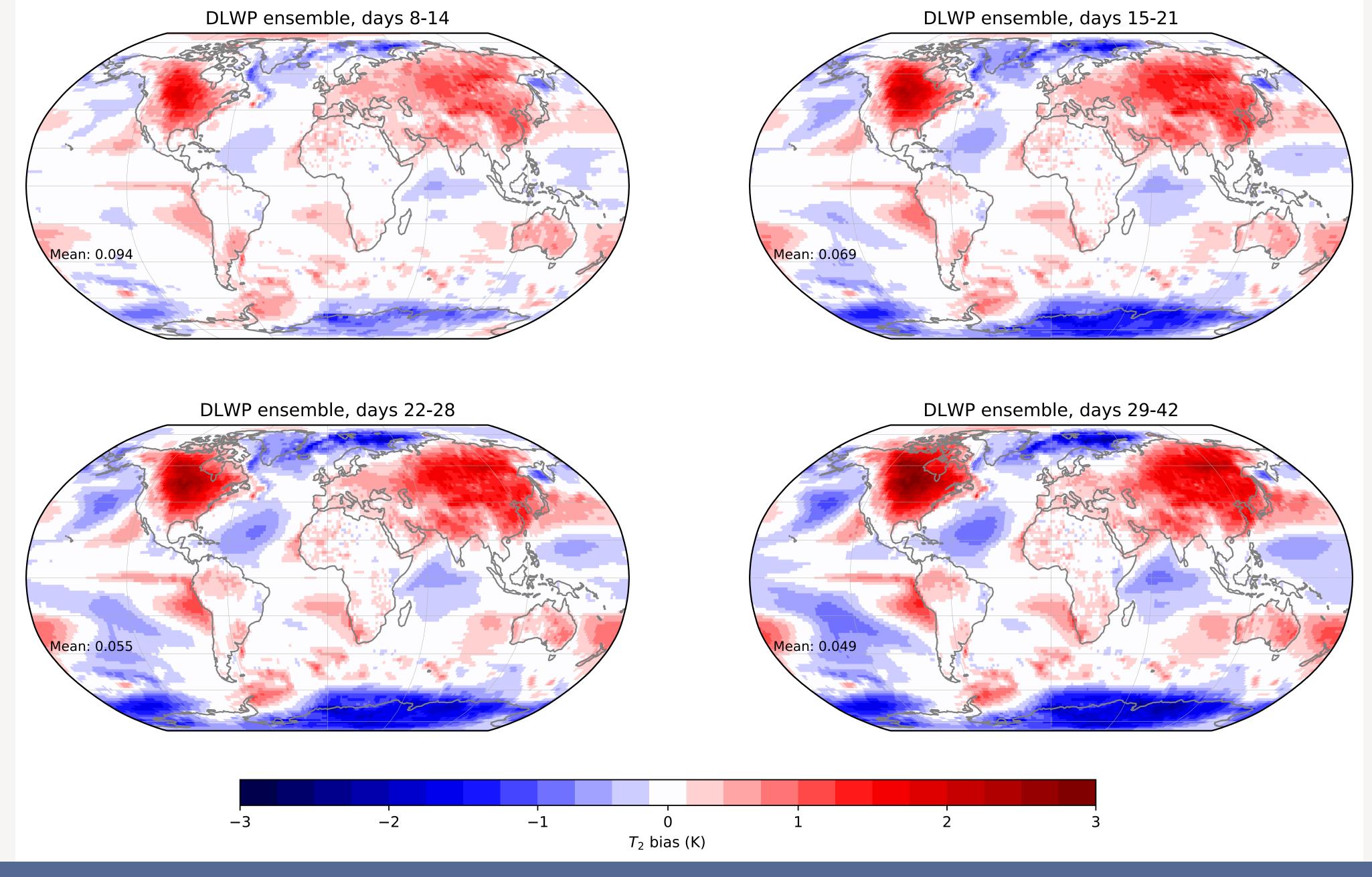
The DLWP ensemble mean provides notable skill improvement over the deterministic forecast.

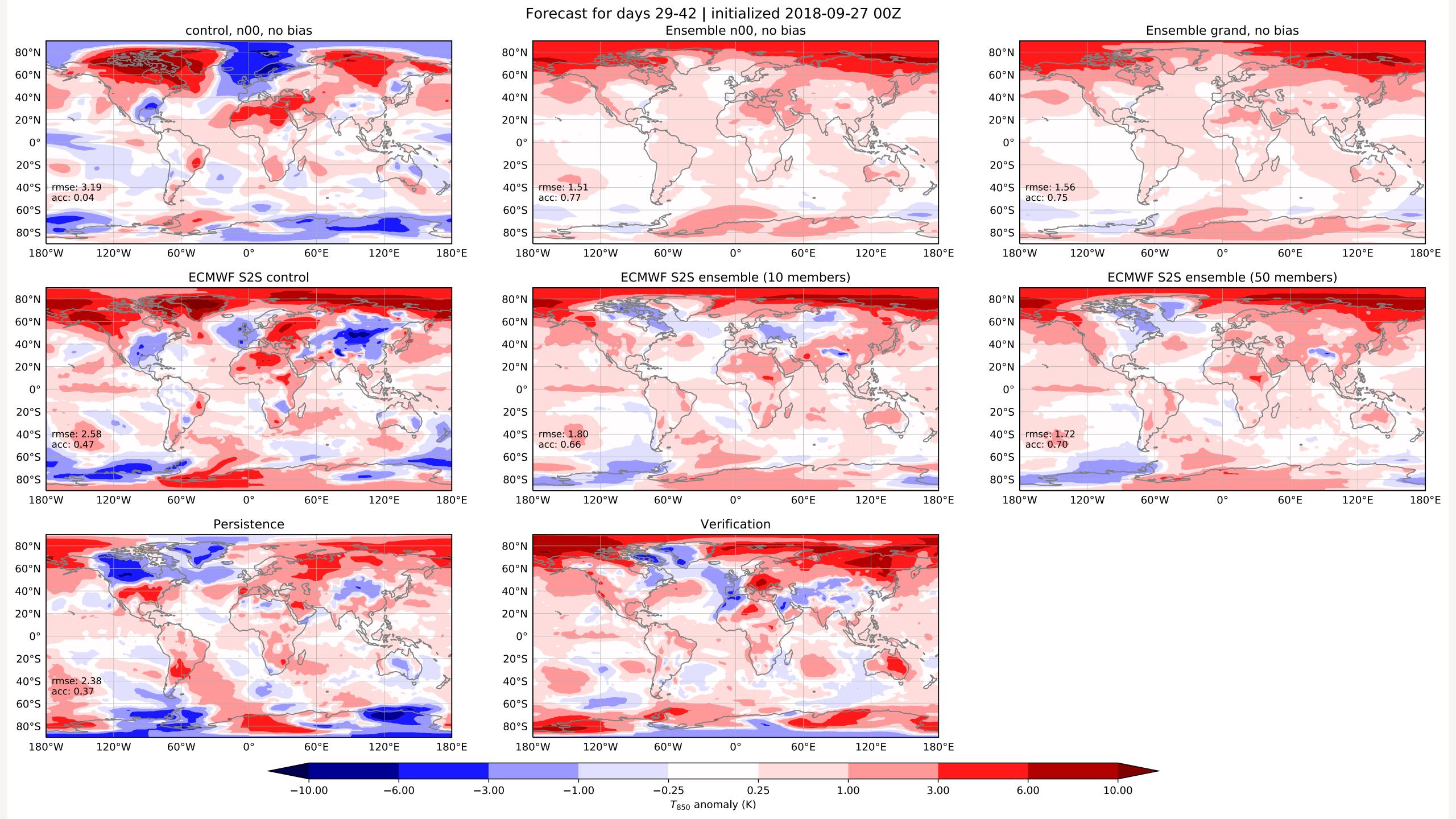
## Average forecast error in 850-hPa temperature



The DLWP ensemble mean provides notable skill improvement over the deterministic forecast.

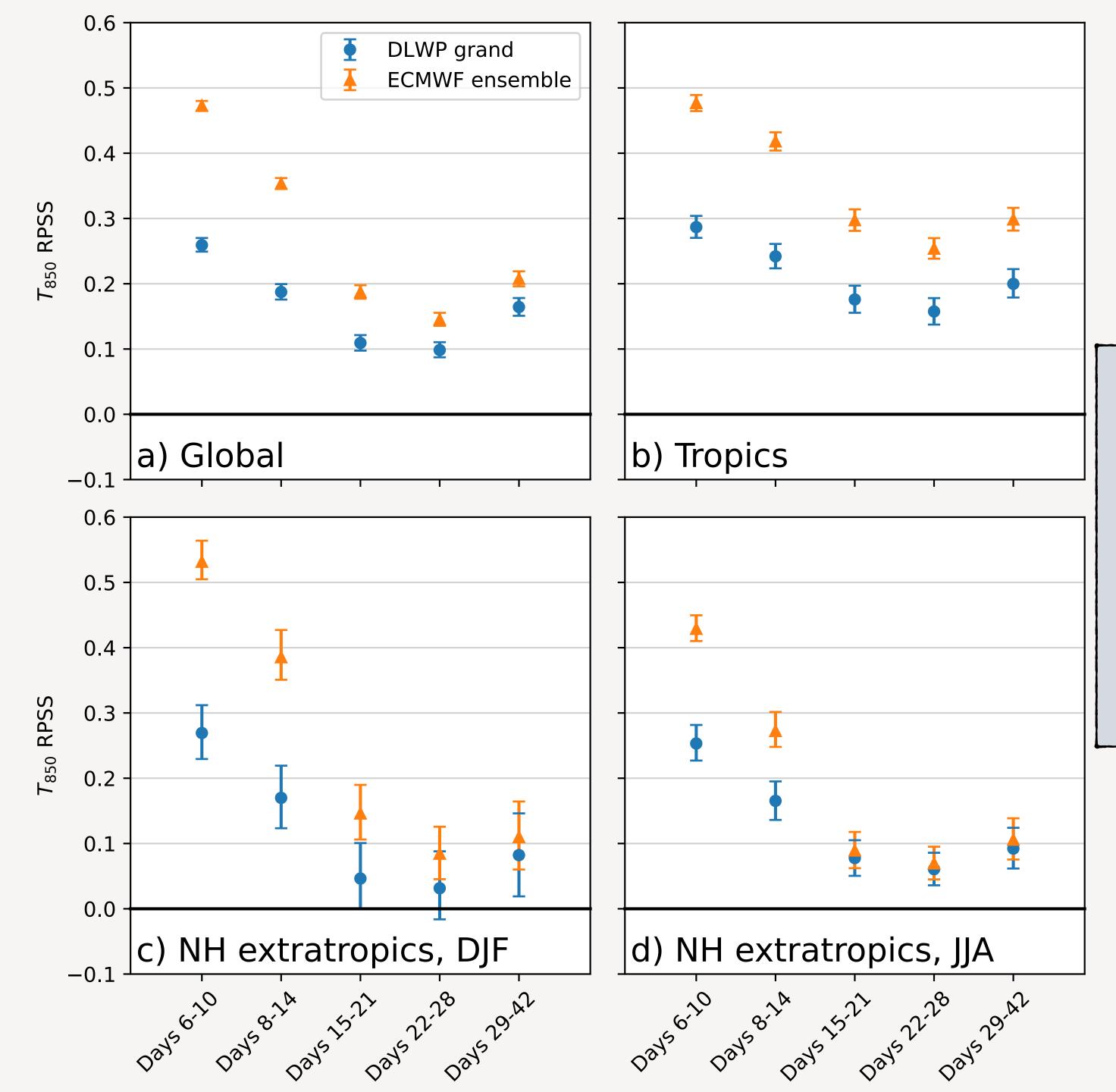




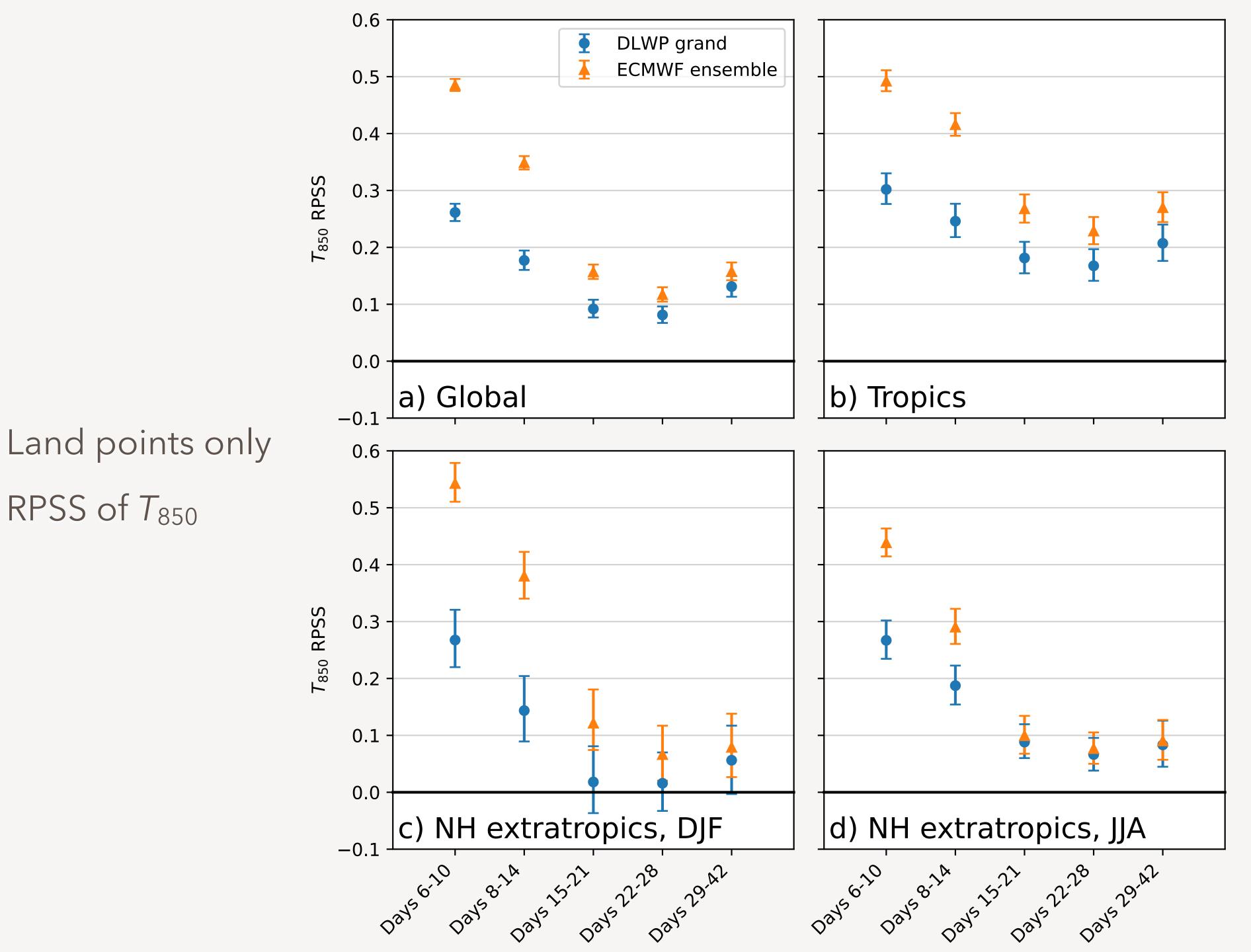


#### RPSS of $T_{850}$

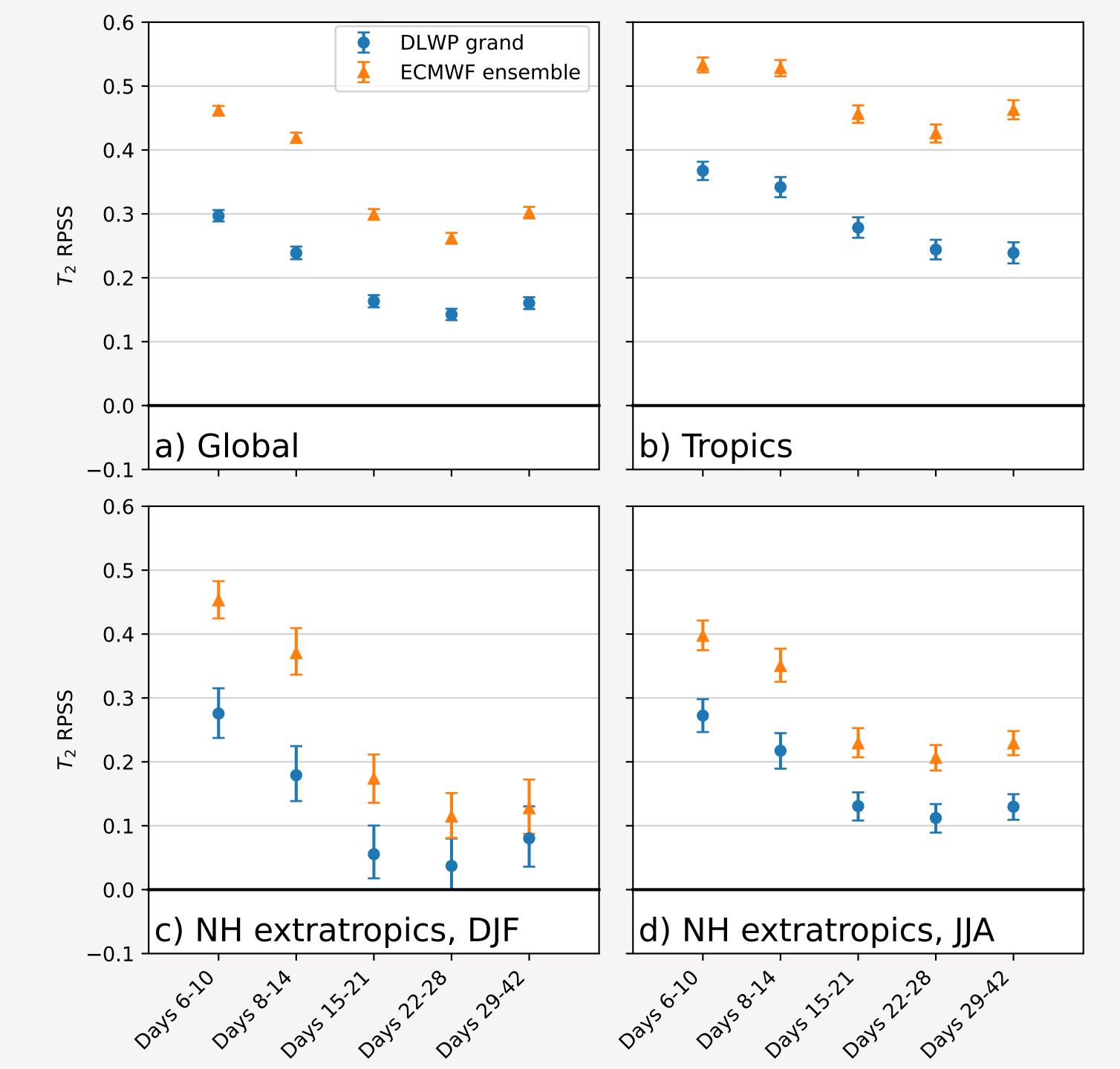
- Perfect = 1
- Higher is better
- Random chance = 0



While ECMWF is more skillful before week 3, DLWP compares favorably for weeks 3-6 especially in the summer.

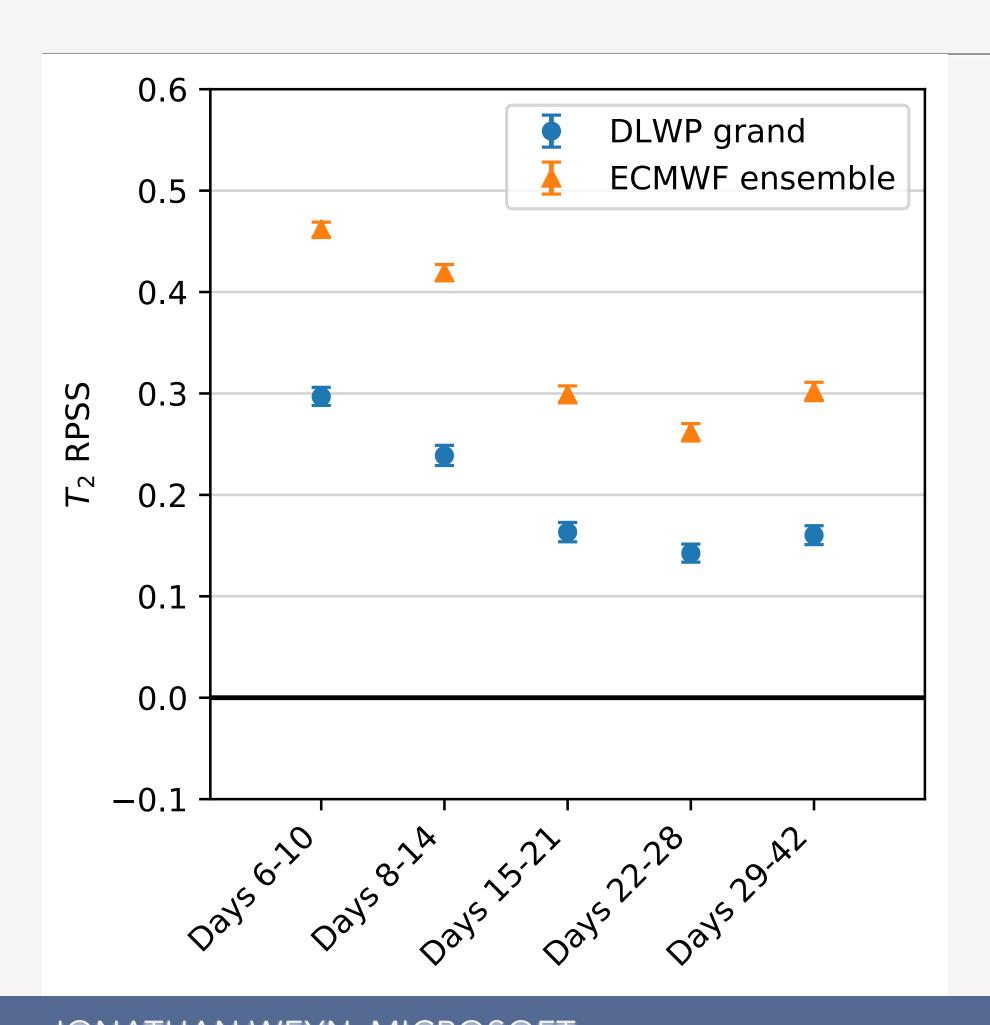


RPSS of  $T_{850}$ 

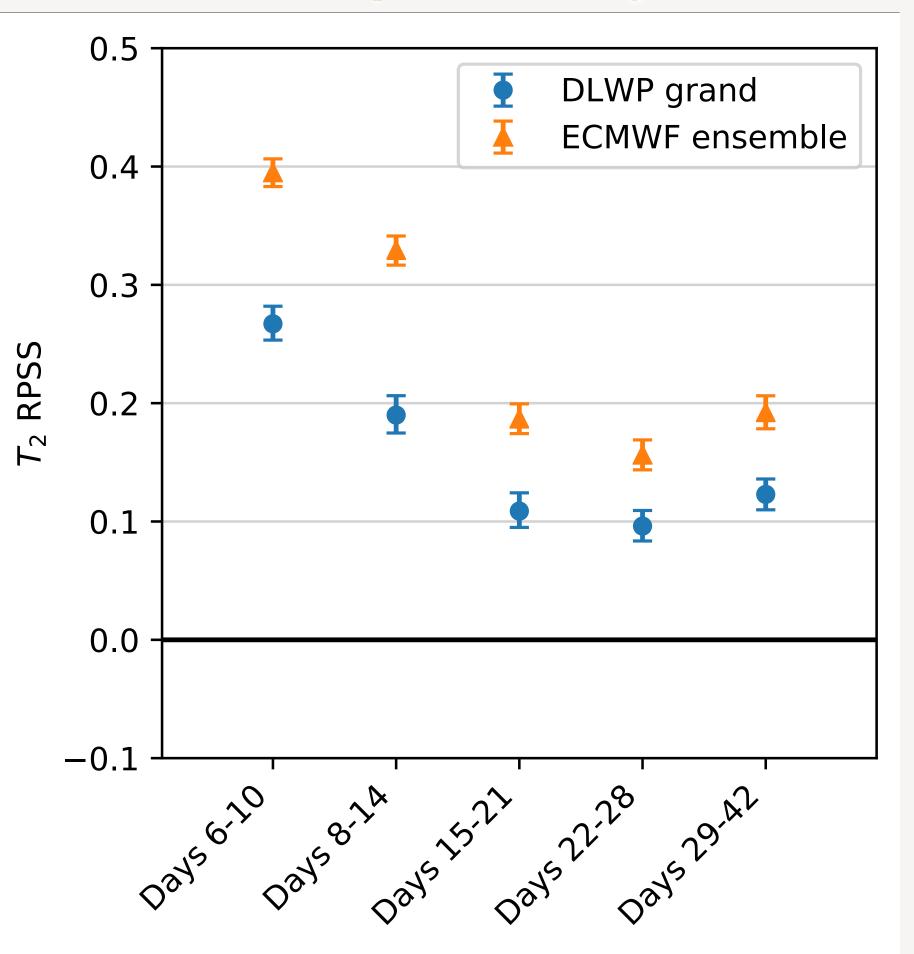


RPSS of  $T_2$ 

# RPSS FOR T<sub>2</sub>



#### Land points only





- Perfect = 0
- Lower is better

