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Background and Motivating Questions
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Background
• Although the time scale of subseasonal forecasting is critical to proactive disaster

mitigation efforts, such as reservoir operations for flood control, it has not received
much attention until recently (Vitart et al., 2017).

• The NOAA/Climate Testbed Subseasonal Experiment (SubX) project (Pegion et al.,
2019) consists of seven models and focuses on operational subseasonal forecasts
with lead time of 32-45 days.

• Atmospheric rivers (ARs) are responsible for most of the storm events leading to
extreme precipitation and runoff along the coastal Western U.S. (e.g., Ralph et al.,
2006, 2019).

• The forecast skill of meteorological variables (particularly precipitation) is an important
determinant of flood prediction skill; however, antecedent soil moisture (ASM)
conditions play an important role as well.

Motivating questions:
Ø What is the subseasonal forecast skill (at 1-4 week lead times) of AR-related flooding

driven by downscaled SubX reforecasts in coastal Western U.S. watersheds? Are
SubX-based flood forecasts more skillful than traditional ensemble streamflow
prediction (ESP)?

Ø What are the relative influences of ASM and SubX reforecast skill on subseasonal
flood forecast skill?



Study domain
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Table 1. Basin characteristics

Basin Area 
[km2]

Elevation 
range [m]

Annual 
precipitation 

[mm]

Precipitation 
falling 

between 
Oct-Mar

Chehalis 5400 0-1429 1560-2700 79% 

Russian 3850 0-1324 320-1580 87% 

Santa 
Margarita 1870 143-1736 160-750 83% 

Three transect basins



SubX models used

Model Ens
Members

Init Interval 
[days]

Forecast period 
[days] Reference(s)

ECCC-GEPS5 4 7 32 Lin et al. (2016)

EMC-GEFS 11 7 35 Zhou et al. (2016, 2017);
Zhu et al. (2018)

ESRL-FIMr1p1 4 7 32 Sun et al. (2018a,b)

GMAO-GEOS_V2p1 4 5 45
Koster et al. (2000);
Molod et al. (2012);
Reichle and Liu (2014);
Rienecker et al. (2008)

RSMAS-CCSM4 3 7 45 Infanti and Kirtman (2016)
NCEP-CFSv2 4 1 44 Saha et al. (2014)
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The multimodel ensemble (MME) mean is calculated as a lagged average (i.e. by averaging 
all forecasts from the same start date; in a similar manner to Pegion et al. (2019)).
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1. Downscaling of the SubX reforecast forcings (1ox1oà 1/16ox1/16o )
Ø Bias correction and spatial downscaling (BCSD) (Wood et al., 2004) at a daily time scale

Variables include precipitation, max. temperature (Tmax), min. temperature (Tmin), wind
§ We use SubX reforecasts during Oct-Mar months of 1999-2016
§ Training dataset: 1/16o gridded observations (Livneh et al., 2013) (extended version)

2. Hydrological modeling
Ø Distributed Hydrology Soil Vegetation Model (DHSVM) (Wigmosta et al.,1994)
Ø Model is run at an hourly time step
§ Daily precipitation is disaggregated to hourly using a regionalized method of fragments

(MoF) algorithm (Westra et al., 2012)
§ Other meteorological inputs are disaggregated using the Mountain Simulation Model

(MTCLIM) algorithms following Bohn et al. (2013)
Ø Control run (1999-2016) driven by Livneh et al. (2013) forcings
§ Output model states (for 7th, 14th, 21st, and 28th of each month) from the control run to

provide initial hydrological conditions (IHCs) for flood forecasts
3. Forecast evaluation
Ø Precipitation/temperature
Ø Flood★

4. ESP and reverse-ESP (revESP)
Ø To examine the relative influences of ASM and meteorological forcings

Data and Methods
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Identification of AR-related flood events

Ø Flood events à Peaks Over Threshold (POT) method

• Discharge events are separated from each other using criteria on the interval between
two peaks and a relative threshold on the intermediate flow from the U.S. Water
Resources Council (USWRC, 1982).

POTN1: one event per year on average
POTN2: two events per year on average
POTN3: three events per year on average

Lang et al., JH, 1999

High

Low

Ø Flood events associated with ARs
• We examined AR contributions to extreme events by identifying the flood events that 

were coincident with AR events. 
• We used the AR date catalog based on the ECMWF Reanalysis-Interim (ERA-Interim) 

data set, from Guan and Waliser (2015)

POT 
threshold
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Evaluation metrics of forecast skill

BSS = 1- BS
BSref +D
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BS = 1
N

Pi −Oi( )
2

i=1

N
∑                   (2)

BSref  = 1
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Pclim −Oi( )
2

i=1

N
∑            (3)

D = 1
M
Pclim 1− Pclim( )                      (4) Hit rate = a / (a+c)

False alarm rate = b / (b+d)

Observed

Yes No

Forecasted Yes a (Hit) b (False alarm)

No c (Miss) d (Correct rejection)

1) Precipitation and temperature skill
§ Anomaly correlation coefficient (ACC; Wilks 2006) 

2) Flood forecast skill
Ø Deterministic skill

We evaluated the deterministic skill of NCEP-CFSv2-based flood forecasts because 
they are initialized every day.
§ Kling-Gupta efficiency (KGE) (Gupta et al., 2009)

Ø Probabilistic skill
We evaluated the probabilistic flood forecast skill of all six SubX models with 30 
ensemble members in total.
§ debiased Brier skill score (BSS) (Weigel et al., 2007)
§ Hit rate and false alarm rate



8

SubX precipitation and temperature skill
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Evaluation of simulated peak discharge (control run)

Ø AR-related extreme discharge events
The percentages of POTN3 extreme discharge events that were coincident with ARs 
during 1999-2016 are 52%, 74% and 41% respectively in the Chehalis, Russian and 
Santa Margarita River basins.
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Assessment of flood forecast skill 

Ø Deterministic skill of NCEP-CFSv2-based flood forecasts
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Assessment of flood forecast skill

Ø Probabilistic flood forecast skill: BSS values
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Assessment of flood forecast skill

Chehalis River basin

Ø Probabilistic flood forecast skill: Hit rate vs. False alarm rate
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Relative influences of ASM and SubX reforecast skill 
on subseasonal flood forecast skill

Wood and Lettenmaier, GRL, 2008

ESP revESP

The ESP/revESP method is used to 
partition the relative contributions of 
IHCs and meteorological forecast 
skill to errors in streamflow forecasts
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Role of ASM in streamflow forecast
• ASM dominates streamflow deterministic forecast skill at leads up to 9 days with the 

maximum lead length occurring in Oct (following generally dry summers).

Relative influences of ASM and SubX reforecast skill 
on subseasonal flood forecast skill
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Figure. BSS difference (denoted as “△BSS”) between perfect skill (i.e. BSS=1) and SubX-based 
BSS (denoted as “△BSSSubX”) as well as revESP-based BSS (denoted as “△BSSrevESP”). If 
△BSSSubX ≥ △BSSrevESP, the marker of △BSSrevESP is shown as a hollow symbol and vice versa.

Relative influences of ASM and SubX reforecast skill 
on subseasonal flood forecast skill

Role of ASM in flood forecast
• ASM dominates flood probabilistic forecast skill only for small flood events in the three 

basins at week 1. For most large flood events (i.e. POTN1) in the three basins, the SubX 
reforecast skill dominates the flood probabilistic forecast skill at all weeks.



16

Conclusions

1) Precipitation and temperature skill
• SubX precipitation forecast skill drops quickly after week 1 lead, but still has usable skill at 

week 2, while at week 3-4, models show minimal skill. 
• There is higher skill in temperature than precipitation forecasts, with all models showing 

usable skill through lead 4 weeks.
• Across models, NCEP-CFSv2 performs best in weeks 1-2, with performance that is 

comparable with MME, while in weeks 3-4 GMAO-GEOS_V2p1 generally performs best 
for precipitation and EMC-GEFS performs best for temperature across the three basins.

2) Flood forecast skill
• The deterministic forecast skill of NCEP-CFSv2 drops quickly with lead time, with little skill 

by lead days 9, 7, and 6 in the Chehalis, Russian and Santa Margarita River basins 
respectively for the largest (POTN1) events.

• SubX-based probabilistic skill drops quickly after week 1, with minimal forecast skill by 
week 3. Forecast skill is slightly higher for small events (lower POT thresholds).

3) Role of ASM in flood forecast 
• ASM dominates flood probabilistic forecast skill only for small flood events in the three 

basins at week 1. For most large flood events in the three basins, the SubX reforecast skill 
dominates the flood probabilistic forecast skill at all weeks. 
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