NOAA 45th Climate Diagnostics & Prediction Virtual Workshop 20-22 October 2020

Rainfall and sea level variability in the face of changing El Niño: Evidence from the US-Affiliated Pacific Islands

Rashed Chowdhury, P-S Chu, and Jim Potemra

Background and objectives

The USAPI region is ENSO sensitive;

The CMIP5 model-based study provides a strong message about the higher risk of extreme El Niño;

- Wenju et al. (2014): super El Niño events could double and occur every 10 years instead of 20.
- ➢ Guojian et al. (2017)—frequency of extreme El Niño events doubles under the 1.5° C Paris target;
- ENSO-driven SST anomalies and background global warming (Power et al., 2013; Brown et al., 2013).

Future disruptions in the USAPI region are centered on the consequences of increasing frequency of ENSO;

Much larger in 21st century than it was during the 20th century (Cai et al., 2014; Cai et a1., 2015a; Cai et al., 2015b).

Freund et al. (2019): El Niño events differ in their impacts on the location (NINO-3/NINO-4) & intensity of temp;

The objective is to provide three types of El Niño information and related RF/SLA for better disaster preparedness and planning.

USAPI Region

General Location of Major <u>Climate Variability</u> System

IOD: 201805: neutral, 1997: +ve,1998: -ve

General location of major climate variability systems

Map adapted from Wikimedia Commons

PDO: 201805: -0.61, <u>199710: +1.72</u>,199810: -2.23 COLD: 1890-1924;1947-76....WARM: 1925-46; 1977-97

Seasonal rainfall variations (%) during El Niño/La Niña years

	El Niño (0)		El Niño (+1)		La Niña (0)		La Niña (+1)	
	JJA	SON	DJF	MAM	JJA	SON	DJF	MAM
Guam	93	100	70	50	102	87	108	174
Saipan	84	104	73	63	106	104	135	182
Palau	102	79	88	82	92	122	128	111
Үар	99	91	75	72	82	111	124	149
Chuuk	97	82	71	74	88	107	115	123
Kosrae	98	105	90	84	91	101	107	122
Pohnpei	100	95	77	80	83	96	114	119
Marshalls	102	100	99	74	100	97	95	135
A Samoa*	110	114	109	107	94	90	99	86

FSM

ENSO and sea level variability

Source: Chowdhury et al., 2006

Understanding Climate Variability/Change

- * Long-term decadal variations in climate are understood, but our ability to predict such changes in an operational context is somewhat difficult;
- * In contrast, ENSO's interannual time-scale variability are more effective for the USAPI region--global nature, strong signal, interannual time scale, and inherent lag relationships.

Applications Research

- Demand for ENSO-based season-to-interannual climate forecasts for disaster preparedness planning for the island communities (USAPIs).
- Fang and Mu (2018) mentions that, while the simple zonal two-region framework can accurately manifest the traditional EPE, it cannot fully depict the variations of the CPE, because of the difference in locations of the major warming centers;

Three types of EL Niño EPE, ME, and CPE events

differ in their impacts on the location and intensity of temperature

Easter Pacific Niño Niño- 3 regic (5°S–5°N, 90-15	: El on 0°W)	Mixed El Niño (Niño-3.4 region) (5°S–5°N, 170- 120°W)	Central Pacific El Niño (Niño-4 region) 5°S–5°N, 160°E– 150°W		
1972-73		1986-87		1977-78	
1976-77		1987-88		1990-91	
1982-83		1991-92		1994-95	
1997-98	4011 235 grad		02	2002-03	
2015-16	20N 03		Contraction of the second	2004-05	
	10N-	Nino 3.4		2009-10	
	105			2018-19?	
	205			2020-21?	
	405				

Monthly (observed) mean rainfall anomaly (1975-2019)

Average SST (L) and Wind (R) anomalies: Sept-Feb ¹³

Monthly mean sea level anomaly (1975-2019)

Summary

F

i.

n d

i.

n

g s

- a) Extreme El Niño events (i.e., 1982-83, 1997-98, and 2015-16) doubles under the 1.5°C and could occur roughly every 10 years instead of every 20;
- b) The EPE and ME events are associated with dry conditions for the entire USAPIs, but the <u>CPE events are linked to scattered</u> <u>wet conditions</u>.
- a) The combined impact of increasing temperature and future El Niño will cause serious drought for water-scarce FSM and RMIs;
- a b) Rising sea levels and wave-driven flooding in La Niña will cause damage to infrastructure and contaminate freshwater resources (Recent study—uninhabitable by mid-century 2050s).
- a) Our ability to predict long-term decadal variations is limited, but ENSO's interannual time-scale variability are more effective;
- b) Information related to three different types of El Niño and related island-specific climate anomalies can provide an improved perspective for disaster preparedness planning.

Disaster Management Cycle

- Preparedness Planning how to respond. Examples: preparedness plans; emergency exercises/training; <u>warning systems</u>.
- Response Efforts to minimize the hazards created by a disaster. Examples: search and rescue; <u>emergency relief</u>.
- Recovery Returning the community to normal. Examples: temporary housing; medical care.
- Mitigation Minimizing the effects of disaster. Examples: building codes and zoning; vulnerability analyses; public education.

Photo courtesy: Lt. Charlene Felkley