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ABSTEACT

The leading tropical multidecadal mode (TMM) and tropical interannual (ENSO) mode mn the 52-yr {1949—
2000) NCEP-NCAR reanalysis are examined for the December—February (DJF) and June—August (JJA) seasons
based on seasonal tropical convective rainfall variability and tropical surface (land + ocean) temperature var-
iability. These combined modes are shown to capture 70%—80% of the unfiltered varnance in seasonal 200-hPa
velocity potential anomalies in the analysis region of 30°N-30°S. The TMM is the dominant mode overall,
accounting for 50%—60% of the total unfiltered variance in both seasons, compared to the 22%—24% for ENSO.

The robustness of the tropical multidecadal mode 15 addressed, and the results are shown to compare favorably
with observed station data and published results of decadal chimate vanability in the key loading regrons. The
temporal and spatial characteristics of this mode are found to be distinct from ENSQ,

The TMM captures the global climate regimes observed during the 19505—60s and 19805905, and the 19705
transition between these regimes. It provides a global-scale perspective for many known aspects of this decadal
climate variability (1.e., surface temperature, precipitation, and atmospheric circulation) and links them to coherent
multidecadal varnations in tropical convection and surface temperatures in four core regions; the West African
monsoon region, the central tropical Pacific, the Amazon basin, and the tropical Indian Ocean.

During JJA, two distinguishing features of the tropical multidecadal mode are its link to West African monsoon
variability and the pronounced zonal wavenumber-1 structure of the 200-hPa streamfunction anomalies in the
subtropics of both hemispheres. Dunng DJF a distinguishing feature 15 its link between anomalous tropical
convection and multidecadal vanations in the North Atlantic Oscillation (NAOY For the linear combination of
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Fr. 3. J0A (&) PC time series for the TMM (thick solid), tropical interannual mode (ENS0, thin solid), and
leading multidecadal EOF of seasonal surface emperature anomalees (dashed). Shading shows percent of ex-
plained vanance of unfiltered seasonal 200-hPa velocity potential anomalies by the (b) combined TMM and
ENSO, {cp TMM, and (d) ENSO. (b) The 19492000 std dev of seasonal 2(0-hPa velocity potential anomalies
(conbowrs, interval iz 5 ® 10® m? 87"} (e), (d) The seasonal 200-hPa velocity potential loadings [eontours,
interval is 0.5 3 10 m* 8~ (std dev)~" of the TMM and ENSO, respectively]. The associated 200-hPa divergent
vector wind anomalies [m s—" (std dev)—' of the model] are also plotted, with vector scale located above (d).
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ABSTRACT

Interannual and multidecadal extremes in Atlantic hurricane activity are shown to resuli from a coherent
and interrelated set of atmospheric and oceanic conditions associated with three leading modes of climate
variability in the Tropics. All three modes are related to fluctuations in tropical convection, with two
representing the leading multidecadal modes of convective rainfall variability, and one representing the
leading interannual mode (ENSO).

The tropical multidecadal modes are shown to link known fluctuations in Atlantic hurricane activity,
West African monsoon rainfall, and Atlantic sea surface temperatures, to the Tropics-wide climate vari-
ability. These modes also caplure an cast=wesl seesaw in anomalous convection between the West Adrican
monsoon region and the Amazon basin, which helps to account for the interhemispheric symmetiry of the
200-hPa streamfunction anomalies across the Atlantic Ocean and Africa, the 200-hPa divergent wind
anomalies, and both the structure and spatial scale of the low-level tropical wind anomalies, associated with
multidecadal extremes in Atlantic hurricane activity.

While there are many similarities between the 1950-69 and 1995-2004 periods of above-normal Atlantic
hurricane activity, important differences in the tropical climate are also identified, which indicates that the
above-normal activity since 1995 does not reflect an exact return o conditions seen during the 1950s-60s.
In particular, the period 1950-69 shows a strong link (o the leading tropical multidecadal mode (TMM),
whereas the 1995=2002 period is associated with a sharp increase in amplitude of the second leading tropical
multidecadal mode ( TMM2). These differences include a very strong West African monsoon circulation and
near-average sea surface temperatlures across the central tropical Atlantic during 1950-6Y9, compared with
a modestly enhanced West Alfrican monsoon and exceptionally warm Atlantic sea surface lemperatures
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1. Introduction .

The hurricane activity (loosely defined here as the number of hurricanes per season) over the tropical North
Atlantic ocean basin during the August-September-October (ASQ) hurricane season exhibits considerable variability
on both interannual and low frequency (decadal) time scales (see Figure 1, 1949-1997 data obtained from the National
Hurricane Center). On interannual time scale, note for example that while 1995 hurricane season experienced nine
hurricanes, 1997 hurricane season reporied only one hurricane (the influence of ENSO, El Nino/La Nina events, on
the ASO hurricane season will be considered in a companion study by the same authors in this report). On a much
longer time scale, notice in general that there has been & general decrease in the number of hurricanes per season after
1971. In many previous studies, particularly by Dr. Bill Gray and his colleagues, a variety of regional and global
factors have been considered to play a role in determining the ‘level/strength’ of the Atlantic Hurricane activity. In fact,
forecasts for the Hurricane season are routinely issued by them and others based on those factors.
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role in determining the vertical wind shear over north Atlantic. Then we will investigate the influence of tropospheric

i wind shear (U200-U850) in the tropical Atlantic basin, on the interannual variability of north Atlantic

CDPW, in Miami, FL.
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hurricane activity. Finally, it will be shown that a meaningful *advisory” to the A antic HUrTICANES SSAS0N CAN
issued as early as June or July based on the wind shear information alone. seasonal

2. Vertical Shear over North equatorial Atlantic and the Asian Summer Monsoon

Figure 2 shows the mean vertical zonal wind shear in the tropical Atlantic ocean basin during 10 active and
14 inactive hurricane seasons. Here, we have defined an active hurricane season as one with seven hurricanes or more
per season and the inactive season as one with three hurricanes or less. It is very clear (Fig. 2a) that during an active
hurricane season, over the latitudes (7.5°15°N) where the storms/hurricanes generally form, the ASO vertical wind
shear is either weak westerly or easterly. However, an inactive season (Fig. 2b) is characterized by the presence of no
easterly shear, but rather strong westerly shear, which inhibits the westward passage of Atlantic storms.

In fact, the importance of easterly vertical wind shear for the westward propagating North Atlantic tropical
storms and hurricanes that hit the Caribbean islands and the eastern coastal states of the U.S. are well known. But, what
hﬂnnlbunclmfmmpmﬁuusmidimisﬂm:n::lﬂﬂnkbutwe:nthevuﬁcalshurinﬂﬁshﬂanﬁnmgjmmdmﬂ
Asian summer monsoon. Examination of daily or monthly mean 200 mb flow patterns during the Northern Hemisphere
summer months (not shown here, for lack of space) would reveal that the north-south extent and the strength of the 200
mb easterly flow, which determines the vertical shear, over the equatorial and subtropicel Atlantic is a part/resultant
of the massive outflow from the large upper level anticyclone centered over India. In fact, these upper level easterlies
over Atlantic is an integral part of the interhemispberic (north to south) transport of airmass that takes place during
the summer monsoon season to compensate for the low level northward flow, inclusive of the east African Somali Jet,
e EELE e e mrades St mrsm e s low orescure reeton over Indian subcontinent.

hurricane
outlooks.
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ABSTRACT

A number of recent studies have reponed an ENSOclike EOF mode in the global sea surface sempe
155T) feld, whose imnme vanizhiliny is marked by an abrups change ioward a warmer iropacal eastern Paci
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Fi. 3. The leading (normalized) PCs of 6-yr highpass- (HP) and lowpass- (LP) filtered 55T
over the Pacific domain shown ogether with the associated regression patierns for global S5T.
The interval between tick-marks on the venical axis of the top panel comesponds o 1.0 standard
deviation, and the spacing between the curves is arbitrary. Contour interval 0.1 K per standard
deviation of the expansion coefficient time series. Negative contours are dashed; the zero
contour is thickened.
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SA .gov MNotice: Because of the high freguency filter applied to the ERSSTv4 data
g (Huang et al. 2015, 1.Climate), ONI values may change up to two months after
the initial "real time" wvalue is posted. Therefore, the most recent ONI wvalues
should be considered an estimate.

DESCRIPTION: Warm (red) and cold (blue) periods based on a threshold of +/-
0.52C for the Oceanic Nifio Index (ONI) [3 month running mean of ERSST.v4

ST anomalies jn the Nifio 2.4 region (59M-595 1209-1709W1 1
centered 30-year base periods updated every 5 yvears.

For historical purposes, pericods of below and above normal S5Ts are colored in
blue and red when the threshold is met for a minimum of 5 consecutive
overlapping seasons. The ONI is one measure of the ElI Nifo-Southern
Oscillation, and other indices can confirm whether features consistent with a
coupled ocean-atmosphere phenomenon accompanied these periods.

Year| DJF | JFM  FMA MAM | AMI | M1]1 | JJA | JAS | ASO |[SON |OND | NDJ
1950/-1.4|-1.2 |-1.1 |-1.2 |-1.1 | -0.9 | -0.6 |-0.6 |-0.5 |-0.6 | -0.7 | -0.8
1951 -0.8 | -0.6 | -0.2 | 0.2 0.2 o4 | 0.5 | 0.7 | 0.8 | 0.9 | 0.7 | 0.6
1952| 0.5 | 0.4 | 0.4 | 0.4 | 0.4 0.2 8] 0.1 0.2 0.2 0.2 0.3
1953| 0.5 | 0.6 | 0.y | 0.7 | 0.7 | 0.7y | O.7 | O.7 | O.8 | 0.8 | 0.8 | 0.7
1954 0.7 | 0.4 9] -0.4 |-0.5|-0.5|-0.5|-0.7 |-0.7 |-0.6 | -0.5 | -0.5
1955| -0.6 | -0.6 |-0.7 |-0.7 |-0.¥ | -0.6 | -0.6|-0.6 |-1.0|-1.4|-1.6|-1.4
1956 -0.9|-0.6|-0.6|-05|-05|04)|-05|-05]|-04)]|-04)]|-0.5]|-04
1957 -0.3 0] 0.3 0.6 (0.7 |09 1.0 | 1.2 |1.1 |1.2 | 1.3 | 1.6
1958 1.7 (1.5 (1.2 | 0.8 | 0.7 | 0.6 | 0.5 | 0.4 | 0.4 | 0.5 | 0.6 | 0.6
1959 0.6 | 0.5 | 0.4 | 0.2 0.1 |-0.2|-0.3(-0.3|-0.1)|-0.1)|-0.1)|-0.1
1960 -0.1 | -0.2 | -0.1 8] -0.1 | -0.2 0] 0.1 0.2 0.1 O 8]




vear| DIF | IFM [FMA [mam| ama [ maa | 104 | Jas | aso| son|onD | npa | | [vear| DIF [3Fm [Fma[mam] ama | M3 | 334 [ Jas [aso[son[onD | nD3 |
1950|-1.4|-1.2|-1.1[-1.2|-1.1|-0.9[-0.6|-0.6/-0.5|-0.6]-0.7|-0.8] [1081[-02|-04|-04|-02|-02|-03|-0.3]-03|-02|-0.1]-0.1] O

1951|-08|-06|-02| 02|02 |04 |05 |07|08|09|0.7| 06 1982 0 |o1lo2los5loelo07Zlo8l10l15l19]12.1]2.1
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1953|0506 0.7 |0,7|0,7|0.7|0.7|0.7|0.8]|08)|08)0.7 1984|-0.5|-0.2)-02|-0.4]|-0.4)-0.4|-0.31-0.2|-0.21-0.6)-0.9]-1.1
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1955|-0.6|-0.6|-0.7|-0.7|-0.7|-0b|-06|-0.6|-1.0|-1.4|-1.6|-1.4 1986|-0.41-0.4|-021-0.2-0.11 0 o2 lo4lo7loolinl 11

1956/-09)-06|-0.6|-0.5/-0.5|-0.4]-05)-05|-04]-04]-0.51-0.4] (1087(1.1|1.2|1.1|1.009 1.1 1.4[1 ol 14[12]1.1

1957|-0.3| O 03|06 |07 |09 |10|1.2(1.111.2]1.3) 1.6 1988l o2 loslo1l-0.3l-08-12(-1.2]-1.1]-1.2 _1.4h_? _u:
1958 1.7 | 1.5 1.2 |08 |07 |06 |05 |04 |04 |05 |06 |06 19g9/(l- -1.41-1.1l-00-06!-0.2|-03)-021-020-0.3) -0.2 ] -0.1
1950/ 0.6 [0.5] 0402 o1 [-02]-03][-03]-0.1f[-01]-001]-01] [feoolo1lozloz o2 o203 l0alos o4 lo0alos| oe

1960)-0.1)-02)-0.1) 0 |-031/-02) 0 |01/0%= 031} 00O 1991) 0.4 (03 (02|02 04|06 0707 07]08[1.2]1.4

1961/ O | 0 1011 0 101102 101)-01}-03/-03]-02]-02] f199 14|12 [10]08|o5]02] 0 [-0.]-01] @

1962 -02]-02)-02/-03|-03)-02]-01)-02)-02)-03]-03]|-0.4] [y993/02|03|05|[07[08]06|03[02|02]02]01]01

1963|04|-02)01]02)02/04]07]1.011.1]12]12 1.1} |yg94[0.1|01|02]|03[04]|04[04[04]|04]06][09]1.0

1964| 1.0 0.6 [ 0.1 |-0.3[-0.6[-0.6]-0.7|-0.7[-0.8]-0.8/-0.8[-0.8] [Toos|0olo7losl0zl02] 0 |-02l-051-071-09l-L0-0.9
1965[-0.5[-0.3[-0.1| 0.1 [04 [0.7 [1.0 [ 1.3[16 [ 1718 151 [oosl-09l-071-060-04l02l-02l-02l0zlozlnslnalnc:
1966/ 1.511.0109/06103]082/02101[ 0 |-01/-011-03} [1997[-05[-0.4][-02[ 0.1 06[1.0[14)17[20][22]23 z.all
1967/ -0.4)-°05/-0.5)-05/-02) 0 | 0 }-02/-03/-04/-041-0.5} fyeollo i 1eli14[1.0][05]-01]-07[-10[-1.2]-1.2]-1.3[-14
1968|-0.7|-08|-0.7|-0.5|-01, 02|05 ]04]03]04)06]|08) fy9g9 -1.2[-1.0[-0.9]-0.9]-1.0]-1.0-1.0]-1.1]-1.2]-1.4] - 1.6
1969/ 05/10109]0.7/06/05]0405|08|08|080.7} loppglira|-1.4]-1.1]-0.9][-0.7]-0.7[-0.6]/-0.5]-0.6]-0.7]-0.8T0.8
1970/ 0.6 [ 0.4 [ 04 [ 03[ 01[-03]-0.6/-0.8]-0.8(-0.8(-0.9/-1.2| Sooil07106005 03 0201l 0 o1iloilo0zl 03 03
1971|-1.3-1.3]|-1.1|-0.9]-0.8[-0.7]-0.8|-0.7[-0.8|-0.8[-0.91-0.8] [Spoal0zl-01lo1 o204 l07 o8 0o 1012l ia L

1972(-07]-04] 0 |03]06]08]1.1]13]) 1513 el |2003[ 0.9 06 04| 0 |[-02|-0101] 02|03 04]04]04

1973 1.7 12|06 | 0 [-04]|-0.8[-1.0|-1.2(-1.4[- 17719719 Gopaloslozlo1loi oz o3 o507 07 07107 037

1974] 1.7 1.50-1.2[-1.0[-0.9]-0.8[-0.6|-0.4|-04[-0.6[-071-06! [onsloeloelos o5 oalozlotil o o [-oil-oalns
1975(-0.5[-0.5|-0.6[-0.6(-0.7[-0.8[-1.0[-1.1[-1.3[-1.4]| 1.5 16| Gooel 7 0el0alczlooloiloz o3 05 o8 oo 1o

1976) 1.o-1.11-0.7|-04|-03|-0.1/01/03]05/0.7]0808 GHangl g7 03| 0 |-0.1|-0.2|-0.2|-0.3|-06|-0.8|-1.1]-1.2|-1.3
1977/ 0.7 [0.6[ 0.4 |03 [ 03[ 04|04 |04 [05[0.6]08[08| Lore a1l 09 07 0503 0zl0zl03locl07
1978/ 0.7 1041 011°0.21°031-03/-04/-041°041-031-01] 0 | [op9[-08(-0.7]-0.4|-0.1]0.2 | 040506071012 13

1979/ 0 10.1102103103/01401/02/03/05105106/ fGHa1g/13(1.1|08|05]| 0 |-04]-0.8]-1.1|-1.3|-1.4]-1.3]-1.4
1980061051031 04105105/03102) 0 |01101) 0 | fayy(73(1.1|-08|-06|-03|-02|-03|-0.5/-0.7|-0.9|-0.9|-0.8
1981{-0.2/°04/-041°03/-02/-0.31-031-031 702 011011 O ' [2012[-0.7]-0.6]-0.5|0.4]-0.3|-0.1] 0.1 | 03 | 0.4 | 0.4 | 0.2 | 0.2
1982 0 191102105106 /0.7108 110} 15 19 27 21 [9013]-04|-05]-03|-02|-0.2|-02|-02|-02|-02|-02]-02]-0.3
198[ o1 il iol12(10(07 03] 0 [-03]-06[-08]-08 T ioeloaloel 0 1o o1 o 02 (0.4 |06 0

1984/ -0.5[-0.3|-0.3]-0.4|-0.4]-0.4[-0.3[-0.2]-0.3|-0.6[-0.9[-1.1] oo ——TTosT0s 0o 1o 2l s 5

1985|-0.9|-0.7|-0.7[-0.7|-0.7|-0.6[-0.4]| -0.4] -0.4|-0.3]-0.2] -0.3

I [vear] DIF [3Fm [FmA[mam] ama [ maa | 334 [ 3as [ aso [ son[onD [ ND3 |
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vear| DIF | IFM [Fma [mam| ama | maa | 104 | Jas | aso| son|onp | npa | | [vear| DIF [3Fm [Fma[mam| ama [ M3 | 314 [ a5 [aso[son[onD | nD3 |
1950|-1.4|-1.2|-1.1|-1.2|-1.1|-0.9|-0.6|-0.6|-0.5|-0.6|-0.7|-0.8 1981 -0.2-04|-0.41-0.3)-0.20-03)-030-02-021-011-0.11 O
1951|-08|-0D6|-02| 02|02 |04 |05 |07|08|09|0.7 |06 1982 0 |o1lo2los5loelo7lo8l1o0l15)l1912.1]2.1
1952| 0.5 |04 04| 04| 04|02 1] o1 jo2|02)0.2|03 10g3| 2.1 |18l15112|1o0lo072l03) 0 |-03|-08(-08]-0.8
1953|0506 0.7 0,720,707 |0.7|0.7|0.8]|08]08]0.7 1984|-0.5|-0.2-02|-0.4)-0.4) -0.4|-0.3|-0.2|-0.2)-0.6]-0.9]-1.1
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Summary/Key Findings:

e The two major modes of variability in the global tropics identified in Chelliah and Bell, 2004 during both DJF/JJA
seasons, viz., the Tropical Interdecadal/Multidecadal (TMM) and the EINino Southern Oscillation (ENSO) modes, are
revisited with more recent data up to 2015 (1951-2015).

* The analysis has identified when and under what circumstances a weak ENSO (El Nino or La Nina) event tends to
strengthen to a moderate or strong event, and when it is not not.

* Inthe analysis period considered, 1951-2015:

a) when both modes are positive and in phase, moderate/strong El Ninos (1958, 1973, 1983, 1992, 1998
2010) occurred. (El Nino fizzled in 2014 because TMM was out of phase with ENSO, but it turned
favorably in 2015 for a strong El Nino. 20167 )

b) when both modes are negative and are in phase, moderate/strong La Nina events occurred.

c) When both modes are of approximately equal amplitude, but of opposite phases, no ENSO events occurred.

d) When both modes are of opposite phases, and of uneven amplitudes in strength, the stronger amplitude
mode decided the ENSO event.

e) 90-95% of all (weak, moderate and strong) ENSO events, and neutral years, can be accounted for by the
above phasing/out-of-phasing of the two dominant tropical modes.

e Coincident with the 1972/73 strong EINino event, and the change in phase (from —ve to +ve) of the TMM mode, the
tendency for El Nino events to become stronger (and conversely for the relative absence of strong La Ninas) has
enhanced. It appears that a shift is highly likely in the phase of the low frequency TMM mode, and the phase change
may already be underway coincident with the current ongoing major 2015/16 El Nino event. (Note: This change of
phase is a process/slow-adjustment that takes place over the course of a few years!)

Ongoing/addnl.work:

e Extend/Obtain the modes pair for the earlier period (before 1951)—(How if using VPOT from NCEP/R1? )
e Do analyses for the other two seasons SON/MAM as well to get the full annual cycle evolution!!
e Explore the predictability issue!!



Thank you very much
for listening !
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