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ET is supply of surface moisture 
to atmosphere 

E0 is atmospheric 
demand for ET 

ET = actual evapotranspiration 
E0 = evaporative demand 

ET0 = reference evapotranspiration 

• Reference ET0 
• Potential ET, PET 
• Pan evaporation 

Reference ET, ET0 

Evaporative demand (E0) concept 

Radiative forcing Advective forcing 

Drivers from NLDAS 
• temperature at surface (2 m) 
• specific humidity at surface 
• downward SW at surface 
• 10-m wind speed at 10 m 

E0 from reanalysis of ASCE Standardized Reference ET: 

Mean annual E0 (from ET0), 1981-2010 (mm). 

Reanalysis of E0 
• daily 
• Jan 1, 1979 – present 
• ~12-km 
• CONUS-wide 
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Rn   +   Ln   –   G   =   Qn   =   H   +   ET 

E0/ET interactions in drought 
Surface energy budget 
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(Hobbins et al., 2004) 

E0/ET interactions in drought 

ET and E0 vary in a parallel direction: 
 

• ET and E0 up due to increases in 
advection or energy availability, 

• moisture may not be limiting. 

ET and E0 vary in complementary directions: 
 

• ET down due to moisture limitations, 
• E0 up due to energy balance favoring        

H over ET. 

Flash drought - energy driven Sustained drought - water limited 

ET H ET H Rd Lu 

Take home: 

in both drought types, E0 increases. 
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October-March  
cool, wet 
 
 
 
April-September 
warm, dry 

E0, ET and the water balance 
Russian River, CA 

r2 of basinwide water balance components 
Jan 2000 – Dec 2013.  

• r2 for E0-SM higher (83%) than any other annual variable pairs. 

• monthly E0 correlates better to SM than does ET (34% vs. 4%). 

• at both time scales, ET0 more strongly linked than ET to hydrologic cycle. 

E0 / ET complementarity observed in basin.  
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EDDI defined 
Standardized anomaly (Z-score) 

daily E0 summed 
across period t 

30-year mean E0 
across period t 

30-year stdev of E0 
across period t 

0 

EDDI < 0 EDDI > 0 

wetter than 
normal 

drier than 
normal 

ED0: 0.524, > 70%ile 

ED1: 0.841, or > 80%ile 

ED2: 1.282, or > 90%ile 

ED3: 1.645, or > 95%ile 

ED4: 2.054, or > 98%ile 

• t is period during 
which anomaly is 
observed. 

• e.g., t for 2-month 
EDDI on Jan 31, 2015 
starts on Dec 1, 2014. 
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EDDI as multi-scalar drought estimator 

9-month EDDI 

12-month EDDI 

6-month EDDI 

3-month EDDI 

1-month EDDI 

2-week EDDI 

1-week EDDI 
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• Signals of different drying 
dynamics evident at different 
time-scales. 
 

• EDDI signal precedes USDM at 
many time-scales. 

USDM (grey) and EDDI (red) across Apalachicola 
River basin at Chattahoochee, FL. 

USDM = United States Drought Monitor 
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Drought onset 
June 28, 2011 

USDM 

Texas drought 
still evident 

6-month EDDI 

USDM = United States Drought Monitor 



Cooperative Institute for Research in Environmental Sciences 
UNIVERSITY OF COLORADO BOULDER and NOAA 

Drought intensification attribution 
February-July 2014 

Drought intensification 
(increasing E0) forced by: 
• first, below-normal q 

(while T falling). 
• then, increasing T and, 

to a lesser degree, Rd. 
• U2 plays little role. 
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derived analytically 
(Hobbins et al., 2015) 

anomalies 
observed in E0 
reanalysis 

E0 signal of drought 
intensification: 

USDM 

CA-mean USDM and EDDI 

% area CA in each USDM 
drought category 

E0 signal in Sacramento River basin 

12-week anomalies (Δ) 
of E0 and its drivers 

 12-
week 
 EDDI 

ΔE0 
 
 

ΔT 
 
 

Δq 
 
 

ΔRd 
 
 

ΔUz 
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Drought at its most intense (so far) 
late July, 2014 

6-month EDDI USDM 

CA-mean USDM and EDDI 

% area of CA in each 
USDM drought category 
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In-drought wetting attribution 
November-December 2014 

USDM 
1-week 

EDDI 

E0 declines during Prcp: 
• +ve Δq depresses   

E0 and EDDI 
• despite +ve ΔT 

Russian River nr. Ukiah, CA 

1-week series of ΔE0 
and each drivers’ 

contributions (mm) 

Santa Rosa, CA 
107 mm  

162 mm 

127 mm 

q 

U2 

T 

E0 

Prcp 

ΔE0 
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Drought current conditions 
end of WY 2015 (Sept 30) 

USDM 12-month EDDI 
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ET0 and the water balance 
Russian River basin 

• E0-Runoff r2 (16%, 49%) exceeds ET-Runoff r2 (2%, 3%). 

• despite ET being a linear component of the hydrologic cycle! 
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EDDI and hydrologic drought 
EDDI and the Standardized Runoff Index (SRI) 

Can EDDI help predict late-summer (low-flow) streamflow? 

6 month EDDI 
(Nov-Apr)  

12-month SRI 
(Oct-Sep) 

McEvoy et al., 2014 (EDDI) 
Shukla and Wood, 2008 (SRI) 
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EDDI and hydrologic drought 
12-month SRI vs. 6-month EDDI 

EDDI time scale 

ED
DI
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• At 5 sites, 6-month EDDI (Nov-Apr) shows strongest relationship to SRI. 
• October-April E0 explains greatest variance in WY streamflow (i.e., Oct 1-Sep 30). 
• Highlights EDDI’s predictive capability. 

EDDI contains no 

Prcp information! 
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EDDI as a drought leading indicator 
Sacramento River basin 

USDM lead or lag over EDDI (weeks, months) 

ED
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USDM leading EDDI EDDI leading USDM 

Optimizing EDDI window-length 
is straightforward. 
 
Here, EDDI is optimized against 
USDM for the Sacramento River 
basin. 

6- to 7-month EDDI 
predicts USDM      
2-3 months ahead 
with r = 0.6. 
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• easy to calculate, physically rational: 
o responds rapidly to drying and wetting, 
o responds to both sustained and flash droughts, 
o independent of Prcp and R/S data, 
o low-latency ~5 days. 

 

• permits decomposition of evaporative drought drivers. 
 

• permits near real-time drought monitoring / early warning. 
 

• consistent with USDM and other monitors, but not duplicative. 
 

• multi-scalar: 
o short-term EDDI (e.g., < 12-week) good for agricultural areas, 
o long-term EDDI (e.g., 6-month) better for water-limited hydrologic drought monitoring. 

 

• aggregation window may be calibrated for: 
o early warning relative to other monitors, 
o demands specific to regions, hydroclimates, and sectors. 

 

• E0 (and EDDI, and drought) can be forecast. 

Summary mike.hobbins@noaa.gov 
303-497-3092 

Poster: Optimization of 
Evaporative Demand Models for 
Seasonal Drought Forecasting  
- Dan McEvoy, DRI 
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