Requirements for improved seasonal sea ice prediction in the NCEP Climate Forecast System

Wanqiu Wang (CPC/NCEP)

Xingren Wu (EMC/NCEP)

Thomas Collow (CPC/NCEP)

Arun Kumar (CPC/NCEP)

40th Climate Diagnostics and Prediction Workshop Denver, CO October 29, 2015

SIPN

2012 Sea Ice Outlook: August Report

SIPN

2012 Sea Ice Outlook: June Report

Mixed/Multiple Method

Zonal mean sea ice concentration (%) around Bering Sea and Chukchi Sea (170-200E)

(2009-2013 average)

Outline

- 1. Causes of the forecast errors
- 2. Impacts of model configurations
- 3. Future plans

Causes of the forecast errors

- i. Errors in initialization
- ii. Inaccurate model physics

Sea ice errors in the initialization

- i. Initial sea ice coverage
- ii. Initial sea ice thicknesss

Errors in initialization: Sea ice concentration

Differences in sea ice extent between CFSR and NASA Team (10⁶ km²)

CFSR: Climate Forecast System Reanalysis providing initial conditions for CFSv2

- Significant jumps in 1997 and 2008
- Difficult to remove time-dependent systematic bias.

Errors in initialization: Sea ice thickness trend

PIOMAS: University of Washington Pan-arctic Ice/Ocean Modeling and Assimilation System

- Differences depending on year and month
- Difficult to remove time-dependent systematic bias

Impacts of model configuration

- i. Inaccurate surface fluxes from the atmosphere and ocean
- ii. Insufficient model resolutions

Excessive surface downward solar radiation flux

Jul-Nov Model bias

CFSv2 produce excessive surface downward solar radiation flux

The solar radiation flux bias is related to negative bias in cloud amount

Impacts of model configurations

A. Impact of initial sea ice

- CFSR (Climate Forecast System Reanalysis)
- **PIOMAS** (Pan-arctic Ice/Ocean Modeling and Assimilation System)
- B. Impact of model physics
 - CFSv2 (Climate Forecast System version 2)
 - CFSv2p (Modified model physics)
 - ✓ Use a marine stratus parameterization (Moorthi et al. 2010).
 - ✓ Remove water-ice heat flux constraint

Sea ice extent from June 2015 forecast

- Consistent initial sea ice concentration
- More accurate initial sea ice thickness
- ✓ More realistic surface fluxes from the atmosphere and ocean

Zonal mean sea ice concentration (170E-200E)

- CFSv2/CFSR: Seasonal cycle too weak
- CFSv2p/CFSR: Seasonal cycle slightly further weakened with changes in physics alone
- CFSv2/PIOMAS: Seasonal cycle enhanced with even stronger melt with changes in IC alone
- CFSv2p/PIOMAS: Seasonal cycle best simulated with changes in both ICs and physics

Delayed freeze in all runs

Possible impact of model resolutions

Sea ice edge (15% concentration) CFSv2 Forecast from July 2005-2009 average

- Sea ice freeze in CFSv2 is delayed
- Possible reasons
 - a. Horizontal resolutions too coarse to resolve land-sea contrast details
 - b. Oceanic vertical resolution

 (10 m) too coarse to correctly
 ocean surface response to
 atmospheric cooling

SST bias

November SST bias in forecast from July with different convection schemes

- CFSv2: SAS without stratus CFSv2p: SAS with stratus 90N 90N 60N 60N 30N 30N EQ EQ 30S 30S 60S 60S 90S 90S 60F 120F 60E 120E 180 120W 60W 180 120W 60W 0 \cap Ω RAS with stratus SAS2 without stratus 90N 90N 60N 60N 30N 30N EQ ΕQ 30S 30S 60S 60S 90S 90S -60E 60F 120F 180 120W 60W 120E 180 120W 60W 0 0 0 N 4 2
- SAS: Simplified Arakawa Scheme
- RAS: Relaxed Arakawa Scheme
- SAS2: Revised SAS

It is possible to configure the model for improved prediction in both sea ice and SST.

Summary

- Major CFSv2 forecast errors: slow melt and freeze
- The prediction of sea ice melt improves with
 - ✓ More consistent initial sea ice concentration
 - ✓ More accurate initial sea ice thickness
 - \checkmark More realistic surface fluxes from the atmosphere and ocean
- These changes did not result in significant improvement in sea ice freeze which may require an increase in model resolutions

Future Plan

- Test impacts of increased model resolutions on the prediction of sea ice freeze
- Develop a sea ice data assimilation system with CFS ocean component that assimilates both sea ice concentration and sea ice thickness
- Develop the CFS version 3 (CFSv3)

①Test the CFSv3 with improved atmospheric physics for a better representation of surface fluxes

(1) Test sea ice component model: CICE/SIS/SIS2/KISS