EVALUATING THE JOINT INFLUENCE OF THE MJO AND THE STRATOSPHERIC POLAR VORTEX ON NORTHERN HEMISPHERE WINTER WEATHER PATTERNS

Matthew R. Green¹, Jason C. Furtado¹, Elizabeth A. Barnes², Michelle L'Heureux³, Laura M. Ciasto^{3,4}, and Kirstin Harnos^{3,4}

¹School of Meteorology, University of Oklahoma

²Department of Atmospheric Science, Colorado State University ³NOAA Climate Prediction Center ⁴INNOVIM, LLC

MOTIVATION

- Research in short range events and long-term climate.
- Resulting in greater predictability and forecast accuracy.
- Subseasonal to seasonal gap
- Better understand and forecast for events on this timescale.
- Madden Julian Oscillation and Stratospheric Polar Vortex separately linked to predictions on this timescale.

MADDEN JULIAN OSCILLATION (MJO)

- Comprised of convective centers
- Spans from western Indian
 Ocean to central Pacific
 Ocean (Madden and Julian, 1972)
- Excites Rossby waves that propagate upward and to the north
- Impacts downstream weather patterns(Matthews et al., 2004) and (Moore et al., 2010)

STRATOSPHERIC POLAR VORTEX

- Annular circulation about the Northern Hemisphere (NH)
- Variations can impact speed and position of tropospheric jet stream (Baldwin and Dunkerton, 2001)
- Vortex itself is influenced by vertically propagating Rossby waves (Kidston et al. 2015)
- Also referred to as Northern
 Annular Mode (NAM)

Red = negative NAM values
Blue = Positive NAM values

What is the **JOINT** influence of the **MJO** and the **Stratospheric Polar Vortex** on the winter weather patterns in the **NH**?

DATA & METHODOLOGY

- ERA-Interim Reanalysis dataset (daily data from 1979-2016)
- NAM defined as leading EOF of GPH at each pressure level
 - Index is 1st Principal Component
- MJO index obtained from the Bureau of Meteorology
- Primary focus is on months October-April
- MJO and Vortex Events analyzed
 - Composite Analysis:
 - MJO (Vortex neutral) $\sigma \ge 1$ for all phases
 - Strong Vortex (MJO neutral) at **100 hPa NAM** index $\sigma \ge 1$
 - Weak Vortex (MJO neutral) at **100 hPa NAM** index $\sigma \le -1$
 - Overlapping Composites:
 - MJO w/ Strong Vortex for all phases
 - MJO w/ Weak Vortex for all phases

UPPER-AIR PATTERNS FOR VORTEX EVENTS

UPPER-AIR PATTERNS FOR MJO EVENTS

UPPER-AIR PATTERNS FOR MJO 3 / STRONG VORTEX EVENTS

- Strong vortex pattern very consistent
- MJO 3 Pacific pattern in MJO/Vortex plots

UPPER-AIR PATTERNS FOR MJO 3 / WEAK VORTEX EVENTS

- Weak vortex pattern weakened by days 10 – 14
- MJO 3 pattern is consistent within combined cases

UPPER-AIR PATTERNS FOR MJO 7 / STRONG VORTEX EVENTS

- Strong vortex pattern is now weakened by days 10 – 14
- MJO 7 Pacific pattern in MJO/Vortex plots

UPPER-AIR PATTERNS FOR MJO 7 / WEAK VORTEX EVENTS

- Weak vortex pattern is consistent through days 10 – 14
- MJO 7 negative height anomalies consistent in MJO/Vortex plots

DIFFERENCE OF MJO 3 / VORTEX EVENTS

500 hPa Geopotential Height Anomalous Differences

For Days 10 – 14 from start dates

Monte Carlo simulations with 1000 iterations at 90% confidence interval

- MJO/vortex observes vortex patterns more than MJO only
 - Over Arctic and N. Atlantic
- MJO/Vortex observes MJO pattern more than Weak Vortex only
 - N. Pacific

DIFFERENCE OF MJO 7 / VORTEX EVENTS

500 hPa Geopotential Height Anomalous Differences

For Days 10 – 14 from start dates

Monte Carlo simulations with 1000 iterations at 90% confidence interval

- MJO/Vortex observes
 Vortex patterns over N.
 America and Atlantic
- Also sees Pacific patterns assoc. with MJO that Vortex only patterns do not produce

IMPACTS FOR MJO 3 / VORTEX EVENTS

IMPACTS FOR MJO 7 / VORTEX EVENTS

CONCLUSIONS

- MJO maintains strong control of the pattern observed in the northern Pacific Ocean.
- Stratospheric Polar Vortex maintains control of the North Atlantic and Europe.
- MJO/Vortex adds valuable information that is not present through only the MJO or the Stratospheric Polar Vortex separately.

• Future Work:

- How does the MJO modulate the Stratospheric Polar Vortex?
- Use blocking indices to investigate weather patterns
- How are winter storm tracks influenced?

BLOCKING INDEX

Anomalous Blocking from 500 GPH

BLOCKING INDEX

Anomalous Blocking from 500 GPH

et al. (2016)

Sample Size for each condition for each MJO phase w/ NAM @ 100hPa

Phase	МЈО	MJO & Weak	MJO & Strong	Weak	Strong
I	530	184	180	500	438
2	577	146	220		
3	734	130	190		
4	689	170	170		
5	763	160	150		
6	711	220	166		
7	723	170	160		
8	606	196	128		

UPPER-AIR PATTERNS FOR MJO 3 / VORTEX EVENTS

250 hPa U-wind Anomalies

For Days 0 – 9 from start dates

UPPER-AIR PATTERNS FOR MJO 7 / VORTEX EVENTS

250 hPa U-wind Anomalies

For Days 0 – 9 from start dates

UPPER-AIR PATTERNS FOR MJO 3 / VORTEX EVENTS

250 hPa U-wind Anomalies

For Days 10 – 14 from start dates

UPPER-AIR PATTERNS FOR MJO 7 / VORTEX EVENTS

250 hPa U-wind Anomalies

For Days 10 – 14 from start dates

IMPACTS FOR MJO 3 / VORTEX EVENTS

Surface Air Temperature Anomalies

For Days 0 – 9 from start dates

IMPACTS FOR MJO 7 / VORTEX EVENTS

Surface Air Temperature Anomalies

For Days 0 – 9 from start dates

IMPACTS FOR MJO 7 / VORTEX EVENTS

Surface Air Temperature Anomalies

UPPER-AIR PATTERNS FOR MJO EVENTS

- Focus in on the pattern in the North Pacific
- Phase 3 eastward propagating positive anomaly
- Phase 7 eastward propagating negative anomaly