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Climate and Weather

* Questions:
* When and where can we predict climate better?
* When and where is it fundamentally stochastic?

* We can only predict something when there is
variability
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Potential Predictability




Potential Predictability

* Variance fraction:

05 — 05

20—
p 0.02

* Look at interannual variability

¢ Metric?
Seasonal occurrence counts:
y) y)
p _0p89 — 0539
p.89 — Y

0,89




We Need Data!

 US Historical Climate
Network

* /74 weather stations
« > 80 years of data
* > 95% complete data
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How to Find g2?

« Approach 1:

* Dynamical systems and
divergence of states

« Approach 2:
- Signal/noise




How to Find g2?

« Approach 1:

* Dynamical systems and
divergence of states

« Approach 2:
- Signal/noise

« Our approach:
« Simulate It




Models and Complexity

» Simple models
 Low variabllity, poor fit

» Complex models
* High variability, good fit




Models and Complexity

» Simple models
 Low variabllity, poor fit

« Complex models
* High variability, good fit

 How much Is just
right?
« Akaike Information
Criterion (AIC)




Our Models

* Variable order Markov chains

* Probabillity of rain depends on m days’ worth of
history
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Daily Chain Orders
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Cumulative Seasonal Precipitation Overdispersion
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Big Rapids, Mi
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Big Rapids, M| Occurrence Data
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Big Rapids, Mi
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Variance [mmz]
a n

w

Big Rapids, Ml Geeurrence Deta

e

1 1 1 1 1
150 200 250 300 350
Day of year

200
Day of year




Big Rapids, Mi

Potential Predictability: Big Rapids, M|
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Forest Grove, OR

o
W
>
1]

e
Q
Q
o
]
=
]
=

Forest Grove, OR Occurrence Data

150 200
Day of year




Forest Grove, OR
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Forest Grove, OR

Farest Grove, OR Occurence Date
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Conclusions

* Questions:

* When and where can we
predict climate better?

- When and where is it
fundamentally stochastic?

« Attribution

« Spatial patterns and
clustering
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Intensity Model Maximum Chain Order




Intensity Model Pooling Size [days]
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