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Why do we need ‘Regional Downscaling’? feslleorttves:
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» CFSvl is about 200km in spatial resolution.

B Not possible to use in regional application, such as wet/dry condition over
the Colorado River basin.

B CFSv2is about 100km, which is still not enough for regional application.
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Two approaches in Regional Downscaling Rasietiortivest |
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» Dynamic Downscaling: Using high-resolution limited area model
forced by typically low-resolution global forecast model output.
B MRED (Multi-RCM Ensemble Downscaling): Community effort to produce

26 years of winter (December — April) reforecast from NOAA CFS global
seasonal forecast model.

® ~32km resolution
® 1982 — 2003

@ Totally 7 RCMs are used: WRF-ARW, MM5, CWRF, ETA, RSM_NCEP,
RSM_ECPC, RAMS

» Statistical Downscaling: Using historical relationship between forecast
and high-resolution observation.

B BCSD (Bias Correction and Spatial Disaggregation)
B Bayesian merging
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MRED: dynamic downscaling
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» Results for boreal winter forecast when orography precipitation plays
an important role in the Western US.

» Demonstrate how much extra value can be added using multi-model
downscaling of global seasonal forecast for hydrometeorological

application (Precipitation & Sfc. Air temperature).

» Compare this dynamic downscaling with the sets of statistical

methods.
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Statistical downscaling methods feslleorttves:
» BCSD: Probability mapping » Bayesian merging: Using Bayes’
based on distributions theorem to update forecast
B obtain probability distribution B Based on (1) ensemble spread
PDFs for A (coarse T62 fcsts ) and (2) historical skill
and A(fine, obs) B Ref: Luo et al. (2007), Luo and
B FromA’ (coarse) get percentile Wood (2008)

based on PDF (coarse)

B assume the same percentile for
the fine grid and work backward
based on the PDF fine get A’
fine (anomaly)

M If normally distributed, time ratio
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RCM simulated rainfall climatology filierorthvest

Precipitation (1995 December
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RCMs produce high
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RCM simulated precipitation anomalies faiEtorthwest |
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Precipitation Anomaly (1995 December)
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Anomaly correlation (Precipitation) faiEtorthwest |
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Spatial Correlation and RMSE R et
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(b) Dynamlical Down§caling (b) Dynamlical Downlscaling
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Summary Rasifienorthvest
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» Itis clear that RCMs do reproduce similar, but generally improved,
precipitation (P) and surface air temperature (T) anomaly compared to
CFS. However, the improvement is highly dependent on location and
forecast lead time.

» |In other words, at some locations and certain lead months, RCMs do
add values but certainly not always and not everywhere.
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Probabilistic view of RCM skill
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» Reliability diagram

All of the forecasts either from CFS or
RCMs are overconfident and have little
distinction.

For above-normal precipitation
forecast, RCMs do have more reliability
than CFS predicting those events
occurring more frequently, and vice
versa.

However, this relationship changes for
below-normal precipitation.

Consistent with the general finding that
coarse-scale models end to have
limitations in capturing intense
precipitation, but they produce too
much drizzle under dry conditions.

Therefore, differences between the
RCM and CFS skill are largest at the
upper and lower ends of the reliability
diagram for above- and below-normal
precipitation, respectively.
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Why do RCMs have limited skill?
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RCM do reproduce large-scale
circulation pattern that closer to
CFS

However, CFS cannot reproduce
itself.
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Dynamical downscaling by the multi-RCM produces finer-scale
seasonal prediction based on the coarser resolution global forecast
model. In terms of both climatology and anomaly from the long-term
mean, the RCMs generate finer-scale features that are missing from
CFS.

Forecast skill of the downscaled P and T can vary for different metrics
used in the cross validation.

Using RMSE as the metrics, we find that a couple of RCMs can
reduce forecast errors compared to CFS, but some RCMs have
higher RMSE due to the overprediction of precipitation in the
Northwest and Northern California.

However, the RCMs combined with statistical bias correction stand
out clearly.
B At the first-month lead, simple BCSD of all seven RCMs do surprisingly

well. At the longer leads, the Bayesian merging applied to either CFS or
RCMs does a good job.
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» Many discussions with Kingtse Mo (CPC/NOAA), S.-Y. (Simon) Wang
(USU), A. Wood (NOAA), T. Reichler (U. of Utah)

» Funded by NOAA CPPA program
MRED participants to execute simulation and to share data

\ 4

» Yoon, J.-H., L. Ruby Leung, and J. Correia, Jr., 2012: Comparison of
downscaled seasonal climate forecast during cold season for the U.S.
using dynamic and statistical methods, J. Geophys. Res,
doi:10.1029/2012JD17650
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Thanks to MRED team
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Anomaly correlation (Tas) faiEtorthwest |
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Spatial Correlation (Tas & Precipitation) faiEtorthwest |
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RMSE (Tas & Precipitation)
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