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Intensified variability of the summer rainfall 

Wang et al. 2010 

1st  30 years 

1948–1977 

2nd  30 years 

1978–2007 

Wet (> 1 Std) 2 6 

Dry (< -1 Std) 2 5 

χ2 test:  

Intensified precipitation 

variability is significant 
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NASH circulation 
(Henderson and Vega 1996; 
Katz et al. 2003; W. Li et al. 
2011; 2012; L. Li et al. 2012) ENSO 

 (Mo et al. 2008) 

Atmo. Internal variability (Seager et al. 2009) 

Anthropogenic forcing (Chen et al. 2003; Mearns 
et al. 2003; Liang et al. 2006; Christensen et al. 2007; W. 
Li et al.,2011) 

PDO  
( L. Li et al,  2012) 

Meso-scale and Synoptic-scale 
systems (Baigorria et al. 2007; Kni
ght and Davis 2007, 2009; Shepherd 
et al. 2007; Barlow 2011) 
 

What factors affect the SE US summer precipitation?  

Soil Moisture (Koster et al., 

2004, Wu et al., 2007) 

Atl. SST (Wang et al. 

2010); AMO (Citrus, 
2008) 

All the factors can interact with each other at various spatial & 

temporal scales. Thus, identifying which factors drive the inten-

sified rainfall variability is complex and difficult.  

 

One possible simplification is to categorize these factors using  

certain criteria. 



Research Approach: 

                       Atmospheric Moisture Balance  
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Research Approach: 

                       Atmospheric Moisture Balance  
Precipitation =    Evaporation  

                          + Moisture Transport 



Data and Methods 

• Methods: 

– Analysis of atmospheric moisture balance 

• Partition of seasonal mean field and synoptic scale eddy 

 

 

 

– Wavelet analysis (temporal evolution of periodicity) 
Mean flow Eddy 
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• Data: 
– Precipitation  

• CPC U.S. Unified Precipitation and PRec/L 

– Atmospheric Reanalysis Datasets  

• NCEP/NCAR; ERA-40; JRA-25 and NARR 

• Averaged over June-July-August (JJA) season 
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SE U.S. Moisture Budget (Climatology) 

JJA Climatology:  

Magnitude: E > Moisture Transport 

1948-2007 JJA climatology of precipitation, moisture flux 

convergence and evaporation (mm/day) 



Moisture Budget (Interannual variation) 

Time series of JJA mean precipitation, moisture 

transport and evaporation anomaly over the SE 

U.S. (Error bar represents one standard error 

among reanalysis datasets) 

R=0.30 

R=0.80 

Precipitation 

Evaporation 

Moisture Transport 

Interannual Variation 

Moisture Transport > E 

     std dev 0.73mm/d  > 0.41 mm/d 

Mean Flow > Eddy 
Total moisture transport vs that associated with JJA 

mean flow and synoptic eddies. The red lines are the  

least square fitting lines 



Moisture Budget  Interannual Variability 

2-4 yr Variability: 
Moisture Transport > E  

JJA Mean-flow is the 

main contributor  

Local wavelet power spectrum of a) precipitation, b) evaporation, c) moisture 

transport and d) JJA mean component of moisture transport in 1948-2007  

“Morlet” wavelet  



Thermodynamic (q) vs Dynamic (V) 
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(qc and Vc: 60-yr climatology; qa and 
Va: deviation from the climatology) 
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Controlling Process 

-Ñ× qV dp
0

p
s

ò
SE U.S. Summer  

Precipitation (P) 

Moisture  

Transport 

Evaporation 

(E) 

Large-scale  

Circulation 

Thermo-dynamic 

(qs-qa) 

Dynamic 

(surface wind speed) 

Dynamic 

(V) 

Synoptic-Scale 

Eddy 

Thermo-dynamic 

(q) 

Dynamic 

(V) 

12 

Thermo-dynamic 

(q) 

Precipitation =    Evaporation  

                          + Moisture Transport 



  NASH Western Ridge and its Implication to the 

SE U.S. Summer Precipitation 

 

	

JJA mean precipitation rate (shaded, unit: mm day-1), 850hPa geopotential height (solid contour, unit: gpm), 850

hPa subtropical high ridge line (dashed contour) and moisture flux (vector, unit: Kg m s-1). The contour interval 

of 850hPa geopotential height is 20-gpm, and the bold curve is 1560-gpm isoline. The area with 500hPa vertical 

velocity less than -0.01Pa s-1 is stippled. 

Western Ridge 

Index 

Ridge climato. 

position 



Ridge position vs precipitation 

Composite US summertime precipitation anomaly (left), moisture flux anomaly (

vector, right) and 500mb vertical velocity anomaly (contour, right)  

SW ridge:  

wet summer 
upward motion 

Moisture convergence 

 

NW ridge:  

dry summer 
Downward motion 

Moisture divergence 

 

L. Li, W Li, and Y. Kushnir, 

2012 

 



Moisture Transport & Western Ridge 

Increases in NW and SW 

types of western ridge 

during recent 30 years (L. 

Li et al. 2012) 

Intensifies variability in 

moisture 

divergence/convergence 

over the SE US 

Intensifies precipitation 

variability 

Composite 850hPa 1560 geopotential height isoline upon 

the dynamic component of moisture divergence  



Conclusions 

 The SE US summer 

precipitation variability is 

mainly controlled by 

atmospheric dynamics 

NASH western ridge 

position has a close 

relationship with the 

summer precipitation of 

its variability. 



Thank you 



Fig. 1 a) spatial patterns of the first EOF of JJA mean precipitation over SE 

U.S. (91°W-76°W, 25°N-36.5°N) based on Prec/L data during the 1948-2007

; b) the normalized PC1 time series corresponding to the spatial pattern (bar, 

values are shown in the left axis), and areal-averaged SE U.S. summer precip

itation (black curve, units: mm day-1, values are shown in the right axis).   

Leading EOF 



ENSO & SE U.S. summer precipitation 


