Summer Precipitation Variability over the SE U.S. Analyzed from Atmospheric Moisture Budget

Wenhong Li¹, Laifang Li¹, and Ana P. Barros² ¹EOS, Nicholas School of the Environment ²CEE, Pratt School of Engineering Duke University Oct. 25, 2012

SE U.S. summer precipitation

Mableton, GA

2007 Drought

- Worst in 100 years

2009 Flood

Lake Lanier

Intensified variability of the summer rainfall

	1 st 30 years 1948–1977	2 nd 30 years 1978–2007
Wet (> 1 Std)	2	6
Dry (< -1 Std)	2	5

χ² test: Intensified precipitation variability is significant

What factors affect the SE US summer precipitation?

Research Approach: Atmospheric Moisture Balance

Seasonal Mean: $F_{in} = F_{out}$

(Brubaker et al., 1993)

$$\mathcal{F}_{w}g(P-E) = -\nabla \cdot \int_{0}^{p_{s}} q\vec{V} \, dp$$

Trenberth and Guillemot 1995 Seager et al., 2010

Data and Methods

- Data:
 - Precipitation
 - CPC U.S. Unified Precipitation and PRec/L
 - Atmospheric Reanalysis Datasets
 - NCEP/NCAR; ERA-40; JRA-25 and NARR
 - Averaged over June-July-August (JJA) season
- Methods: $\Gamma_w g(P E) = -\nabla \cdot \int_0^{p_s} q \vec{V} dp$
 - Analysis of atmospheric moisture balance
 - Partition of seasonal mean field and synoptic scale eddy $q = \vec{q} + q'$ $\vec{V} = \vec{V} + \vec{V}'$ (bar is seasonal mean; prime is 6-hr deviation) $-\int_{0}^{p_{s}} \nabla \cdot (\vec{q} \vec{V}) dp = -\int_{0}^{p_{s}} \nabla \cdot (\vec{q} \vec{V}) dp - \int_{0}^{p_{s}} \nabla \cdot (\vec{q} \vec{V}) dp - q_{s} \vec{V_{s}} \nabla p_{s}$ Mean flow Eddy

Wavelet analysis (temporal evolution of periodicity)

SE U.S. Moisture Budget (Climatology)

Moisture Budget (Interannual variation)

Moisture Budget \rightarrow Interannual Variability

2-4 yr Variability: ≻Moisture Transport > E ≻JJA Mean-flow is the main contributor

"Morlet" wavelet

Local wavelet power spectrum of a) precipitation, b) evaporation, c) moisture transport and d) JJA mean component of moisture transport in 1948-2007

Thermodynamic (q) vs Dynamic (V)

$$\overline{q} = \overline{q}_{c} + \overline{q}_{a} \quad V^{\overline{r}} = V^{\overline{r}}_{c} + V^{\overline{r}}_{a}$$
$$\overline{q}V^{\overline{r}} = \left(\overline{q}_{c} + \overline{q}_{a}\right) \left(V^{\overline{r}}_{c} + V^{\overline{r}}_{a}\right)$$

(q_c and V_c: 60-yr climatology; q_a and V_a: deviation from the climatology)

NASH Western Ridge and its Implication to the SE U.S. Summer Precipitation

Longitude

hPa subtropical high ridge line (dashed contour) and moist of 850hPa geopotential height is 20-gpm, and the bold cur velocity less than -0.01Pa s⁻¹ is stippled.

Ridge position vs precipitation

NW ridge: dry summer Downward motion Moisture divergence

SW ridge: wet summer upward motion Moisture convergence

L. Li, W Li, and Y. Kushnir, 2012

Moisture Transport & Western Ridge

Increases in NW and SW types of western ridge during recent 30 years (*L. Li et al. 2012*)

→Intensifies variability in moisture
divergence/convergence
over the SE US

→Intensifies precipitation variability

Composite 850hPa 1560 geopotential height isoline upon the dynamic component of moisture divergence

Conclusions

> The SE US summer precipitation variability is mainly controlled by atmospheric dynamics

NASH western ridge position has a close relationship with the summer precipitation of its variability.

Thank you

Fig. 1 a) spatial patterns of the first EOF of JJA mean precipitation over SE U.S. (91°W-76°W, 25°N-36.5°N) based on Prec/L data during the 1948-2007 ; b) the normalized PC1 time series corresponding to the spatial pattern (bar, values are shown in the left axis), and areal-averaged SE U.S. summer precipitation (black curve, units: mm day⁻¹, values are shown in the right axis).

ENSO & SE U.S. summer precipitation

X