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What is PLS regression? 

• A fairly new method (Wold 1966) with limited applications in 
atmospheric science (e.g., McIntosh et al. 2005, J. Climate; 
Smoliak et al. 2010, GRL; Wallace et al. 2012, PNAS) 
 

• Sort of a cross between principal component analysis (PCA) 
and multiple linear regression 
 

• Essentially a multiple linear regression decomposed into 
steps, where the steps determine “optimal” indices that are 
used as the predictors in the multiple regression 
 

• These optimal indices are projections onto new variables 
that are a linear combination of the original predictor 
variables (latent vectors or PLS components), and each 
successive PLS component explains less predictand variance 
than the previous component 



How does it work? 

1) Calculate correlation 
coefficients between 
predictand y and 
each gridded 
predictor time 
series. 

2) Project all predictor 
maps onto the 
correlation map to 
obtain a new 
predictor time series 
z1. 

3) Regress y on z1. 
4) Linearly remove z1 

from y and all 
gridded predictor 
time series, and 
repeat steps 1-3. 
 

y: JJA T2m anomalies over south-central US  
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Model complexity and prediction 

• Number of PLS components determined through 
cross-validation 

• Double cross-validation: one layer to determine 
model complexity and one for the prediction 

 If the cross-validated residual variance of the first 
PLS regression exceeds the variance of y, then we 
reject the PLS model  

 
 Otherwise, keep the n PLS components that 
minimize the cross-validated residual variance 



Application to spatial field predictands 

yt We want: yt = yt,pred + yt,noise 
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Predicted by some 
other field of interest 
(e.g., tropical SSTs)  

xt: predictor data vector 
at time t (e.g., tropical 
SSTs) 
 
z: PLS components matrix 

yt: predictand  data 
vector at time t (e.g., 
North American T2m) 

We want: yt = yt,pred1 + yt,pred2 + εt 
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Component 
associated with 
first predictor x1t: first predictor data 

vector at time t (e.g., 
tropical SSTs) 
 
x2t: second predictor data 
vector at time t (e.g., soil 
moisture) 
 
z1 and z2 : PLS 
components matrices 
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This PLS regression approach is conceptually similar to other 
conventional methods (e.g., CCA and MCA), so what advantages 

might PLS regression offer? 

• Asymmetric: predictand remains distinct from predictor, may 
aid interpretability  

• Can accommodate different sources of predictability for 
different modes of variability 

• Parameter choices arguably more straightforward  
• Less prone to overfitting? 



Testing the method: Predicting summertime (JJA) T2m over 
North America (10ᵒ-50ᵒN) with May initial conditions 

• Predictions of JJA North American T2m anomalies (GHCN CAMS) 
 

• PLS predictions for 1950-2012 with 12 orthogonally rotated EOFs (Varimax) 
 

• PLS predictors: May SSTs (20ᵒS – 60ᵒN, ERSSTv3b) and May North American soil 
moisture (CPC V2) 
 

• Evaluated against 5 models from the North American Multi-Model Ensemble 
(NMME) (Kirtman et al. 2014, BAMS): CFSv2 (24 ensemble members), GFDL-
CM2.2 (10), CCSM3.0 (6), CMC1-CanCM3 (10), and CMC2-CanCM4 (10) 
 

• Model forecasts are JJA ensemble mean of T2m anomaly forecasts, with a 
standard calendar month- and lead-dependent bias correction 
 

• Also evaluated against CCA-based forecasts 
 

• Statistical forecasts: Three-year-out (Van den Dool 2009) double cross-
validations 
 



How well do the models perform? 
Correlations between forecast and verified T2m anomalies 1982-2010 
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PLS versus CCA 
Mean pattern correlations 1950-2012 

PLS: 0.46 
CCA: 0.40 

Performance versus forecast amplitude  
PLS CCA 

Mean RMSE Skill Scores: 
PLS: 0.11 
CCA: 0.03 



Observations and outstanding questions 

• Soil moisture appears to 
add the most skill over 
the South Central U.S.    
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Remaining questions 
• How much, if any, of the summertime seasonal forecast skill is 

unrelated to the long-term trend? 
 

• What are the predictor and predictand patterns that 
contribute to this skill? 



Possible intraseasonal application: Bridging the 
forecast gap in weeks 3-4 

Lead Time 

0 ~10 days ~1 month ~12 months 

• Based on initial 
conditions 

• Based on slowly varying boundary 
conditions 

Forecast gap: 
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Preliminary test: Week 3 forecasts of North American 
winter (DJFM) 2009/10 T2m  

• Previous 7-day extratropical 300 hPa height (z300) + 5-day 200 
hPa tropical velocity potential (χ200) 

• Previous 7-day T2m anomalies (ERA-Interim) 

Predictors 



Preliminary results: Forecast performance 

Mean HSS: 18.9 

Heidke Skill Scores (HSS) 

Mean pattern correlation: 0.36 
Mean RMSE skill score: 0.05 



Example Week 3 forecast 
Week centered on Feb. 15 

°C 

EOF 

z300 and χ200 predictor pattern Observed initial conditions 

Verification 



Seasonal mean anomalies 
Observed DJFM T2m anoms (°C) 

DJFM mean Week 3 forecast T2m anoms (°C) 



Conclusions 
• Partial least squares (PLS) regression is a useful linear regression approach 

for univariate predictands with a large set of potential predictors. 
 

• PLS regression may be extended to multivariate predictands, with potential 
advantages over more well known methods in the climate sciences like CCA 
and MCA/SVD for some applications. 
 

• A PLS regression approach combined with a rotated PCA appears to 
outperform dynamical forecast models and CCA for North American 
summertime T2m forecasts initialized in May. 
 

• A very preliminary analysis suggests that PLS regression may also be useful 
for prediction and diagnostics on intraseasonal timescales (e.g., predictions 
for weeks 3-4). 
 

• Future work: addressing sources of predictability in summer, more 
thorough comparison with alternative approaches, more extensive tests for 
intraseasonal prediction, extension to probabilistic forecasting 
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