Dominant daily modes of the South Asian summer monsoon rainfall in the NCEP CFS

Deepthi Achuthavarier George Mason University, Fairfax, VA

With thanks to Prof. V. Krishnamurthy, COLA/GMU

Background and Objectives

- Observational studies show presence of two dominant intraseasonal modes and two non-oscillatory modes in summer monsoon rainfall
- Identify dominant intraseasonal and persistent summer modes in CFS and compare with observations
- Compare the modes simulated by CFS T62, T126 and GFS free runs.

Models and Data

- CMIP run of CFS T62
 - Pegion and Kirtman, 2008
- CMIP run of CFS T126
 - Saha et al. 2006 (obtained from NCEP CFS web link)
- AMIP run of GFS T62
 - B. Jha 2007, Personnel communication
- 30 years of daily precipitation & SST (5-day running means)
- Observational results based on daily OLR data
 - Krishnamurthy and Shukla, 2008
 - Krishnamurthy and Kirtman, 2008

Seasonal (JJAS) climatology of precipitation

Rainfall over different boxes

Rainfall: Standard deviation of JJAS seasonal anomalies

Rainfall: Standard deviation of pentad anomalies

Multi-channel Singular Spectrum Analysis (MSSA)

 $A(x,y,t) \longrightarrow A(l,t), l = 1,...,L and t = 1,...,N$

Choose a lag window, M and let N' = N-M+1Make M lagged copies of $A \rightarrow B(M \times N')$

Compute Lag-covariance matrix $C(LM \times LM) = 1/N' (B^T B)$

Diagonalize **C** to get eigenvectors Extended EOF (x, y, t = 1, ..., L) PC (t = 1, ..., N')

Reconstructed components (RCs) by projecting PCs on EEOFs

Ref: Ghil et al. 2002; Krishnamurthy and Shukla, 2008

Power Spectra of the dominant modes

Summary of summer monsoon daily modes

Observations	CFS T62
2 oscillatory modes periods 45 & 28 days	2 oscillatory modes; periods 100 & 30 days
2 persistent signals ENSO and IOD signs	4 main persistent modes

Phase composites of the first oscillatory mode

CFST62 100-day oscillations

OBS 45-day oscillations

Northward propagation of the first oscillatory mode OBS 45-day mode CFST62 100-day mode

R(1,2): Ave (60E-100E) 35N 30N 20N 25N 20N 10N 15N 10N · EQ 5N \bigcirc EQ-10S · 5S --120 -180-60 60 120 0 180 10S · 112.5 157.5 -157.5 -112.5 -67.5 -22.5 22.5 67.5 R(1,2): Ave (100E-160E) Ave(100E-160E) 35N 30N 20N 25N -20N 10N 15N 10N EQ -5N EQ 5S -10S --120 120 -60 0 60 180 -18010S -22.5 67.5 112.5 157.5 -157.5 -112.5 -67.5 -22.5 -1-0.75-0.5-0.25 0 0.25 0.5 0.75 W m-2 8 6 -2 0 2 4

Ave(60E-100E)

0

1mm/day

Phase composites of the second oscillatory mode

CFST62 30-day mode

OBS 28-day mode

Westward propagation of the second oscillatory modeOBS 28-day modeCFST62 30-day mode

Northward propagation of the second oscillatory mode

OBS 28-day mode

CFST62 30-day mode

R(5,6): Ave (60E-100E)

Ave(60E-100E)

Correlation between first intraseasonal mode and SST

Correlation between second intraseasonal mode and SST

Seasonally persistent signals in daily rainfall data Summary from observations

spatial EOF of persistent modes

Point correlation with SST

Persistent signals in CFS T62 (EOF of modes)

Persistent signals in CFS T62: Amplitude of EOFs of modes

Seasonally persistent signals in daily rainfall data Summary from observations

Point correlation with SST

Persistent signals in CFS T62: correlation with SST

ENSO-Monsoon relation: Correlation between EIMR & NINO3

Correlation between seasonal (JJAS) (E)IMR and monthly Nino3

ENSO-Monsoon relation using daily rainfall modes

V.Krishnamurthy, Personnel communication

Correlation between seasonal (JJAS) EIMR and monthly Nino3; EIMR computed for different daily modes

Contribution of daily modes to seasonal anomalies

RC1 & RC2, Corr = -0.740.2 0.1 0 -0.1 -0.2 2010 2015 2020 2025 2030 2035 Sum(RC1..RC8) & Total 0.75 0.5 0.25 0 -0.25 -0.5 -0.75 -1 2015 2010 2020 2025 2030 20'35

JJAS seasonal mean of daily modes

Comparison with T126 and GFS Period of oscillatory modes: Power spectra

Spatial structure of the first oscillatory mode

Eastward propagation of first oscillatory mode

Northward propagation of first oscillatory mode

CFST62

Spatial structure of the second oscillatory mode

Westward propagation of the second oscillatory mode

Northward propagation of the second oscillatory mode

-1-0.75-0.5-0.25 0 0.25 0.5 0.75 1mm/day

Comparison with T126 and GFS: Persistent modes

- 1. Both coupled models have correct ENSO-like mode
- 2. None of the first 7 persistent modes examined in GFS shows correct correlation with SST
- Coupled processes seem to be crucial for the simulation of the ENSO mode

Summary

CFS has two main summer intraseasonal modes; 100-day mode with northeastward propagation 30-day mode with northwestward propagation moderate correlations with SST - consistent with Obs

Non-oscillatory modes are heavily correlated with ENSO Two counteracting ENSO modes Failure to produce ENSO-monsoon relation may be dependent on the "alternate" ENSO mode

T62 Vs. T126:

No noticeable improvement in the oscillatory and persistent modes

T62 Vs. GFS:

None of the persistent modes in GFS show correct ENSO mode; Coupling is crucial for ENSO-monsoon teleconnection

Further investigations

Impact of Indian Ocean on monsoon modes using regional (un)coupling strategy

Rainfall: Composites of seasonal anomalies (strong-weak)

Rainfall: Composites of pentad anomalies (active-break)

