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Objectives 

• To improve drought prediction capability through the use of 

multi-model ensemble forecasts to support CPC’s Drought 

Outlook activities. 

• To conduct an assessment of SPI predictive skill using NMME 

retrospective forecasts from 1982 to 2010. 
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Phrase-II NMME Forecast Providers 

Model 
Hindcast 

Period 

No. of 

Member 

Arrangement of 

Members 

Lead 

(months) 

Model 

Resolution: 

Atmosphere 

Model 

Resolution: 

Ocean 

Reference 

NCEP-CFSv2 1982-2010 24(20) 

4 members 

(0,6,12,18Z) 

every 5th day 

0-9 T126L64 
MOM4 L40 

0.25 deg Eq 

Saha et al. 

(2010) 

GFDL-CM2.1 1982-2010 10 
All 1st of the month 

0Z 
0-11 2x2.5deg L24 

MOM4 L50 

0.30 deg Eq 

Delworth et 

al. (2006) 

CMC1-

CanCM3 
1981-2010 10 

All 1st of the month 

0Z 
0-11 

CanAM3 

T63L31 

CanOM4 L40 

0.94 deg Eq 

Merryfield 

et al. (2012) 

CMC2- 

CanCM4 
1981-2010 10 

All 1st of the month 

0Z 
0-11 

CanAM4 

T63L35 

CanOM4 L40 

0.94 deg Eq 

Merryfield 

et al. (2012) 

NCAR-

CCSM3.0 
1982-2010 6 All 1st of the month 0-11 T85L26 

POP L40 0.3 

deg Eq 

Kirtman and 

Min (2009) 

NASA-

GEOS5 
1981-2010 11 

4 members every 5th 

days; 7 members on 

the last day of the 

previous month 

0-9 1x1.25deg L72 
MOM4 L40 

1/4 deg at Eq 

Rienecker et 

al. (2008)  

* Slide is by courtesy of Huug Vandendool, Qin Zhang, and Emily Becker. 



SPI Prediction 

• The bias correction and 

spatial downscaling 

(BCSD) method based on 

the probability distribution 

functions was applied to 

each member and each 

lead of the P hindcasts. 

• The corrected P forecasts 

were then appended to 

CPC unified P analysis to 

form a P time series for 

computing 3-month and 6-

month SPIs (SPI3 and 

SPI6). 
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8 Model P Forecasts 

Yoon et al. (2012) 



Bias Correction and Spatial Downscaling 

(BCSD) 
• BCSD corrects both the mean and STD of the ensemble hindcasts in 

the normal space. 

• For month M and lead time t, CDF based on model hindcasts, Fhnd(p), 

is computed at each grid point using all ensemble members excluding 

target year Y. 

• Similarly, CDF of the corresponding P analysis, Fana(p), is computed. 

• At each grid point, the percentile of P(Y, t, M) is determined according 

to the CDF of the hindcasts. 

• The bias-corrected percentile for target year Y is then obtained from 

the inverse CDF of the P analysis based on the percentile calculated 

from the CDF of the hindcasts, that is 

𝑝𝑏𝑐 = 𝐹𝑎𝑛𝑎
−1 (𝐹ℎ𝑛𝑑 𝑝 )  
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ACC of P 

Anomaly for Jan 

(Month-1 Fcst) 
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• ACC vary 

among models. 

• For Jan, P 

forecast skill is 

higher over the 

Southwest. 

• Comparing to 

other models, 

NCAR model 

has lower P 

forecast skill. 



Differences 

Between w/o 

BCSD for 

CFSv2 Jan Fcst 
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• Differences in 

ACC are small. 

• BCSD improves 

RMSE. 

• For CFSv2, 

most 

improvements 

are over 

Western U.S. 

and the 

Midwest. 

Panom     ACC 

Panom     RMSE 



ACC of SPI3 for 

Jan (Month-1 

Fcst) 
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• Small variations 

among models. 

• Model with 

lower P forecast 

skill (e.g., 

NCAR) has 

lower SPI3 

forecast skill. 

• High skill is 

contributed by P 

observations. 
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RMSE of SPI6 

for Jul Fcst 
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• NMME 

Ensemble 

forecasts after 

BCSD have 

higher skill than 

those based on 

persistence. 

Persistence Ensemble with BCSD 



RMSE of 

SPI3 

(Month-1 

Fcst) 
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P Climatology (mm/day) 

• Central U.S. has higher skill: 

Climatology and the interannual variability 

for the central U.S. in January are low, so 

skill is higher (Quan et al. 2012). 

 

• The Gulf states, eastern U.S., and the west 

Coast have lower skill: 

Wet regions have higher variability, and 

rainfall depends on low-level moisture 

transport, which is more difficult to predict in 

atmospheric models. 
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Why forecasts skill is different 

across the U.S.? 

RMSE of SPI3 (Jan) 



Why skill over CA is lower than PNW in Jan? 
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• Rainfall in California 

and PNW is influenced 

by interannual 

variability, such as 

ENSO and SSTAs from 

the North Pacific. 

 

• However, rainfall in 

California is also 

influenced by the 

intraseasonal variability, 

such as MJO or 22-day 

waves that are difficult 

to predict. 

California PNW 

(mm/day) 



Summary 

• BCSD improves RMSE, but not ACC. 

• P observation is a dominant factor contributing to the SPI 

forecast skill.  

• NMME SPI ensemble forecasts are superior than those based 

on persistence and individual models. 

• NMME SPI6 forecasts are skillful up to four months. 

• SPI forecast skill is regionally and seasonally dependent. 

• SPI predictive skill at a region corresponds to local rainfall 

climatology and variability. 

• California is difficult to forecast in January because its rainfall is 

not only influenced by interannual variability (e.g., ENSO) but 

also intraseasonal variability (e.g., MJO). 
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Thank you and Questions 

• NMME SPI Outlooks: 

http://www.cpc.ncep.noaa.gov/products/Drought/Monitoring/spi_

outlooks_3.shtml 

 

 

• Contacts: 

  lichuan.chen@noaa.gov 
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