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ABSTRACT

Since 2002, the International Research Institute for Climate and Society, later in partnership with the

Climate Prediction Center, has issued an ENSO prediction product informally called the ENSO prediction

plume. Here, measures to improve the reliability and usability of this product are investigated, including bias

and amplitude corrections, the multimodel ensemblingmethod, formulation of a probability distribution, and

the format of the issued product. Analyses using a subset of the current set of plume models demonstrate the

necessity to correct individual models for mean bias and, less urgent, also for amplitude bias, before com-

bining their predictions. The individual ensemble members of all models are weighted equally in combining

them to form a multimodel ensemble mean forecast, because apparent model skill differences, when not

extreme, are indistinguishable from sampling error when based on a sample of 30 cases or less. This option

results in models with larger ensemble numbers being weighted relatively more heavily. Last, a decision is

made to use the historical hindcast skill to determine the forecast uncertainty distribution rather than the

models’ ensemble spreads, as the spreads may not always reproduce the skill-based uncertainty closely

enough to create a probabilistically reliable uncertainty distribution. Thus, the individual model ensemble

members are used only for forming the models’ ensemble means and the multimodel forecast mean. In other

situations, the multimodel member spread may be used directly. The study also leads to some new formats in

which to more effectively show both the mean ENSO prediction and its probability distribution.

1. Introduction

Since early 2002, the International Research Institute

for Climate and Society (IRI) has issued, each month, a

collection of the forecasts from a large number of ENSO

forecasting institutions, in the form of an ENSO pre-

diction plume (Fig. 1). The forecasts predict the Niño-
3.4 index in the tropical Pacific Ocean [SST averaged

over 58N–58S, 1208–1708W; Barnston et al. (1997)]. The

original idea behind the plume was to collect all of the

current ENSO forecasts and show them on the same

chart, in hopes of gleaning a sense of their collective

forecast—both in central tendency and intermodel

variation.

In late 2011 the forecast plume became a product of

both IRI and the NOAA/Climate Prediction Center

(CPC). Although the product has been popular and

frequently viewed on the Internet, it has had several

significant problems that have justifiably provoked

criticism. A very simple problem is that the forecast

producers do not unfailingly form their anomalies with

respect to the same 30-yr base periods as encouraged,

and IRI–CPC does not correct for such (usually minor)

deviations. A more substantial problem is that model

biases, evident upon examination of hindcasts, are not
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corrected, and one or two of the forecasts are from

models that lack hindcasts over an adequate historical

period. Another problem is that the forecast spread

within any individual model (the ensemble spread in

dynamical models, or the standard error of estimate in

statistical models), indicative of model uncertainty, is

ignored and only the ensemble means of the forecasts of

each model are shown. A final problem, affecting users,

is that no attempt is made to provide a final forecast

probability distribution, and users see the spread among

the ensemble mean model forecasts by eye and are left

to quantify the uncertainty on their own.

Of the problems listed above, the failure to adjust for

mean biases appears most serious, because some of the

dynamical models are found to have substantial (.0.58C)
biases. The sizes and signs of the biases vary widely

among models, and often across forecast target times

and lead times within an individual model. Hence, some

of the spread in themodel forecasts shown in Fig. 1, even

at short lead times, may be due to differingmodel biases.

The ENSO forecast plumes posted on the CPC website

from the North American Multimodel Ensemble

(NMME) project [Kirtman et al. (2014); shown online at

http://www.cpc.ncep.noaa.gov/products/NMME/current/

plume.html] have undergone hindcast-based bias cor-

rection by target month and lead time, and the resulting

plume is noticeably less wide than the IRI–CPC plume at

short leads. One option for theNMMEplume also shows

all ensemblemembers of all models, forming a set of very

many lines on the plot.

The current work attempts to develop a protocol for

selecting and processing the incoming forecasts for the

IRI–CPC plume so as to reduce or eliminate the prob-

lems identified above, toward a more probabilistically

reliable1 and useful ENSO prediction product. Because

bias correction requires a multidecadal hindcast history

to evaluate bias, forecasts from models lacking an ade-

quate hindcast history will not qualify for a higher

quality version of the plume.

2. Data and methods

a. Data

This work uses as a test case a set of six models from

the NMME project, because those models all have

global 1982–2010 (29 years) hindcast data conveniently

available in common format. The six models include

FIG. 1. ENSO prediction plume issued by IRI and NOAA/CPC in mid-August 2013, for the

periods of August–October 2013 through April–June 2014. Recent observed SST anomalies in

the Niño-3.4 region are shown by the black line on the left side.

1 Probabilistic reliability (Murphy 1973;Wilks 2006) refers to the

condition that for a sufficiently large set of all forecasts of a given

probability for an event (such as a 40% likelihood for an El Niño),
the corresponding relative frequency of later observed occurrence

of the event matches that probability.
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1) COLA–RSMAS–CCSM3, 2) NCEP CFSv2, 3) CMC1-

CanCM3, 4) CMC2-CanCM4, 5) the GFDL-CM2pl-aer04

model, and 6) the NASA-GMAO-062012 model. All of

the model data are placed onto a 18 grid at the origi-

nating center. Among the six models, the number of

ensemble members varies from 6 to 24, and the maxi-

mum lead time varies from 9 to 12 months (see Table 1).

Besides looking at the forecast characteristics of each

model, those of the combined forecast (the multimodel

ensemble or MME) are studied. TheMME is formed by

combining the individual ensemble members of all of

the models. More will be said about this methodological

choice in section 2b.

Here, we forecast the 1-month-mean Niño-3.4 SST

index rather than seasonal mean SST as is done in the

IRI–CPC plume and assume there is no loss of gener-

ality in the forthcoming findings. For observed verifying

data, the Reynolds et al. (2002) OIv2 data on a 18 grid
are used, matching the resolution of the NMME model

forecast data.

b. Methods

1) FORMATION OF MME FORECASTS

Because the MME is formed by combining the in-

dividual ensemble members of all of the models, and

some models have more members than others, the num-

ber of members acts as an effective weighting factor; for

example, the NCEPCFSv2 has 4 times as many ensemble

members as the COLA–RSMAS–CCSM3, so it exerts 4

times theweight of CCSM3 in forming theMME forecast.

We chose this method of forming the MME because,

while the difference may not be large, assigning as much

weight to a model with relatively few members as to a

model with a large number of members is expected to

diminish the skill of theMME if the model forecasts have

similar average skill, because it diminishes the effective

number of independent realizations.

Another choice to be made in combining the forecasts

of individual models into an MME is whether to weight

each model’s forecast in accordance with its hindcast

skill. Past research has demonstrated that when there

are no more than moderate apparent skill differences

among models, and only 30 or fewer years of hindcast

data are available, use of variable model weighting

based on model hindcast skill has not been shown to

result in higher cross-validated MME skill than equal

weighting (Tippett and Barnston 2008; Peña and van

denDool 2008; Barnston et al. 2012; DelSole et al. 2013).

The reason given in these studies is that when the model

skills vary by the amounts seen here for the NMME

models—not drastically—the skill differences do not

exceed differences that are explainable by sampling

variability and hence may not reflect true model quality

differences. When weighting differences come about

largely because of sampling variability, they often pro-

duce worse forecast results when applied to independent

forecasts than when equal weighting is used. When a

model shows skill much lower than that of most of the

other models, that model may be removed entirely from

themodel set by subjective decision. Such action was not

considered in our case, as the model showing the lowest

average skill over all months/leads still contributes to

the multimodel forecast skill during some of the months

and leads.

2) VERIFICATION ANDADDITIONAL DIAGNOSTICS

For assessing the quality of forecasts in the analyses,

we select the basic verification measures of temporal

correlation and root-mean-square error (RMSE) and its

skill score (RMSSS). The correlation measures dis-

crimination in that it computes the extent to which the

temporal phases of the variability in the observations are

represented in the forecasts. RMSE is more a measure

of final accuracy, as it summarizes the differences be-

tween the forecasts and the observations. Here, the ac-

tual physical differences are standardized using the

standard deviation (SD) for the respective month, given

that the interannual variability has a marked seasonal

cycle, being lowest in northern spring and highest in late

fall. Even with excellent discrimination, as measured by

the correlation, RMSE may indicate large differences

between forecasts and corresponding observations, as

for example in the case of a large mean bias.

TABLE 1. The models whose hindcasts are used in the prototype research on consolidation toward an improved ENSO

prediction plume.

Model Expanded model name No. of members/max lead (months)

CMC1-CanCM3 Canadian coupled model 1 10/12

CMC2-CanCM4 Canadian coupled model 2 10/12

COLA-RSMAS-CCSM3 COLA–University of Miami–NCAR coupled model 6/12

GFDL-CM2pl-aer04 Modified version of the GFDL coupled model 10/12

NASA-GMAO-062012 Modified version of the NASA coupled model 12/9

NCEP-CFSv2 NOAA/NCEP coupled model 24/10
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In addition to basic verification, each of the six in-

dividual models is analyzed for mean bias and for the

ratio of the interannual standard deviation of the model’s

ensemble mean forecasts to that of the corresponding

observations. Both analyses are done for purposes of

possible correction of each type of systematic error. The

standard deviation ratio, for example, for a model’s en-

semble mean, should be less than 1 in proportion to the

historical correlation skill of the model. (The standard

deviation ratio for individual ensemble members, how-

ever, should be approximately 1.) Both of the above

analyses are done for each forecast target month and lead

time, making for a target month/lead matrix of results.

Another analysis is carried out by examining the re-

lationship between the individual models’ ensemble

spreads and the uncertainty implied by their hindcast

skill. This relationship has implications for the value

of the individual members of model ensembles in

establishing a forecast probability distribution. We look

at indicators in favor of, versus against, using the

member spreads, as opposed to ignoring them and in-

stead using only themultimodel ensemblemean forecast

and generating the probability distribution based on the

hindcast skill of the MME system.

In this study, cross validation is not used in assessing

the hindcast skills of various methodological configura-

tions. Reasons for this lack of use of cross validation are

we are looking to assess 1) the relative skills of one

configuration versus another and 2) the skill in pre-

diction of the ENSO state is often at least moderately

high, and the difference in skill between cross-validated

and not-cross-validated skill is small at these higher skill

levels. A somewhat similar reasoning was given in

Becker et al. (2014). For low-skill forecasts, cross vali-

dation results in larger decreases in skill and can even

lead to strongly negative skills as a result of a methodo-

logical degeneracy (Barnston and van den Dool 1993).

3. Results

Two basic diagnostic analyses done for each of the six

models are related to 1) mean bias and 2) the forecast

amplitude, as represented by the ratio of the interannual

standard deviation of the forecasts to that of the corre-

sponding observations.

a. Mean bias

An important finding is the presence of significant

mean model biases that vary widely among models and

often across forecast target months within an individual

model. The large variation in model bias is illustrated in

Fig. 2, showing the mean biases for each of the NMME

models as a function of target month and lead time. For

example, the CCSM3 model has a moderate negative

bias for moderate-lead forecasts for northern late spring

through summer, and this negative bias becomes severe

for long-lead forecasts. The CMC1, on the other hand,

has a slight positive bias for short-lead forecasts for

targets in the first half of the calendar year. The GFDL

has a strong negative bias for forecasts for northern

autumn made at most nonshort leads. It is clear that

individualmodel biases can be large and diverse, varying

considerably as a function of target month and to a lesser

extent as a function of lead time. Combining the en-

semble mean forecasts of the multiple models can par-

tially cancel the differing individual model biases in the

MME, as shown in the last panel of Fig. 2. However,

substantial bias may remain in theMME for some target

and lead times, such as a negative bias for autumn target

months at many leads. Correction of biases in the in-

dividual models would ensure a more bias-free MME

forecast. The effect of varying uncorrected biases is an

increase in the spread of the model ensemble means, as

is often apparent in the existing IRI–CPC ENSO pre-

diction plume (but not in the NMME plume). For ex-

ample, in the IRI–CPC plume issued in August 2013

(Fig. 1), it is noted that themodel disagreements at short

lead times, such as 1–3 months, are larger than they

should be considering the high skill levels at those leads.

Correction of model biases by forecast target and lead

times is considered a minimal adjustment toward an

improved plume product.

Mean bias is corrected for an individual model by

subtracting the mean of the difference between the

model forecast and the observation over the 29-yr pe-

riod of the hindcasts (1982–2010) for the forecasts of

each target month for each lead time. The bias correc-

tion here is applied only to the ensemble mean. For

purposes that require use of the individual members, a

bias correction may be applied independently to each

individual member. Although the corrections differ

slightly from member to member for the same target

month and lead time, the average of the member cor-

rections is equal to the correction when applied just once

to the ensemble mean forecast.

Mean biases do not affect a model’s temporal corre-

lation skill but do degrade the RMSE. Here, the RMSE-

based skill score is calculated as

RMSSS5 12
RMSEfct

RMSEcli

, (1)

where the numerator of the second term on the right-

hand side is the RMSE of the forecasts and the de-

nominator is the RMSE of perpetual forecasts of the

observed climatemean. The first two panels in Fig. 3 show
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theRMSSSof theMMEENSO forecasts first without any

mean bias corrections for individual models, then with

bias corrections. The mean bias correction makes for a

substantial improvement in MME skill.

b. Forecast amplitude bias

Forecast amplitude is represented by the temporal

standard deviation of the ensemble mean forecasts

FIG. 2. Bias of each of the six individual models: (top left) CCSM3, (top center) CFSv2,

(top right) CMC1, (middle left) CMC2, (middle center) GFDL, and (middle right) NASA

as a function of forecast targetmonth (x axis) and lead time (y axis). (bottom left) The bias

of the NMME, formed from the six models.
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from a given individual model (or from the MME) for a

given target month and lead time.2 This amplitude

may be compared with the amplitude of the corre-

sponding observations. The set of forecasts of a single

ensemble member forecast is expected to have ampli-

tude approximately equal to that of the observations.

On the other hand, unless there is perfect predictive

skill, the set of ensemble mean forecasts (here, treated

on an individual model basis) should have lower am-

plitude. From the perspective of a linear regression

model, with a goal ofminimizing theRMSE, the forecast

amplitude of the ensemble mean should equal that of

the observations multiplied by the correlation between

the forecasts (represented by hindcasts) and the

observations:

ampcorrect 5SDobscorfct,obs . (2)

The reduction in amplitude may not be fully realized

with the typically used ensemble sizes of 20 members or

less. This fact is easiest to see in an example of no pre-

dictive skill (cor5 0).3 In this case, although (2) implies

there should be no forecast amplitude (i.e., all forecasts

equaling the climatological mean), there is still a small

FIG. 3. RMSSS of the NMMEENSO forecast system

as a function of forecast target month (x axis) and lead

time (y axis) in the cases of (top left) no systematic

error correction, (top right) individual model bias cor-

rection, and (bottom) both bias and forecast amplitude

correction. Positive scores indicate lower RMSEs than

climatology forecasts.

2 The amplitude of individual models or theMME is not affected

by bias corrections.

3When the correlation between ensemble mean forecasts and

observations is negative, a zero correlation is assumed.
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expected residual amplitude due to uncanceled noise,

and

SDensmean5
SDobsffiffiffi

n
p , (3)

where n is the number of ensemble members. A varia-

tion of this relationship is that between the SDof a single

ensemblemember of an individual model and that of the

ensemble mean:

SDensmean5 SDmember

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
1 cor

n2 1

n

r
,

where cor is the correlation among the ensemble

members associated with common model signals, even

when not confirmed by real-world signals (Becker et al.

2014). When predictability (in the model) is high, this

correlation is high and the reduction of SDensmean with

ensemble size is slower.

Including the contribution of the expected residual

component of the noise amplitude due to the finite en-

semble size, the amplitude error (or bias) can be

expressed as the ratio between the ratio of the standard

deviation of the ensemble mean forecasts to that of the

observations, and ampcorrect as given in (2) above:

erroramp 5
SDensmeanfct

SDobs

�
ampcorrect . (4)

The amplitude correction factor that would make

erroramp equal to 1 is exactly the linear regression co-

efficient. The correction process is therefore a correc-

tion of each individual model’s ensemble mean using

linear regression. Just as bias can be corrected by

adding a constant to all forecasts, systematic errors in

amplitude can be corrected by multiplying all forecast

anomalies by the factor that makes their standard de-

viation equal to ampcorrect. Although correcting the

forecast amplitude does not change the correlation skill

of an individual model, it improves RMSSS and can

improve both skill measures in the MME. Amplitude

correction and the resulting proper specification of the

forecast signal are also relevant for probabilistic mea-

sures of forecast quality such as the ranked probability

skill score and reliability (Tippett et al. 2014).

Figure 4 shows the ratio of the amplitude of MME

forecasts to that of observations before and after cor-

rection of the amplitudes of the individual models. Re-

ductions in the original amplitude are pervasive from

the correction and are greatest at long leads, especially

in forecasting the second half of the calendar year from

very early in the year—when expected skills are lowest

(Barnston et al. 2012) as a result of the northern spring

ENSO predictability barrier (Jin et al. 2008).

Correction of amplitude bias does not have a dramatic

effect on the RMSSS for the MME for the six models

used here. The second and third panels in Fig. 3 show the

RMSSS before and after amplitude correction. The

FIG. 4. Ratio of the amplitude of the MME forecasts to that of observations (left) before and (right) after

correction of the forecast amplitudes of the individual models, as a function of forecast target month (x axis) and

lead time (y axis). See text for details.
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difference between the two RMSSS results is shown in

Fig. 5,4 which shows improvements much smaller and

more specific to target/lead time than those associated

with the correction of mean bias.

c. Ensemble spread: Useful or not?

Ideally, for any given single forecast, the standard

deviation of the forecasts of the members of an in-

dividual model should indicate the uncertainty in the

forecast. Much research has been done exploring the

degree to which ensemble spreads provide realistic es-

timates of forecast uncertainty (e.g., Hamill et al. 2004;

Schubert et al. 2008), and while results have been

somewhat inconclusive, they have suggested at most a

weak relationship, particularly for weather-aggregative

(e.g., weekly to seasonal) time scales.

Here, we assess the relationship between the ensem-

ble spreads of individual model forecasts and the un-

certainty as measured by an alternative approach based

on the hindcast correlation skill of the model. In the

alternative approach, we compute the standard error of

estimate (SEE), which is a function of the hindcast

temporal correlation skill (cor) as

SEE5 SDy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 cor2xy

q
, (5)

where SDy is the standard deviation of the observations

for the target month in question.5 The SEE implies

an uncertainty that remains fixed for a given start and

lead time; that is, it does not change from year to year.

Recently, Kumar and Hu (2014) demonstrated that

ensemble spreads of individual models are in fact ap-

proximately constant from year to year for the same

season and lead time. This constant spread, changing

only slightly year to year because of the expected sam-

pling variability for the given ensemble size, exists be-

cause of the constant underlying signal-to-noise ratio,

leading to an unchanging uncertainty regardless of the

signal strength for any particular year.6 Changes in

spread from year to year are attributed mainly to this

sampling variability, which decreases with increasing

ensemble number. Spread changes are also attributed

to a likely lesser, but still debated, extent to varying true

uncertainties related to differing physical situations

from one year to another.

In our analyses, we find that the spreads of the in-

dividual models do remain approximately constant from

year to year for given target month/lead time combina-

tions. More revealing, however, is that different models

have differing relationships between their mean en-

semble spreads and the uncertainties implied by their

respective average hindcast-based skills. Specifically,

some models have spreads that are usually too small

considering the uncertainty associated with their

expected skill, while other models have spreads more

appropriate for their expected skill. Figure 6 shows the

ratio of ensemble spread to the skill-based SEE for each

of the NMME models. The CFSv2 model generally has

an approximate equivalence between ensemble spread

and SEE. The CMC2 and GFDL models also have this

favorable correspondence between spread and SEE,

but only for some of the target months and lead times.

Otherwise, in the case of the other three models

(CCSM3, CMC1, and NASA), the spreads are more

pervasively smaller than the hindcast skill-based SEE.

The forecast amplitude correction, discussed in sec-

tion 3b above, should be applied to the ensemble mean

FIG. 5. Difference in RMSSS between amplitude-corrected and

non-amplitude-corrected MME forecasts (cf. top-right and bottom

panels of Fig. 3) as a function of forecast target month and lead time.

4 A few target–lead combinations show degradation of RMSSS

because of the sampling issue associated with the finite and dif-

fering ensemble sizes of the individual models, which are corrected

on an individual basis before combining.

5 In a normally distributed forecast set, the SEE should equal the

RMSE of the verified forecasts, and, additionally, with a very large

set of ensemble members the average ensemble spread ideally

should equal both of these.
6 A related finding appears for the spread among the ensemble

means of the model forecasts on the ENSOprediction plume: year-

to-year differences for a fixed lead time and target season are at

most weakly related to true year-to-year differences in uncertainty

or skill (Tippett et al. 2012).

1586 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 54



FIG. 6. Ratio of ensemble spread (as standard deviation of ensemblemembers about the ensemblemean)

to the SEE based on the hindcast correlation skill, as a function of forecast target month (x axis) and lead

time (y axis). Results are shown for the (top left) CCSM3, (top right) CFSv2, (middle left) CMC1, (middle

right) CMC2, (bottom left) GFDL, and (bottom right) NASA models.
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forecasts of an individual model, and not to the in-

dividual ensemble members whose amplitudes are ex-

pected to be larger. Because amplitude adjustments to

ensemble means are usually decreases rather than in-

creases, when applied to individual members they make

an often already too small spread (e.g., Fig. 6) even

smaller (not shown). A correction for the individual

members should just translate the members’ deviations

from the original ensemble mean forecast to the

amplitude-corrected mean by adding the difference

between the latter and the former means. The preserved

deviations about the corrected ensemble mean could

then be adjusted bymultiplying by the factor making the

members’ interannual standard deviation equal SEE—

a factor that would most often exceed unity.7

Figure 7 shows the ratio of the spread of all members

of all models about the multimodel ensemble mean to

the SEE of the NMME over the hindcast period, under

conditions of 1) no corrections, 2) bias corrections for all

members of each of the individual models, and 3) bias

and amplitude corrections for all members of each of

the individual models.8 The ratio for the uncorrected

forecasts shows too large a spread, due to significant

uncorrected biases that differ among the models. A

plume showing such a collection of uncorrected fore-

casts typically features relatively tightly clustered

members within individual models, but comparatively

widely differing central locations of the forecasts by one

model versus another. This situation gives rise to a

plume of ensemble means that vary considerably even

during times of high expected ENSO forecast skill, such

as that illustrated in Fig. 1, and implies larger forecast

uncertainty than actually exists.

Following individual model bias corrections the spread/

SEE ratio for the NMME decreases toward unity, al-

though the spread of forecasts for boreal spring target

months remains at higher than ideal levels, likely because

of inflated ensemble mean amplitudes during the north-

ern spring predictability barrier, a time of longstanding

difficulty in ENSO prediction (e.g., Barnston et al. 1999;

Jin et al. 2008) but not fully acknowledged by the models

as a time of low signal-to-noise ratio. The inflated

amplitudes of ensemble mean forecasts of some of the

models cause inflated forecast spread for this challeng-

ing target season because the ensemble mean forecasts

of some models diverge from one another by large

amounts, a situation similar to that caused by differing

uncorrected model biases.

When the forecasts of individual models are corrected

for both mean bias and amplitude bias, applying the

ensemble mean amplitude correction to the individual

members of each as well (a practice not recommended

for an individual model considered alone, as discussed

above), ratios of spread to SEE decrease further and

average slightly lower than unity as a result of some

leads and target months having too small a spread (e.g.,

forecasts for June for the second lead time have a ratio

of 0.68, and some of the very longest lead forecasts have

ratios below 0.5). This result shows many seasons/leads

with acceptable ratios, despite the spreads about the

ensemble means of individual models tending to be too

small (Fig. 6), and usually even smaller following am-

plitude bias correction. The NMME ratios may average

close to unity, with some seasons/leads deviating some-

what in either direction, because of remaining differ-

ences in the ensemble mean forecasts of individual

models, even after bias and the amplitude corrections

that are usually damping. These differences may repre-

sent legitimate forecast ‘‘differences in opinion’’ among

models, which may remain substantial because of the

different physical representations (representing un-

certainty) among the models. In other words, the final

result may be acceptable because of the offsetting in-

fluences of two (possibly related, as both may be based

on the signal-to-noise ratio) model flaws: 1) too small a

spread in most of the individual models, particularly

after applying an amplitude correction to individual

members that is intended for the ensemble mean, and

2) too much ‘‘difference in opinion’’ among bias-

corrected model ensemble means due to the unique

details of the model physics leading to unique errors.

The final ratios would likely be larger if the individual

ensemble members were not subjected to the amplitude

correction using (2), but rather by adding a constant

to the members’ forecasts equaling the corrected en-

semble mean minus the original ensemble mean for the

given model.

When spread/SEE ratios do not approximate unity, a

viable alternative to estimating forecast uncertainty by

using the ensemble member spreads directly (following

the above-mentioned adjustments) is to use the un-

certainty distribution that is statistically derived from

the NMME hindcast skill, using the standard error of

estimate (SEE) as in (5). In this case the only error in the

uncertainty estimation would come from estimating

7A practical alternative for establishing the forecast probability

distribution is to disregard the individual members, and use SEE to

construct a Gaussian probability density straddling the corrected

ensemble mean forecast. This alternative ignores details (gaps,

clusters, and asymmetries) within the distribution of the ensemble

members—details that may not be believed to be meaningful in

seasonal prediction.
8 These amplitude corrections are those applicable to the en-

semble means of the respective individual models and, thus, would

usually contract each model’s spread.
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hindcast skill on the basis of the finite sample of cases (29

years here). Let us briefly consider the pros and cons to

selecting this alternative approach.

First, to weigh the acceptability and desirability of

using SEE instead of the NMME’s ensemble spread to

estimate forecast uncertainty in the case of the current

ENSO forecasts, we ask whether the deviations from

unity in the ratios shown in Fig. 7 are statistically sig-

nificant, or if they could have arisen because of sampling

variability even if the true underlying ratio is unity. If we

cannot reject the hypothesis that the true ratio is unity,

then we lack evidence that the forecast system is not

acceptably calibrated.9 For any individual cell in Fig. 7,

the F distribution can be used to determine a confidence

interval straddling unity for the spread/SEE ratio, given

the sample sizes for the number of ensemble members

in the NMME spread (n5 72 for lead times of 9 months

or less) and the number of years contributing to SEE

FIG. 7. Ratio of ensemble spread (as standard de-

viation of all NMME ensemble members about the

NMME ensemble mean) to the SEE based on the

hindcast correlation skill of theNMME, as a function of

forecast target month (x axis) and lead time (y axis).

Ratios are shown (top left) before forecast bias cor-

rection, (top right) after bias correction, and (bottom)

after both bias and amplitude correction.

9 If the power of the statistical test is low, because of inadequate

sample sizes of the forecast ensemble members and/or years of

forecasts, then a true excursion from unity of the spread/SEE ratio

may not be detected as being statistically significant.
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(n 5 29). The resulting 90% confidence interval for the

ratio is 0.76 to 1.32, indicating a moderately wide range

of possibilities when the true ratio is unity. Within the

first 9months of lead time, 14 cells have a ratio outside of

this interval, where 11 would be expected on average by

chance. An analytic assessment of collective statistical

significance (field significance) across all 108 cells re-

quires knowledge of the number of degrees of freedom

provided in the combined target season and lead time

dimensions; this can also be done empirically using a

Monte Carlo approach. An assessment of degrees of

freedom for ENSO forecasts by the CFSv1 and CFSv2

models was conducted previously (Barnston and Tippett

2013), where the set of 12 target seasons and the first 9

lead times (108 cells) were estimated to provide only 2.9

times as many degrees of freedom as a single cell in

Fig. 7.10 Multiplying the number of years (29) by 2.9 and

assessing the number of excursions outside of the 90%

confidence interval among the 108 individual cell ratios

in Fig. 7, we cannot reject the hypothesis that the true

underlying ratio of spread to SEE is unity in the NMME

forecasts derived from the six models used here. We

therefore conclude that the ratios here do not differ

statistically from unity.

These significance diagnostics imply that the NMME

ensemble spreads may be used directly to form the

forecast uncertainty estimates for our multimodel fore-

casts. However, the ratio of spread to SEE might have

been statistically different from unity if a different set of

individual models had been used, such as a set that omits

CFSv2 and either one of CMC2 or GFDL. (In fact, the

ratios appear to be substantially less than unity for leads

greater than 10 months, where CFSv2 is not included.)

The addition of more models could also alter the

resulting NMME ratios of spread to SEE.When spread/

SEE ratios are not in the neighborhood of unity, either

overall or for specific target seasons or lead times, the

spreads may not be able to be taken literally to best

estimate the uncertainty of their forecasts. There are

examples showing that some of today’s leading models

still have calibration needs (e.g., Goddard et al. 2013),

not just for forecast mean and amplitude but also for

ensemble spread, and the use of SEE to represent

forecast uncertainty ensures such calibration.

When SEE rather than the spread is used to determine

the uncertainty envelope, the individual member fore-

casts still have value in forming the individual model

ensemble means, following bias correction, as they

contribute skill to the MME mean forecast, and the

more contributing members, the better the ensemble

mean reflects the forecast signal. The multimodel en-

semble mean has been shown to yield greater average

deterministic and probabilistic skill, leading to better

value, than the most skillful individual model (e.g.,

Tippett and Barnston 2008; Kirtman et al. 2014). Prob-

abilistic reliability is one aspect of forecast value, as the

probability distribution is often just as important to user

needs as the best-guess single deterministic forecast.

Toward providing the most reliable and useful proba-

bility distribution, it is safe practice (assuming an ade-

quate sample of hindcasts, e.g., at least 30 years) to

generate the uncertainty distribution on the basis of the

historical hindcast skill of the multimodel system. In-

stances of a lack of realism of individual model ensemble

spread may be a result of an unrealistic model signal-to-

noise ratio (e.g., Becker et al. 2014). The use of SEE in

describing the uncertainty distribution is commonly

embedded in regression-based statistical prediction

methodologies (e.g., Shongwe et al. 2006); and a sym-

metric, Gaussian distribution is often assumed. The

Gaussian is a reasonable approximation for the distri-

butions of tropical Pacific Ocean SST in the Niño-3.4
region (Chiodi and Harrison 2009), but not for SSTs

farther east (which have positive skewness) or farther

west (negative skewness).

At present, we intend to use SEE for the uncertainty

distribution for this improved ENSO prediction plume,

unless we find clearly favorable spread/SEE ratios in the

larger (currently unknown) set of models to be used.

However, depending on the individual case, either ap-

proach may be justified. We expect that in the future,

dynamical model physics and engineering issues asso-

ciated with model forecast runs (e.g., initialization, nu-

merics, computer power) will be improved to the point

where model spreads will routinely be relied upon as

direct indicators of forecast uncertainty. It is desirable to

use the ensemble member distribution because the in-

dividual members contain the physics, and so ideally

they could be used to identify the physical sources of

uncertainty and could be trusted in cases of unique

forecast probability distributions such as bimodal or

highly skewed ones as seen occasionally even in fore-

casts of a 3-month mean climate or ENSO state.

4. Most useful graphical format for ENSO
prediction

In addition to determining the methodologies that

deliver best predictive skill, another goal is to produce

an ENSO prediction plume that shows probabilistic

10 This seemingly poor benefit to degrees of freedom results from

the high autocorrelation between model forecasts of a given target

season at varying lead times, as well as between forecasts for

varying seasons at a fixed lead time.
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predictions more clearly than the raw ‘‘spaghetti’’

plumes of the first decade of the 2000s, to be of greater

utility to decision makers. Toward that end we experi-

ment with various choices of graphical formats. Figure 8

shows a format in which the ‘‘best guess’’ single forecast

is shown, while the uncertainty distribution about that

forecast is shown using vertically oriented bell-shaped

curves. Besides illustrating the format, Fig. 8 also shows

the effects of mean bias correction and amplitude cor-

rections on the hindcast for the 2009–10 El Niñomade in

June 2009, when the event was just about to begin. The

panels in Fig. 8 show the forecast, along with its un-

certainty as represented directly by the MME ensemble

spread as well as by the SEE that reflects the historical

FIG. 8. MME forecasts from June 2009 for the period of the 2009/10 El Niño event. Forecasts

(top) without any corrections, (middle) after bias correction, and (bottom) after bias and

amplitude correction. The blue line and solid dots show the MME mean forecasts; the black

line and dots show the observations. The horizontal ticks on the vertical line for each month

show individual model ensemble mean forecasts. The thin blue vertical Gaussian distribution

curves show forecast uncertainty based on the MME spread, and the thin red vertical distri-

bution curves show uncertainty based on the hindcast skill-based SEE.
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hindcast skill. We regard the SEE-based uncertainty

distribution as the most realistic one, as it leads to a

probabilistically reliable probability distribution when

the Gaussian assumption is adequately satisfied.11 In the

top panel no bias corrections are done on individual

models, and the MME ensemble spread is larger than

the SEE-determined spread because the differing in-

dividual model mean biases artificially inflate the for-

mer. Correction of themean biases leads to an improved

MME forecast (middle panel) and more realistic widths

of the uncertainty distributions. Correction for the am-

plitude as well as the bias results in underestimation of

the uncertainty at short leads and better forecasts during

the event’s amplification phase, but slightly worsened

underestimation of the peak strength of the event.While

the amplitude correction may affect the forecasts for

individual El Niño or La Niña events differently, it is

expected to slightly improve the RMSE of the forecasts

on average over all years.

Informal feedback regarding the above forecast format

indicates that the vertically oriented Gaussian curves are

often ineffective in communicating the uncertainty, as

many nonclimate specialists do not easily understand the

meaning of the probability densities implied by the ver-

tical curves. A format more similar to that of the existing

plume, but with probability-indicating lines or interval

bands, is believed to be more understandable to the

average user.

Another, more fundamental, problem with the

methodology and format shown in Fig. 8 is that there is

no information about the joint distribution of forecasts

at different leads. For instance, even given the param-

eters of the probability distribution functions, it is

not possible to evaluate correctly the probability of

Niño-3.4 SST exceeding a given threshold for multiple

consecutive months.

It is possible to generate a plume of equally likely

scenarios for a prediction of the ENSO state from a

given starting month with the correct joint distribution

among the different leads using a Gaussian random

number generator, by employing the MME mean fore-

cast in combination with the historical covariance of the

errors over the hindcast period. This error covariance

contains the error distributions for each lead time (i.e.,

the SEE) and, thereby, accounts for the correlation skills

for each lead. The main idea behind this formulation is

that the forecast scenarios are not entirely ‘‘reset’’ with

each increment in lead time; rather, errors at one lead

time tend to persist to the next lead time because of a

positive correlation of errors between two lead times.

For the forecasts from June 2009, for example, for the

case of mean bias correction but no amplitude correc-

tion (top-right panel in Fig. 3), themean forecasts for the

months of June–March 2010 are 0.44, 0.64, 0.83, 0.82,

1.05, 1.27, 1.43, 1.37, 1.19, and 0.94, respectively; and

there is a matrix of error covariances for each lead time

with each other lead time for the June start time com-

puted over all years in the hindcast period.

Figure 9 shows a number of options for expressing the

forecast from June 2009 along with its uncertainty dis-

tribution. In the top-left panel of Fig. 9, the thick line in

the middle shows the mean forecast, among a family of

lines showing various percentiles within the forecast

distribution: 1, 5, 15, 25, 50, 75, 85, 95, and 99. This for-

mat provides a choice of intervals that may matter most

to various users. A similar format is shown in the top-

right panel, except the lines are represented by smooth

curves rather than line segments, and the more likely

intervals are shaded with increasingly dark color. The

two bottom panels in Fig. 9 both show the forecast mean,

the 15th and 85th percentiles, and numerous randomly

generated lines showing equally likely individual sce-

narios (100 in the left panel, 200 in the right panel).

Although each line is equally likely, their density (able

to be seen by eye) is greatest near the forecast mean, and

lowest far from the mean, and this density difference

expresses the relative likelihood that the observation

will occur in any of the regions on the plot.

The bottom two panels in Fig. 9, using the historical

error covariance, most resemble the existing IRI–CPC

plume, showing individual model predictions, in that a

dearth of specific probability levels is indicated and the

user is left to surmise the probabilities largely by visual

inspection. However, the large number of lines better

describes the probability distribution than the;25 lines

(one for each model’s ensemble mean) shown in today’s

existing plume. Amain reason for the better description,

besides the larger sample of lines, is that the new plots

are equivalents to the forecasts of individual model en-

semble members, while the lines on the existing plume

plot are the ensemble means of the various models,

whose differences are likely due to differing model biases

as well as true uncertainty. The observation behaves as a

single ensemble member, not like an ensemble mean, so

that the simulated lines on the plots shown here are the

more appropriate reproduction of the possible scenarios.

(The current IRI–CPC plume format for this six-model

example would consist of six lines connecting the tick

marks—one for each of the models—on the vertical axis

of the middle panel in Fig. 8.)

11 The correlation-based SEE, used to define the width of the

uncertainty distribution, produces a probabilistically reliable

forecast distribution as shown using linear regression theory

(Tippett et al. 2014).
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A user’s preference among the four options shown

here is expected to vary in accordance with how readily

they find that each communicates the uncertainty dis-

tribution, as well their particular decision needs. We can

imagine that there are sophisticated users who can use

the forecast probability distribution in more general and

complex ways than just looking at pictures. For such

users we can provide the complete forecast distribution

(i.e., the forecast mean and covariance). With this in-

formation users can evaluate more complex questions

that depend on the joint probability. The best way to

present the plume is likely an evolving process.

5. Summary

In forming multimodel forecasts for the ENSO-

related Niño-3.4 SST, experiments led us to the de-

cision to correct all individual models for mean bias, and

preferably also for amplitude bias, before combining

their predictions. A second decision is to weight the in-

dividual ensemble members of all models equally in

consolidating their ensemble means to form a multi-

model ensemble mean forecast, regardless of estimated

hindcast skill, because skill differences, when not ex-

treme, are indistinguishable from sampling error when

based on a sample of approximately 30 cases. Thus,

models with larger ensemble numbers are effectively

weighted proportionally more heavily.

A final decision is made to use the historical hindcast

skill—by tradition, correlating the ensemble mean

forecasts with their corresponding observations—to

determine the uncertainty distribution rather than using

the models’ ensemble spreads, as this ensures probabi-

listic reliability in the forecast uncertainty distribution.

The ensemble spreads of most of the individual models

are found to be too small, implying less uncertainty

than exists in reality. This underestimation of un-

certainty is seen to bemuch reduced or eliminated in the

FIG. 9. Four possible formats for an improved ENSO prediction plume. All show the forecast made in June 2009

for the 2009–10 El Niño episode where the models are corrected for mean bias but not amplitude bias (corre-

sponding respectively to the top-right and middle panels in Figs. 3 and 8). In the top-right panel, ‘‘less likely’’ and

‘‘more likely’’ refer to lower and higher probability densities, respectively. See the text for details.
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multimodel ensemble for many target seasons and lead

times, owing to sizeable differences in the mean fore-

casts among constituent models. In fact, the ratio of the

multimodel member spread to the skill-based standard

error of the estimate is found to be statistically in-

distinguishable from unity. Nonetheless, the decision to

use the standard error is believed to be safer, in view of

the expected addition of more individual models having

unknown ensemble spread (signal to noise) character-

istics. Using model hindcast skill to form the forecast

uncertainty distribution implies that the individual

model ensemble members are not used explicitly, but

instead for their role in forming the individual models’

ensemble means and, in turn, the mean of the multi-

model forecast distribution.

Using the multimodel ensemble’s historical standard

error rather than its spread is not necessarily a superior

option in all cases of multimodel ensemble ENSO or

climate prediction. When the set of models can be

demonstrated to provide a well-calibrated uncertainty

distribution, then the spread of its membersmay serve as

an equally valid, if not superior,12 indicator of forecast

uncertainty.

In the near future, we expect to establish the most

usable and actionable formats for the ENSO prediction

forecast graphic, based on additional extensive feedback

from users. Users will be approached with various can-

didate formats and asked to rank them for usability,

provide reasons for their ranking decisions, and provide

ideas for formats yet better than those offered. It is

likely that multiple plume formats will be adopted, and

that the accompanying forecast data will be provided

for those wishing to create their own graphics. What

users have become used to previously also plays a role.

The popularity of the current IRI–CPC plume, despite

its problems, seems to favor the two bottom panels of

Fig. 9. A variation of this scheme is found on theNMME

site where a real-time plume based on approximately

100 individual ensemble members is shown. These are

actual model realizations, whereas the bottom panels of

Fig. 9 are recreatedmodel traces generated based on the

properties of the system.

Another expectation is to expand the set of model in-

puts to the multimodel ensemble beyond the six NMME

models used for the experimentation here. Additional

models would minimally need to have comparable 30-yr

hindcast records from which to correct the mean bias and

amplitude bias. At least 10–15 models are expected to

qualify, with hopes for still greater numbers.
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