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ABSTRACT

This study examines the level and origin of seasonal forecast skill of surface air temperature in northern
Europe. The forecasts are based on an empirical methodology, canonical correlation analysis (CCA), which is
a method designed to find correlated patterns between predictor and predictand fields. A modified form of CCA
is used where a prefiltering step precedes the CCA as proposed by T. P. Barnett and R. Preisendorfer. The
predictive potential of four fields is investigated, namely, (a) surface air temperature (i.e., the predictand field
itself ), (b) local sea surface temperature (SST) in the northern European area on a dense grid, (c) Northern
Hemisphere 700-hPa geopotential height, and (d) quasi-global SST on a coarse grid. The design is such that
four contiguous predictor periods (of 3 months each) are followed by a lead time and then a single predictand
period (3 months long). The shortest lead time is 1 month and the longest is 15 months. The skill of the CCA-
based forecasts is estimated for the 39-yr time period 1955–93, using cross-validated hindcasting. Skill estimates
are expressed as the temporal correlation between the forecasts and the respective verifying observations.

The forecasts are most skillful in the winter seasons with a secondary weaker skill maximum during summer.
During winter the geopotential height field produces the highest skill scores of the four predictor fields. The
dominant predictor pattern of the geopotential height field is confined to the predictor period that is closest to
a preceding core winter season and resembles the North Atlantic Oscillation (NAO) teleconnection pattern. The
time series of the expansion coefficients of this dominant predictor pattern correlates well with a low-pass filtered
time series of an NAO index. The obtained skill is similar to what is found in the United States, both with
regard to seasonal distribution and level of skill. The origin of skill is however different. In the United States
it is the El Niño–Southern Oscillation (ENSO) with its predominantly interannual character that is the main
source of skill in winter. In northern Europe it is instead the NAO that contributes the most, and especially the
lower frequency part of the NAO (periods between 4 and 10 yr).

Spatially sparse station data of surface pressure extending back to the middle of the nineteenth century suggests
a nonstationarity in the NAO behavior. The implications of this nonstationarity for the obtained results of this
study is briefly discussed. Because finely resolved field data are not readily available for this earlier period, the
level of skill realizable for that period using a pattern relationship technique such as CCA remains an open
question.

1. Introduction

Long-range forecasting, especially seasonal forecast-
ing, has received renewed interest in recent years. Much
of this interest is associated with the realization that the
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dominant phenomenon on the seasonal-to-interannual
timescale, El Niño–Southern Oscillation (ENSO), has
useful predictive skill at forecast lead times of up to 1
yr (see, e.g., Barnston et al. 1994; Latif et al. 1994).
Long-range forecasting is thus closely related to pre-
dicting the evolution of low-frequency phenomena such
as ENSO. Such phenomena are to a large extent a result
of interactions between the atmosphere, the oceans, and
the land surfaces. Efforts aimed at modeling these in-
teractions and the concomitant low-frequency phenom-
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ena have accelerated in recent years, and considerable
work has been devoted to the construction and utili-
zation of comprehensive coupled atmosphere–ocean–
land general circulation models (GCMs). However,
there is still no complete prediction system with such a
GCM and a fully coupled data assimilation procedure,
even though work along these lines is now under way
at several institutions around the world.

An alternative to using coupled dynamical models is
to use empirical methods. Empirical long-range fore-
casting is an old activity (Rossby 1941; Namias 1953)
with documented, but rather modest, skill (Nicholls
1980; Nap et al. 1981; Livezey 1990). Through access
to the relatively newly available global datasets, and
through the development of new techniques to extract
and understand the structures of the low-frequency part
of the variability, this activity has advanced consider-
ably in recent years (see, e.g., Van den Dool 1994). The
literature on empirical methods for seasonal forecasting
is voluminous. While a comprehensive review of this
subject exists for the Tropics (Hastenrath 1991), no such
review is yet available for the extratropics.

Even though the techniques used in empirical fore-
casting are statistical, useful information about the na-
ture and dynamics of the low-frequency phenomena
present can be obtained. As pointed out by Lorenz
(1956), the success of empirical methods is dependent
on the fact that the low-frequency phenomena are gov-
erned by physical laws that presumably do not change
with time. These laws are telling us that the past, present,
and future behavior of the atmosphere are related. Thus,
the dynamics itself suggest that predictions based on
empirical methods should have some skill, and further-
more, the empirical skill levels should get higher and
higher the more predictable the atmosphere is by dy-
namical methods.

The purpose of this paper is to explore the level and
origin of skill of seasonal forecasts for northern Europe.
We use an empirical method for this purpose. The skill
obtained by empirical methods can be regarded as a
basic reference, or benchmark, to which the skill levels
of coupled dynamical model forecasts should be com-
pared. One reason for using statistical models is that
they, in general, require orders of magnitude less com-
putations than do coupled dynamical models. It is there-
fore possible to extensively explore the method’s char-
acteristics on the available historic data. Furthermore,
empirical methods have the advantage of providing the
possibility of finding relationships between different
fields that can give valuable insight into the governing
dynamics as well as contribute to improved conceptual
models of low-frequency phenomena. The use of a hi-
erarchy of both empirical and dynamical models of
varying degrees of complexity is believed to be mutually
beneficial for the progress of our understanding of the
coupled climate system.

The rationale for use of data and empirical method
is given in section 2. The data are described in section

3, while the methodology of the empirical technique is
presented in section 4. After presenting the outline of
the experiments, a discussion of the average skill in
northern Europe is found in section 5. The characteristic
geographical as well as temporal skill distributions are
presented in sections 6 and 7. An interpretation of the
origin of the skill is given in section 8, which is then
in section 9 contrasted with the findings of studies of
the magnitude and origin of skill in the United States
by the same methods. The results are discussed and
conclusions are drawn in section 10.

2. Rationale

We know from predictability studies that the atmo-
sphere has an intrinsic range of predictability that is
strongly scale dependent. Phenomena characterized by
large spatial scales have a longer time range of pre-
dictability than those of smaller spatial scales (Lorenz
1969). Similarily, phenomena characterized by large
temporal scales (low-frequency phenomena) are more
predictable than those of shorter temporal scales (Van
den Dool and Saha 1990). Furthermore, a phenomenon’s
spatial and temporal scales are somewhat correlated.
Even though these fundamental results from predict-
ability studies are primarily concerned with synoptic
scales and NWP models, they should nevertheless be
instrumental in guiding the design of empirical seasonal
forecast models. Consequently, here we are using a sta-
tistical technique that is designed to find relationships
between patterns of large spatial as well as temporal
scales.

There exist several methods for finding correlated pat-
terns between two fields. Bretherton et al. (1992) com-
pare several of these methods and find that a modified
version of canonical correlation analysis (CCA) is one
of the most accurate techniques available. It is known
that CCA is susceptible to sampling variability and
therefore subject to large random errors when applied
to large data fields. Therefore, in accordance with the
findings of Bretherton et al. (1992), we use a modified
form of CCA, first introduced by Barnett and Preisen-
dorfer (1987). This modified form is characterized by
a prefiltering step in which the data are projected onto
a truncated series of empirical orthogonal functions
(EOFs). This step considerably decreases the number of
degrees of freedom in both predictor and predictand
fields and makes the canonical correlations more stable
with respect to sampling variability. With these prepa-
rations the CCA is provided with patterns of large spatial
scales, which presumably are associated with large tem-
poral scales.

In the process of finding such large-scale patterns, we
aim to avail ourselves of predictor fields that cover as
large a part of the globe as possible, and whose temporal
scale is correspondingly long. However, in the search
of such predictor fields we do not want to compromise
the quality of the data. Clearly, the choice of which
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predictor parameters to use has to be determined from
well-founded hypotheses on the mechanisms that are
thought to be responsible for the variability on the sea-
sonal timescale.

Given the above requirements, and the availability of
data, we use three different predictor fields in this study,
namely SST, the Northern Hemisphere 700-hPa geo-
potential height field, as well as the predictand itself.
The choice of SST as a predictor is based on the ra-
tionale that the ocean, with its slow timescale, consti-
tutes a principal source of predictive information for the
atmosphere on the seasonal-to-interannual timescale.
The requirements of large spatial and temporal coverage
as well as good data availability and quality lead us to
use an SST field that is quasi-global in extent (roughly
408S–608N) and covers the time period from 1955.
However, the work of Van den Dool (1984) and Van
den Dool and Nap (1985) demonstrate that even local
nearby SST information can contain considerable prog-
nostic value on longer timescales, especially for stations
close to the coast of the large continents where the pre-
vailing winds are from the sea. As a large part of the
northern European area considered has such coastal lo-
cations with climatological onshore winds, we will make
a departure from the requirement of large spatial scales
for the SST predictand. Thus, in addition to the above
described coarse resolution quasi-global SST field, we
also use a much finer resolution SST field. It covers the
seas adjacent to northern Europe: the northeastern part
of the North Atlantic Ocean, the Norwegian Sea, the
North Sea, and the Baltic Sea.

The predictand field itself—that is, the surface air
temperature at 59 stations in northern Europe—is also
used as a predictor. Like the SST field it describes
the thermal state at the atmosphere’s lower boundary,
but unlike the quasi-global SST field it is of regional
rather than global or hemispheric extent. This com-
promise on the spatial extent is defended on the
ground that the predictor is the predictand at an earlier
time, and thereby most suited for implicitly providing
local information.

In addition to predictor fields that describe conditions
at the atmosphere’s lower boundary, we also wish to
have a predictor that contains information on the internal
low-frequency variability of the atmosphere itself. We
use the 700-hPa geopotential height field for this pur-
pose. It would be preferable to use global fields but,
unfortunately, such fields are only available since 1978.
We are therefore constrained to use data of a lesser
spatial extent. We use gridded data that are available
since 1947 and which cover most of the Northern Hemi-
sphere (north of ;208N).

3. Data

The raw data used in this study consist of monthly
mean values and cover the time period 1955–93, that
is, 39 yr.

a. Northern European surface air temperature (T)

Monthly mean surface air temperature data from 59
stations in 18 countries in northern Europe are used in
this study. Their geographical location is shown in Fig.
1a and some general information about them is listed
in Table 1. The stations are located within a circle-
shaped area centered around central Sweden. The size
of this area is about the same as that of the conterminous
United States, that is, around 8 3 106 km2. The coverage
is aimed at being equal-area with a somewhat denser
distribution in the Nordic countries. Data for Swedish
stations are obtained from the Swedish Meteorological
and Hydrological Institute (SMHI), for Finnish stations
from the Finnish Meteorological Institute (FMI), and
for Dutch stations from the Royal Netherlands Meteo-
rological Institute (KNMI). The data from the remaining
stations are taken from the Global Telecommunication
System (GTS) as well as from the Carbon Dioxide In-
formation Analysis Center (CDIAC). In general, very
few missing data are encountered, as seen in Table 1.
This is especially true for the carefully quality controlled
data from the three national meteorological institutes.
The missing data are replaced through spatial and tem-
poral interpolation.

b. Sea surface temperature (SST)

Monthly mean SST data are taken from the Compre-
hensive Ocean Atmosphere Data Set (COADS) (Slutz
et al. 1985) for the period 1955–79, from ship data from
1980 to 1981 and from blended ship–satellite data from
1982 to 1993 (Reynolds 1988). The data are available
in 28 lat by 28 long boxes. To investigate the role of
local versus remote SST data we have composed two
parts: 1) a fine-resolution SST dataset covering northern
European seas and 2) a coarse-resolution SST dataset
of quasi-global extent.

1) NORTHERN EUROPEAN SST DATA [SST(L)]

The data cover an area in and adjacent to northern
Europe as displayed in Fig. 1b. Mean values of SST in
28 lat by 28 long boxes are given at 82 grid points. We
will also refer to this as the local SST data, therefore
the acronym SST(,), where the index , stands for local.

2) QUASI-GLOBAL SST DATA [SST(QG)]

The data cover the area between 408S and 608N. The
original data from the 28 lat by 28 long grid are averaged
to form a 108 lat by 108 long grid. This averaged dataset
then consists of 268 gridpoint values. However, due to
the fact that for certain grid points, especially in the
Southern Hemisphere, the basic observations that are
used to calculate the box average value are either too
sparse in time and space and/or have poor quality, only
235 grid points are actually used. These grid points are
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FIG. 1. Geographical distribution of the different predictor and predictand fields. (a) Surface air temperature (T) at 59 stations in northern
Europe. (b) Sea surface temperature (SST) values at 82 grid points in and adjacent to northern Europe, SST(l ), as represented by the average
SST value in 28 lat by 28 long boxes. (c) Quasi-global SST values, SST(qg), at 235 grid points as represented by the average SST value in
108 lat by 108 long boxes. (d) 700-hPa geopotential height (h700) values at 358 grid points.

shown in Fig. 1c. This SST dataset is denoted SST(qg),
where qg stands for quasi-global.

c. 700-hPa geopotential height (h700)

This dataset is computed from operational twice-daily
analyses of the former National Meteorological Center
[NMC, now NCEP (National Centers for Environmental
Prediction)]. These analyses are on an approximately
equal area 358-point grid covering the Northern Hemi-
sphere from approximately 208N and northward as
shown in Fig. 1d. From these daily analyses monthly
mean values are calculated.

4. Methodology
a. Basic definitions

We define a season as a time interval spanning over
three contiguous calendar months. We divide the year
into 12 overlapping seasons. Thus, there is considerable
autocorrelation between neighboring seasons, as they
are two-thirds identical. Let tS be an index for the 12
seasons in a year. This index can have one of the values
1 to 12, where 1 denotes the season DJF (December,
January, February), 2 denotes JFM (January, February,
March), and so on. The season number thus refers to
the number of the middle month of the season as illus-
trated along the time axis in Fig. 2a.
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TABLE 1. Some general information about the surface air temperature stations in northern Europe used in this study.

Name Country Latitude Longitude
Height over

MSL (m)
Number of

missing data

Jan Mayen
Tromsø/Langnes
Bjørnøya
Vardø
Bodø

Norway
Norway
Norway
Norway
Norway

70.93
69.68
74.52
70.37
67.28

28.67
18.92
19.02
31.10
14.42

9
10
16
13
12

5
1
6
0
0

Ørlandet
Oslo/Gardermoen
Stavanger
Jokkmokk
Haparanda

Norway
Norway
Norway
Sweden
Sweden

63.70
60.20
58.88
66.60
65.83

9.62
11.08

5.63
19.83
24.15

7
204

8
260

5

0
5
0
0
0

Bjuröklubb
Junsele
Fjällnäs
Falun
Stockholm

Sweden
Sweden
Sweden
Sweden
Sweden

64.48
63.68
62.63
60.60
59.33

21.58
16.90
12.20
15.64
18.05

36
210
780
160

44

0
0
0
0
0

Linköping
Fårö
Säve
Växjö
Lund

Sweden
Sweden
Sweden
Sweden
Sweden

58.40
57.97
57.75
56.87
55.70

15.52
19.35
11.87
14.80
13.19

93
8

20
166

50

0
0
0
0
0

Sodonkylä
Kajaani
Vaasa
Luonetjärvi
Turku

Finland
Finland
Finland
Finland
Finland

67.37
64.28
63.05
62.40
60.52

26.65
27.68
21.77
25.67
22.27

180
136

4
140

49

0
0
0
1
0

Lerwick
Stornoway
Aberdeen
Birmingham
Plymouth

Scotland
Scotland
Scotland
England
England

60.13
58.22
57.20
52.45
50.35

21.18
26.32
22.20
21.73
24.12

83
9

72
99
27

0
0
0
0
0

Aldergrove
Valentia
Reykjavik
Thorshavn
Eelde

N Ireland
Ireland
Iceland
Faroe Islands
Netherlands

54.65
51.93
64.13
62.02
53.13

26.22
210.25
221.93
26.77

6.58

81
9

61
39

5

0
0
1
2
0

Vlissingen
Nancy
Schleswig
Berlin/Tempelhof
Kassel

Netherlands
France
Germany
Germany
Germany

51.45
48.68
54.53
52.47
51.32

3.60
6.22
9.55

13.40
9.48

10
217

44
50

233

0
2
0
0
0

Nürnberg
Wien/Hohe Warte
Miscolc
Praha/Ruzun

Germany
Austria
Hungary
Czech Rep

49.50
48.25
48.13
50.10

11.08
16.37
20.80
14.25

312
209
119
369

3
0
0
0

Warzawa/Okezie
Wroclaw
Kaunas
Minsk
Kiev

Poland
Poland
Lithuania
Belarus
Ukraine

52.17
51.10
54.87
53.87
50.40

20.97
16.88
23.88
27.53
30.45

106
120

75
234
179

0
0
0
0
0

Lvov
Kanin Nos
Archangelsk
St Petersburg
Velikie Luki

Ukraine
Russia
Russia
Russia
Russia

49.82
68.65
64.58
59.97
56.38

23.95
43.30
40.50
30.30
30.60

325
48
13

2
98

10
1
5
0
8

Vologda
Kirov
Kazan
Moscow/Observatory
Voronezh

Russia
Russia
Russia
Russia
Russia

59.28
58.65
55.78
55.75
51.70

39.87
49.62
49.18
37.57
39.17

116
164

64
156
164

2
8
0
0

10

Let TO(i, tS, tY) denote the observed seasonal mean
surface air temperature at station i for season tS in the
year tY. The station index i can range from 1 to 59. As
the dataset spans the 39-yr period from 1955 to 1993

we let tY go from 1 to 39. Let furthermore TF(i, tS, tY,
tF) denote the forecasted value made at a forecast lead
time of tF, which is verified against the observed value
TO(i, tS, tY). The index tF denotes the number of months
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FIG. 2. Graphical illustration of the temporal configuration of the predictor and predictand
periods. Each of the predictor and predictand periods is 3-months long (a season). Four non-
overlapping contiguous predictor periods (TOR1–TOR4) are followed by a lead time and then
a single predictand period (AND). This whole sequence is called a torand-sequence. (a) Config-
uration of torand-sequences for forecasts with progressively longer lead times. The lead time
increment is 1 month. The shortest lead time is 1 month and the longest is 15 months. (b)
Configuration of all the torand-sequences used for forecasting the JFM season (tS 5 2) in year
5 at a lead time of 4 months. This targeted torand-sequence is marked in black and is not used
in the model building process.

between the end of predictor data to the beginning of
the predictand data (targeted season) as shown, by ex-
ample, in Fig. 2a.

b. Predictor and predictand periods and fields

In Fig. 2a a graphical illustration is shown of the
temporal occurrence and extent of the predictor and pre-
dictand periods for progressively longer forecast lead
times. Each of the predictor and predictand periods is

a 3 month (seasonal) average. Four nonoverlapping con-
tiguous predictor periods (TOR1–TOR4) are followed
by a lead time, tF, which is ranging from 1 month up
to 15 months, which in turn is followed by a single
predictand period (AND). This whole sequence will here
be denoted a torand-sequence, TAS. A torand-sequence
is uniquely determined by the season and year of the
predictand period and the forecast lead time, that is,
TAS(tS, tY, tF).

The empirical model building process consists of
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TABLE 2. The combination of predictor fields for the various ex-
periments performed to predict surface air temperature. The predictor
fields are denoted T for surface air temperature, SST(,) for local sea
surface temperature, h700 for the 700-hPa geopotential height, and
SST(qg) for quasi-global sea surface temperature. The SST(qg) field
is furthermore divided into various ocean domains, which are de-
scribed in Table 3. The code for the experiment designator is as
follows. The numbers indicate the predictor fields used: 1 for T, 2
for SST(,), 3 for h700, and 4 for SST(qg). In the experiments that
include SST(qg) as a predictor there is also a symbol in the decimal
place, which represents which ocean domain is used.

Experiment
designator

Field weight of the four
predictor fields

T SST(,) h700 SST(qg)

Designator
for ocean
domain of
SST (qg)

1
2
3
4.G
4.1

1
0
0
0
0

0
1
0
0
0

0
0
1
0
0

0
0
0
1
1

—
—
—
G
1

4.2
4.3
4.4
4.5
4.6

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
1
1
1

2
3
4
5
6

12
13
23

1
1
0

1
0
1

0
1
1

0
0
0

—
—
—

123 1 1 1 0 —

TABLE 3. Description of the various ocean domains that form
subsets of the SST(qg) dataset.

Designator
for ocean
domain of
SST (qg)

Geographical name of
ocean domain

Latitude
interval

Number of
grid points

G
1

2

3
4
5
6

Quasi-global oceans
Extratropical North

Atlantic Ocean
Extratropical North

Pacific Ocean
Atlantic Ocean
Pacific Ocean
Tropical oceans
Tropical Pacific Ocean

408S–608N
308N–608N

308N–608N

408S–608N
408S–608N
308S–308N
308S–308N

235
24

33

65
129
139

86

FIG. 3. The area average cross-validated anomaly correlation co-
efficient according to (5) for persistence forecasts of surface air tem-
perature. The target season is on the abscissa and the forecast lead
time is on the ordinate.

finding coupled patterns between the data in the four
predictor periods and the data in the predictand period
(the target season) for each and every one of all the
torand-sequences. This is done in the framework of per-
forming hindcasting, that is, in the construction of the
empirical model for a specific torand-sequence,
TAS( , , ), all other TAS( , tY, ) are used, not onlyo o o o ot t t t tS Y F S F

those from antecedent times (tY , ) but also those ofotY

later origin than the targeted one (tY . ) are madeotY

available. However, because of the overwhelming im-
portance of the yearly cycle, we use for each year only
that torand-sequence that has the same target season
( ) and forecast lead time ( ) as the targeted one. Ano ot tS F

illustration of this procedure is shown in Fig. 2b for the
case when the JFM season (season 2) in year 5 is fore-
casted at a lead time of 4 months. A total of 36 torand-
sequences are here used for the construction of the em-
pirical model for this specific torand-sequence.

c. Data preprocessing

The raw data as such is not very suitable to be used
directly in a canonical correlation analysis. We therefore
process the data in a series of steps, whereby we seek
to refine robust large-scale features that hopefully are
also characterized by slow timescales. The procedure
follows closely that used by Barnston (1994) (hereafter
referred to as B94) and is graphically summarized in
the upper part of Fig. 2 of B94.

Each predictor and predictand data element is first
standardized so that all elements are weighted equally

in producing a correlation-based CCA. The standard-
ization ensures that all locations have equal opportunity
to participate in the predictive patterns, regardless of
their latitude- and longitude-dependent interannual var-
iances. The standardization is performed in the frame-
work of hindcasting as described above in section 4b.
A data element, e.g., TO, is thus standardized ( ) ac-T9O
cording to
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FIG. 4. As in Fig. 3 except for CCA forecasts with (a) the predictand itself as the only predictor (experiment 1), (b) local SST as the only
predictor (experiment 2), (c) the geopotential height field at 700 hPa as the only predictor (experiment 3), and (d) quasi-global SST as the
only predictor (experiment 4.G).

T (i, t , t ) 2 T (i, t )O S Y O ST9 (i, t , t ) 5 , (1)O S Y s(i, t )S

where
N1

T (i, t ) 5 T (i, t , t ) (2)OO S O S Y(N 2 n) t 5nY
ot ±tY Y

is the mean value and

s(i, t )S

N1
25 [T (i, t , t ) 2 T (i, t )] (3)O O S Y O SÎ(N 2 n) t 5nY

ot ±tY Y

is the standard deviation. The year is withheld in (2)otY

and (3) because it is the target prediction year. Due to
the length of data required for each forecast (see Fig.
2b), which depends upon forecast lead time, some of
the years at the beginning and sometimes at the end of
the 39-yr time period cannot be used. This fact is taken
into account as the summation starts in year n . 1 and
ends in year N # 39.

Second, we establish an interfield weighting, which
adjusts the relative weighting of two or more predictor

fields, as wholes, relative to one another. If this step
were not carried out, the relative weights would be pro-
portional to the relative number of elements (grid points
or stations) in the respective fields.

The predictor and predictand datasets are thereafter
filtered through an orthogonalization procedure as sug-
gested by Barnett and Preisendorfer (1987). Separate
EOF analyses are thereby performed and only the lead-
ing modes are retained. Within the predictor pre-ortho-
gonalization, the predictor fields from four consecutive
prior periods (forming a temporal sequence) enter into
the process together, but as individual predictors, pro-
ducing an extended (in time as well as across predictor
fields) EOF analysis. Here the relative weighting of the
predictor fields, as wholes, is of crucial importance, for
it determines to what extent the resulting orthogonal
components contain the influence of one field versus
another. The EOF mode truncation point is based partly
on Monte Carlo experiments that determine the statis-
tical separability of the eigenvalue curve from that re-
sulting from random input data (Preisendorfer 1988).
Additionally, truncation occurs before any mode whose
eigenvalue is less than one percent of that of the leading
mode. These criteria normally imply that five to six
modes are retained.
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FIG. 4. (Continued)

d. Canonical correlation analysis

The prefiltered data are then subjected to a regular,
classical CCA as described by, for example, Glahn
(1968). We apply the same truncation rules for the ca-
nonical modes as described above in section 4c in the
prefiltering procedure. The retained canonical modes,
usually five to six, are then used for prediction.

e. Assessment of forecast skill

An exhaustive version of cross validation is used in
order to avoid artificial skill and thus obtain as repre-
sentative skill estimates as possible. The hindcast pro-
cedure described above in section 4b is thereby repeated
for all available years in the dataset and a mean skill
of all these forecasts is calculated. This exhaustive ver-
sion of cross validation is described and discussed in
Michaelsen (1987) and has since been used in a large
number of statistical forecast studies (see, e.g., B94 for
references).

The measure of forecast skill used is the temporal
correlation between observed and forecasted tempera-
ture anomalies. We thus define a cross-validated anom-
aly correlation coefficient, ACC, as

39

T9 ·T9O F O
t 5nYACC(i, t , t ) 5 . (4)S F

39 39

2 2T9 · T9ÎO OF O
t 5n t 5nY Y

The starting year in the summation, n, is either 2, 3, or
4 as forecasts for the earliest years are not possible as
there are no data for the required preceeding predictor
periods (see Fig. 2b).

5. Average skill over northern Europe

In the following we shall describe a set of experiments
that assess the quality of seasonal forecasts in northern
Europe. The experiments differ by the choice of pre-
dictor variables and their spatial resolution and distri-
bution. A summary of the various experiments is given
in Table 2. Note that for the experiments with quasi-
global SST as a predictor we have made a division into
several subareas, which are described in Table 3.

To get an overall estimate of the skill level over the
entire northern European area, we consider the average
skill of all the 59 stations according to:
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FIG. 5. As in Fig. 4d except that the quasi-global SST is restricted to only (a) Pacific Ocean as described in Table 3 (experiment 4.4), (b)
extratropical North Pacific Ocean as described in Table 3 (experiment 4.2), and (c) tropical Pacific Ocean as described in Table 3 (experiment
4.6).

591
ACC (t , t ) 5 ACC(i, t , t ). (5)OS F S F59 i51

The measure is emphasizing the contribution from sta-
tions in Scandinavia where we have the highest density
of stations. In the discussion below, the area average
cross-validated anomaly correlation coefficient accord-
ing to (5) will be displayed as a two-dimensional contour
plot with the target season on the abscissa and the fore-
cast lead time on the ordinate.

a. Persistence

Persistence is used as the basic reference, or bench-
mark, to which the skill levels of the CCA forecasts are
compared. For persistence forecasts we have a modified
torand-sequence from that displayed in Fig. 2. There is
only one predictor period in this case; that is, TOR1–
TOR3 is removed and TOR4 becomes the only predictor
period, TOR. The cross-validated version of hindcasting
used for estimating persistence forecast skill implies that
for each specific torand-sequence we use a damped per-
sistence determined by the autocorrelation coefficient
between predictor and predictand periods as determined
from all the other torand-sequences.

As seen in Fig. 3, the highest persistence skills are
found for forecasts of the winter season for lead times
of 6–10 months. According to our definitions of pre-
dictor, predictand, and forecast lead periods (see Fig.
2), a lead time of 9 months implies a temporal offset
of 12 months between the center of the predictor period
and the center of the predictand period. Earlier and later
seasons apparently do not matter for persistence of
anomalies toward next winter. In particular the 1-month
lead (autumn to winter) persistence is near zero. Cor-
relations in excess of 0.20 are found for the core winter
seasons DJF and JFM. The slantwise shape of the skill
maxima implies that it is the previous JFM season (tS

5 2) that is of pivotal importance as it alone apparently
contains predictive information for almost all of the sea-
sons in the next winter (tS 5 12, 1, 2, 3). In contrast to
the long-lead nature of the skill maxima in winter, the
summer (tS 5 4–8) has noticeable persistence skill only
at the shortest leads.

It is interesting to contrast the above result with the
skill of classical month-to-month persistence forecasts
(e.g., Craddock and Ward 1962; Van den Dool and Nap
1981; Van den Dool and Livezey 1984; Vedin et al.
1991). Despite being compiled on a monthly basis and
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FIG. 5. (Continued)

with zero lead time (tF 5 0), they are similar to the
above seasonal long lead results in that they possess two
maxima during the year, one in the winter and one in
the summer seasons.

b. Experiments with only one predictor field

1) SURFACE AIR TEMPERATURE (THE PREDICTAND

ITSELF) AS THE ONLY PREDICTOR

As seen in Fig. 4a, there are two local skill maxima
during the year when the predictand itself at earlier times
is used as the predictor in CCA. The largest skill values
occur during winter, while a secondary maximum occurs
during summer. Two distinct minima during the inter-
vening transition seasons, spring and autumn, are clearly
distinguishable. There is virtually no skill beyond a lead
time of 9 months. We believe that a physically sound
skill distribution should show a monotonic decrease of
skill with increasing forecast lead time, since there is
more and more information available with decreasing
lead time. The ‘‘return of skill’’ that can be seen in the
summer is therefore a questionable feature. One reason
that this occurs in this experiment may be the choice
of design of predictor periods. As seen from Fig. 2 the
chosen design implies that old, potentially important
information is not made available for short lead pre-

dictions. If this assumption is correct it would imply
that it is possible to obtain increased skill in summer
with a more suitable design of predictor periods. An
alternative explanation for the ‘‘return of skill’’ is that
the high ACCs for long leads in summer are due to
sampling errors and therefore a result of chance.

It is appropriate to contrast Fig. 3 with Fig. 4a as
both these prediction experiments are based on surface
air temperature as the only predictor. Both experiments
exhibit a similar seasonal dependence with maximum
skill in winter and summer and minima in between. They
differ sharply, however, in that the CCA forecasts are
much more skillful at short leads. We attribute this to
the fact that the CCA technique uses both a longer pre-
dictor sequence and is capable of finding more refined
correlated patterns between predictors and predictand.
Specifically, we note that the important JFM season
from the previous winter, which is so pivotal for local
persistence forecasts, is included in the predictor se-
quences for short leads. The fact that persistence beats
CCA at long leads in winter might be due to the fact
that surface air temperature in the more distant predictor
periods (beyond the last winter) do not contain any pre-
dictive information and therefore only introduces noise
to the CCA technique, so as to confuse any signal com-
ing from the most recent JFM season. It may also be
that the prefiltering step in the present CCA procedure
removes too much of the local effects evident in Fig. 3.

2) LOCAL SST AS THE ONLY PREDICTOR

Figure 4b displays the skill from the experiment
where the predictor is SST from the waters in and ad-
jacent to northwest Europe (local SST) as shown in Fig.
1b. The skill distribution and magnitude are reminiscent
of the case with surface air temperature as the only
predictor. This is reasonable as both of these predictors
represent the thermal conditions at the lower boundary
of the atmosphere in the region considered. Note es-
pecially that the forecast skill does not extend beyond
tF 5 8 months.

3) GEOPOTENTIAL HEIGHT FIELD AT 700 HPA AS

THE ONLY PREDICTOR

In this experiment the only predictor is the geopo-
tential height field at 700 hPa covering most of the
Northern Hemisphere north of 208N as shown in Fig.
1d. The skill maximum is now confined to the winter
seasons, as seen in Fig. 4c, and with magnitudes of
similar order as when surface air temperature is the only
predictor. The skill tends, however, to be high for longer
leads and is not appreciably diminished at a lead of 15
months. The geopotential height field thus seems to con-
tain information capable of producing meaningful win-
ter forecasts more than 1 year in advance. As discussed
above in section 5b(1), we believe that the vacillating
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skill distribution with forecast lead time is a result pri-
marily of the specific design of predictor periods.

4) QUASI-GLOBAL SST AS THE ONLY PREDICTOR

In the following experiments the only predictor is
quasi-global SST, SST(qg), with a spatial resolution as
shown in Fig. 1c. The skill scores when the full SST(qg)
field is used are shown in Fig. 4d. Noticeable forecast
skill values are confined to only one target season,
namely MAM. In contrast with the experiment with sur-
face air temperature as predictor but in a similar fashion
to the one with the geopotential height field as predictor,
we find detectable skill at long lead times. Maximum
skill occurs for tF 5 12, which corresponds to corre-
lations with SST that existed between one and two years
earlier. Quasi-global SST thus appears to have some,
albeit very slight, potential as a predictor for longer lead
times in the spring season. Even though it is difficult
to make a clear comparison (e.g., different verifying
areas and time periods), this result seems to agree with
some dynamical modeling results (e.g., Branković et al.
1994), which find a tendency for the skill to be highest
in the spring season. The reason why the maximum
occurs in spring is not rigorously clarified but there have
been some suggestions (see, e.g., Branković et al. 1994).
The main conclusion from our experiments, however,
is that quasi-global SST contains relatively little pre-
dictive information for northern Europe. This is the case
both in comparison with the three other predictor fields,
as well as in comparison with the large and dominant
role it has over the United States (B94).

Having established the small influence of quasi-global
SST as a predictor, it might seem of little value to in-
vestigate how the different ocean basins contribute to
the observed skill levels. The paramount importance of
SST, and in particular tropical Pacific SST, for seasonal
forecasting in the United States (e.g., B94) and the sug-
gestions of an ENSO signal in Europe (Fraedrich and
Müller 1992; Fraedrich 1994), makes such an investi-
gation nevertheless of interest. For this purpose we di-
vide the world oceans into six subbasins as described
in Table 3. In Fig. 5 we present the resulting skill levels
from three of these six experiments, of which all three
involve the Pacific Ocean. The other three experiments
produce very low skill levels and therefore are not
shown. The skill scores when the whole Pacific Ocean
is used as predictor are shown in Fig. 5a. The skill
distribution is somewhat similar to the experiment with
the full SST(qg) field as shown in Fig. 4d in that the
skill is confined to the spring seasons, tS 5 4–5, for
long leads. However, we also find noticeable additional
skill at short leads in winter. Dividing the Pacific Ocean
into subbasins, an extratropical Northern Hemisphere
part (Fig. 5b) and a tropical part (Fig. 5c), reveals that
the short lead winter skill comes primarily from extra-
tropical North Pacific SST while the long lead spring
skill comes from tropical SST.

When contrasting Figs. 4d, 5a, 5b, and 5c, it is evident
that skill scores are not additive in a simple way. For
example, the use of Pacific Ocean SST alone produces
higher skill scores as compared to when SST from all
of the three major oceans is used. This fact indicates
that the Atlantic Ocean, despite being much closer to
the target area, does not seem to contain much predictive
information, and furthermore, seems to introduce noise
into the CCA procedure.

It is of interest to contrast this result with other studies
concerning the role of Atlantic SST for long-range fore-
casting in the northern European area. Palmer and Sun
(1985) have studied relationships between SST anom-
alies in the extratropical north Atlantic, in particular the
area southeast of Newfoundland, and the Northern
Hemisphere circulation. Their results suggest that these
relationships are not so useful for seasonal prediction,
as (i) the lagged correlations are largest for the atmo-
sphere leading the ocean and (ii) the correlations are
greatest for small lag (around a month). Lead–lag re-
lationships between Atlantic SST modes and atmo-
spheric modes have recently been reevaluated by Deser
and Timlin (1995), who find that the SST lags the at-
mospheric circulation by only 2–3 weeks. Thus, these
findings support our result that North Atlantic SST is
not so useful for predictions of the atmosphere on the
seasonal timescale at lead times greater than 1 month.

The reason that the use of North Pacific SST produces
relatively skillful forecasts may be related to the longer
term, decadal atmosphere–ocean variability that has
been observed in and around the North Pacific Ocean
(e.g., Trenberth and Hurrell 1994). Furthermore, the
North Pacific area is affected by an extratropical com-
ponent of ENSO, which also might contribute to the
obtained skill levels. The skill scores obtained using
only North Pacific SST are of similar magnitude as
found in experiment 2 (where only local SST is used),
but with the important difference that the large skill
scores are concentrated at longer lead times (around 9
months). Surprisingly, ENSO itself does not appear to
have a strong direct influence, when judged from the
low skill scores shown in Fig. 5c.

5) DISCUSSION OF THE EXPERIMENTS WITH ONLY

ONE PREDICTOR FIELD

There is a tendency in most of the experiments with
only one predictor for the best skill scores to be found
during the winter seasons. The lowest skill scores are
generally found during the transition seasons, spring and
autumn, except for the case with Pacific Ocean SST as
predictor. There is a weaker secondary maximum in the
summer.

An interesting difference in the behavior of forecast
skill scores as a function of forecast lead time is clearly
distinguishable among the experiments. While the ex-
periments with surface air temperature and local SST
as predictors have usable skills that do not extend much
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FIG. 6. As in Fig. 4a except with a predictor combination of surface
air temperature and the geopotential height field at 700 hPa (exper-
iment 13).

beyond a lead time of 9 months, the predictors with
more remote, hemispheric to global coverage (the geo-
potential height field and Pacific Ocean SST) have rec-
ognizable skill, with much longer leads, in some cases
out to at least 15 months.

The best skill scores overall are found for the geo-
potential height field as a predictor. Here the high skill
values are confined to the winter seasons where the skill
values decay only slightly with forecast lead time.

c. Experiments with several predictor fields

The logical next step is to investigate the impact on
the distribution and magnitude of skill of having several
predictor fields working together. The overall impres-
sion is that adding another predictor field produces sim-
ilar, or at best only modestly increased, skill scores com-
pared to using only the best of the involved predictors
alone. A reason for this may be that the predictors con-
tain somewhat redundant information. The surface air
temperature at the Norwegian coast and on the islands
in the Norwegian Sea is, for example, highly correlated
with the SST in the Norwegian Sea. Another reason is
that correlations are, of course, not additive. The cor-
relation between two predictor fields together and the
predictand is in a nontrivial way related to the corre-
lations between each of the predictors individually and
the predictand.

The three experiments where the geopotential height
field is included as one of the predictors have very sim-
ilar skill distributions and furthermore they are similar
to the experiment with the height field as the only pre-
dictor. Therefore it seems natural to conclude that the
height field is the dominant source of predictive skill
and that the other fields only contribute marginally to
increase the skill. The experiment that produces the
highest overall skill scores is the one with surface air
temperature and geopotential height field as predictors,
experiment 13, for which the corresponding skill scores
are shown in Fig. 6.

6. Geographical distribution of skill

So far we have considered only the mean skill for all
of the 59 stations. The geographical distribution of the
skill is, of course, also of interest. From the area average
skill diagram of section 5 we can conclude that the
maximum skill scores most often occur for short leads
in the winter seasons. In Fig. 7 we therefore display the
geographical skill distribution for the JFM season for
the shortest forecast lead time, tF 5 1 month. Shown
are the results from three of the most skillful experi-
ments, namely, those with surface air temperature and
700-hPa geopotential height field as sole predictors, ex-
periments 1 and 3, respectively, as well as the experi-
ment with the best combination of predictors: surface
air temperature and the height field, experiment 13. The
case with surface air temperature as only predictor (Fig.

7a) has higher skill values in a band from the northern
North Sea to southern Russia (correlation skill values
above 0.30 are shaded progressively more darkly). The
two cases with the height field included as predictor
(Figs. 7b,c) have skill values in excess of 0.30 in a larger
area that covers the whole southeastern half of the do-
main. Maximum values are above 0.45 and are found
in a belt stretching from southeastern Sweden over the
Baltic states and Poland to farther eastward toward Mos-
cow. The quality of the forecasts decreases in all cases
toward the northwest with insignificant skill over Ice-
land.

7. Temporal distribution of skill

To obtain a perhaps more intuitive appraisal of the
quality of the seasonal forecasts, we present Fig. 8. It
shows a year-to-year comparison between an observed
and forecasted time series for the same target season
(JFM) and forecast lead time (tF 5 1 month) as in the
previous section and for experiment 13 with the best
combination of predictors: surface air temperature and
the height field. The station considered is Fårö on the
Swedish island of Gotland, as this station has an anom-
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FIG. 7. The geographical skill distribution for the CCA forecasts for the JFM season and for the shortest forecast lead time,
tF 5 1 month. The CCA forecasts are from the experiments with (a) surface air temperature and (b) 700-hPa geopotential
height field as only predictors, respectively, as well as (c) for the experiment with the best combination of predictors: surface
air temperature and the geopotential height field.
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FIG. 7. (Continued )

FIG. 8. Time series of observed (solid line) and forecasted (dashed line) anomalies at Fårö,
Sweden, for the JFM season and for the shortest forecast lead time, tF 5 1 month. The CCA
forecasts are for the experiment with the best combination of predictors: surface air temperature
and the geopotential height field (experiment 13).
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aly correlation coefficient of 0.48, and thus proved to
be one of the most skillful stations.

We first note that the CCA forecasts underestimate
the amplitude of the anomalies. This is a common fea-
ture of statistical forecasting techniques that seek to
minimize the root-mean-square error. There are cases
with large forecast errors, but in general the curves tend
to follow each other. Examples of time periods where
the CCA technique have some skill in capturing the
observed evolution is the cold period of 1963–70 as
well as the recent sequence of warm winters.

8. On the origin of skill

The CCA technique provides some tools that may
help shed some light on the question of the origin of
the skill. These tools consist of the canonical eigen-
values and eigenvectors that are calculated in the CCA
procedure as well as the time series of the expansion
coefficients of the canonical eigenvectors. Here we will
call them ‘‘the diagnostics.’’ The canonical eigenvectors
of the predictand and predictors are perhaps the most
important diagnostics. The geographical distribution
and magnitude of these eigenvectors give important in-
formation on which phenomena might be responsible
for the relationships that the CCA technique is able to
find and subsequently use to form its forecasts.

Examination of the diagnostics from the different ex-
periments reveals a rather coherent picture, which en-
ables us to limit the discussion to a single experiment
without missing any essential relationships. Based on
the results from the experiments described in section 5
we will consider therefore only the case with the geo-
potential height field together with surface air temper-
ature as predictors (experiment 13), as it was found to
be the most skillful case in an overall sense. Further-
more, we will focus on a target season in winter (JFM,
tS 5 2) and a forecast at a short lead (tF 5 1 month).
It is very helpful in the following discussion to be fully
aware of the temporal configuration of the predictor and
predictand periods, as displayed symbolically in Fig. 2.
Even if the forecast lead time is only 1 month, the pre-
dictor fields extend more than one year back in time
and furthermore consist of four separate consecutive
seasons. Of special importance is the fact that the first
predictor period (TOR1) is the winter season DJF one
year earlier than the target season, JFM.

In Fig. 9 the canonical eigenvector of the geopotential
height predictor field is shown for each of the four pre-
dictor periods. Here we consider only the dominant, first
mode. It is clear that the eigenvector for the first pre-
dictor period (TOR1) has substantially larger amplitude
than those for the three other periods. Of all the predictor
periods the first one is farthest removed in time from
the target period, but it is a winter season (DJF of the
previous winter). We will have reasons to emphasize
the significance of this in the following. The spatial
pattern is characterized by one center in the Iceland–

south Greenland area and a band of opposite sign along
408N with maxima in southern Europe and the south-
eastern United States. This pattern is reminiscent of the
North Atlantic Oscillation (NAO) as described, for ex-
ample, in chart 2 in the work by Walker and Bliss
(1932), in the idealized NAO in Fig. 1 of Wallace and
Gutzler (1981) and in Figs. 2a and 2.1 of Barnston and
Livezey (1987). The physical significance of this pattern
is that in the phase characterized by an anomalously
deep Icelandic low, the relatively warm and humid air
that normally blows from the Atlantic Ocean in over
Europe is strengthened and gives rise to milder than
normal winters. The reverse situation occurs in the op-
posite phase. We also see hints of this pattern in pre-
dictor periods 2 and 4—that is, the spring and autumn
seasons.

Now consider Fig. 10, which shows the canonical
eigenvector of the surface air temperature field as a
predictor for the first of the four predictor periods
(TOR1). We do not show the other three predictor pe-
riods as they are all weaker in a similar fashion to the
height field. The spatial pattern of the eigenvector sug-
gests that this pattern is associated with the height field
distribution, that is, with an NAO type of pattern. Here
we make the interpretation that the height field is the
fundamental governing predictor and that the surface
air temperature, as well as the local SST field (not
shown), mainly contain the height field predictor in-
formation, but in an indirect diluted form.

The corresponding canonical eigenvector for the pre-
dictand is shown in Fig. 11. The pattern is characterized
by a rather flat field with high values over most of the
continental areas and a sharp decrease toward the north-
west. The fact that Figs. 10 and 11 are similar but not
identical would superficially indicate that the CCA fore-
casts are similar to persistence forecasts. However, we
have shown in the above that persistence forecasts (Fig.
3) have much less skill than the CCA forecasts (e.g.,
Fig. 6). Figure 11 is a close approximation to the fore-
cast for the next winter, but Fig. 10 may not be close
at all to what was observed in the previous winter. It is
the strength of CCA to distill out of the observations
available at the previous winter, those components that
should be persisted to the next winter.

The interpretation that the NAO is the main source
of predictive skill as well as the main cause of the ob-
served anomalies warrants a consideration of the NAO
in some detail. A way to describe the temporal evolution
of the NAO is to study the time series of a single number
that represents the phase and amplitude of a predeter-
mined NAO pattern. Here we form such a single number
by calculating a very simple NAO index (NAOI) cor-
responding to the anomalous geostrophic wind (in m
s21) as calculated from the seasonal mean surface pres-
sure difference between Stykkishólmur, Iceland, and
Ponta Delgada, the Azores. As these two stations are
located almost on the same longitude, the calculated
geostrophic wind is close to having only an east–west



1 JANUARY 1998 119J O H A N S S O N E T A L .

FIG. 9. The canonical eigenvectors of the geopotential height field as predictor for each of the four predictor periods (a)–(d). The
eigenvectors are for experiment 13 and for the target season JFM and for forecast lead time tF 5 1 month.

component. A positive value of this index indicates
above normal westerly winds blowing from the Atlantic
Ocean onto Europe. The reason we use this specific form
of an NAOI is that it represents a physically easily in-

terpretable quantity. One way of displaying the NAOI
that emphasizes its seasonality is shown in Fig. 12. Two
graphs are shown: Fig. 12b presents a smoothed version
of the raw data displayed in Fig. 12a. The filtering is
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FIG. 10. As in Fig. 9 except for surface air temperature as the pre-
dictor and only for the first predictor period.

FIG. 11. As in Fig. 10 except for the canonical eigenvector of the
predictand.

performed in the vertical direction, that is, for each sea-
son a low-pass filter with seven weights (1, 3, 5, 6, 5,
3, 1) is applied to neighboring years in order to remove
fluctuations with periods less than 4 yr (Hurrell 1995).
Two features are of interest. First, the NAOI has large
values almost exclusively in the winter season. Second,
the NAOI has a tendency to retain the same sign several
winters in a row, sometimes for a whole decade and
longer. An interesting aspect is the repetition of large
values of the same sign winter after winter irrespective
of the fact that the index almost disappears in the in-
tervening summer and can even have opposite sign dur-
ing spring and autumn.

Further support for the notion that the NAO in the
winter seasons is the dominant phenomenon responsible
for the observed surface air temperature anomalies as
well as the obtained predictive capability is provided
by the set of graphs shown in Fig. 13. All graphs refer
to the JFM season. In Fig. 13a we compare the time
series of the raw NAOI (solid line) with the simulta-
neously observed surface air temperature anomalies at
the station Fårö (dashed line). The reason for choosing
this station is the same as explained in section 7. There
is a very high degree of similarity between these two
quantities (correlation coefficient of 79%) suggesting
that temperature anomalies in the region are strongly
related to the NAO. This result is in line with findings
in earlier work (e.g., Walker and Bliss 1932; van Loon
and Rogers 1978). In Fig. 13b a comparison between
the time series of the smoothed NAOI (solid line) and
the expansion coefficient of the first mode of the ca-
nonical predictor eigenvector for the JFM target season
for 1 month forecast lead time (dashed line) are shown.

The similarity between the curves (correlation coeffi-
cient of 67%) suggests that the CCA technique finds
and exploits parts of the low-frequency variations as-
sociated with the NAO, corresponding roughly to vari-
ations on the 4–10-yr timescale. A similar comparison
but using the raw, unsmoothed, NAOI (not shown)
shows much less similarity (correlation coefficient of
46%). Finally, in Fig. 13c we compare the time series
of the expansion coefficient of the first mode of the
canonical predictor eigenvector for the JFM target sea-
son for 1-month forecast lead time (solid line) and the
forecasted surface air temperature anomalies at the sta-
tion Fårö (dashed line). The similarity between the
curves is very high (correlation coefficient of 86%),
which indicates the dominant role of the first canonical
mode in shaping the forecast. We have already shown
the accompanying comparison between the observed
and forecasted surface air temperature for the same sta-
tion in Fig. 8a.

In the previous paragraph we emphasize the role of
the low-frequency part of the NAO for the CCA pre-
dictions. A simpler way to exploit this low-frequency
NAO variability for predictions is to use lagged cor-
relations between an NAO index and surface air tem-
perature. A cross-validated skill estimate for such a fore-
cast based on the NAO index defined above and the
surface air temperature at the station Fårö is shown in
Fig. 14a. As a reference we show the skill distribution
for persistence forecasts in Fig. 14b. The high skill at
fairly long leads in the winter season is distributed slant-
wise, corresponding to a relationship between temper-
ature at the target winter and the NAO index in the
previous winter. Expanding Fig. 14a to even longer fore-
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FIG. 12. An index of the North Atlantic Oscillation (NAOI) corresponding to the anomalous geostrophic wind (in m s21) as calculated
from the seasonal mean surface pressure difference between Stykkishólmur, Iceland (658059N, 228449W), and Ponta Delgada, the Azores
(378449N, 258429W). As these two stations are located almost on the same longitude the calculated geostrophic wind is close to having only
an east–west component. The season is on the abscissa and the year is on the ordinate. (a) Raw NAOI data. (b) Filtered NAOI data. The
filtering is performed in the vertical direction; that is, for each season a low-pass filter with seven weights (1, 3, 5, 6, 5, 3, 1) is applied to
neighboring years in order to remove fluctuations with periods less than 4 yr.

cast lead times (not shown) reveals that there are no
further high skill (.30%) forecasts, at, for example, 2
or 3 winter leads. As seen in Fig. 14b pure persistence
has a similar skill distribution but is less skillful in the
winter season. In Fig. 14c we finally present the cor-
responding skill obtained from CCA forecasts (experi-
ment 13). Contrasting Figs. 14a and 14c it is evident
that the CCA technique produces winter season fore-
casts that are more consistent with respect to forecast
lead time. After all, the skill should monotonically de-
crease with increasing lead. This is not the case in either
of these graphs but the CCA forecasts are closer to
having this property. Furthermore, the CCA forecasts
have generally a higher skill level that extends all the
way to 15 months lead time. We thus conclude that the
CCA technique is superior in exploiting the predictive
information associated with the low-frequency part of
the NAO than simple correlations.

9. Comparison of seasonal forecast skill between
northern Europe and the United States

The 59 stations in northern Europe considered in this
study cover an area that is about the same size as the

contiguous 48 states of the United States. The similarity
in areal size and their location in the extratropical North-
ern Hemisphere makes a comparison of skill levels be-
tween the two regions appropriate.

The skill scores of seasonal forecasts of surface air
temperature over the United States as obtained from
the CCA technique are shown in Fig. 15. These fore-
casts are produced in a similar way to the ones de-
scribed above for northern Europe, that is, the same
CCA methodology is used with similar predictor
fields covering the same 39-yr period. Two of the three
predictor fields used are identical (quasi-global SST
and 700-hPa geopotential height fields), whereas the
third (the surface air temperatures) is of course from
stations in the United States. The figure shows the
result from the best combination of predictors, which
is composed of all of the above three predictors, with
the quasi-global SST field weighted twice as much as
the others. This is done to emphasize and take ad-
vantage of the influence ENSO has on short-term cli-
mate anomalies over the United States. Figure 15
should thus be compared to Fig. 6b, which shows the
best result for northern Europe.
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FIG. 13a. Time series of the unfiltered NAO index, NAOI (solid line), and the observed
surface air temperature anomalies at the station Fårö (dashed line) both for the JFM season.

FIG. 13b. Time series of the filtered NAOI for the JFM season (solid line) and the expansion
coefficient of the first mode of the canonical predictor eigenvectors for the JFM target season
and for 1 month forecast lead time (dashed line) for experiment 13.

There is a striking resemblance between the skill
score distributions with a maximum during winter to
late winter and a weaker, secondary maximum during
summer to late summer. However, the most remarkable
finding is that the skill scores are of similar magnitude.

In the absence of a strong ENSO signal in Europe, it
has otherwise been presumed that the skill scores over
Europe should be considerably lower than what is found
for the United States.

The sources of the skill are, however, very different
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FIG. 13c. Time series of the expansion coefficient of the first mode of the canonical predictor
eigenvectors (solid line) and the forecasted surface air temperature anomalies at the station Fårö
(dashed line), both for the JFM target season and for 1-month forecast lead time (experiment 13).

for the two regions. For the United States, skill is based
primarily on ENSO-related SST from the tropical Pa-
cific Ocean (see B94), whereas in Europe this study
indicates that skill is based on the variations of the geo-
potential height field associated with the North Atlantic
Oscillation (NAO). The NAO varies typically at a lower
frequency than ENSO (Hurrell and van Loon 1994).
Therefore, the predictability in northern Europe has
more of an interdecadal flavor, which often manifests
itself as a winter-to-winter persistence, in contrast to the
predictability in the United States, which is more in-
terannual in character.

10. Discussion and conclusions

This study is an extension of the work presented in
B94, where an empirical technique is used to investigate
short-term climate predictive skill in the Northern Hemi-
sphere. We use the same basic statistical methodology,
the CCA technique, but have restricted ourselves in sev-
eral other aspects. First of all, we consider only forecasts
of seasonal means, as we believe a season to be the
shortest averaging period that allows an acceptable sig-
nal-to-noise ratio and the longest averaging period that
does not mix different times of year too much. Second,
we forecast only surface air temperature, and third we
confine the interest to the northern European area. How-
ever, we have also expanded in that the number and
quality of the predictor fields have been increased. Two
of the four predictor fields are identical to the ones used
in B94, that is, the geopotential height field at 700 hPa

from 208N northward and quasi-global SST fields on a
108 lat by 108 long grid. The third predictor field, which
is also the predictand field, is the surface air temperature
at 59 stations in northern Europe. The larger number of
stations in the area considered and the higher quality of
their time series is the basic difference and improvement
compared to the European temperature study in B94.
The fourth predictor field, which is not used in B94, is
a finer resolution SST field on a 28 lat by 28 long grid
covering the waters adjacent to northern Europe. The
time span considered, the 39-yr period from 1955 to
1993, is a couple of years longer than that considered
in B94.

In order to establish which combination of predictors
produces the highest overall skill scores, we calculate
an area-averaged temporal anomaly correlation coeffi-
cient (ACC) for the northern European area. In dis-
playing and intercomparing this quantity as a function
of target season and forecast lead time for various com-
binations of predictors, we obtain a rather clear picture
of how the different predictors contribute to the skill.
We defer this discussion to the next paragraph and now
discuss only the dependence on target season and fore-
cast lead time. We do this for the case of the combination
of geopotential height field and surface air temperature
as predictor fields, as this combination proves to give
the best results. For this case we can discern a pro-
nounced seasonal dependence of the skill. The seasonal
variation of skill occurs almost exclusively as a function
of the target season, as the dependence on the temporal
lead is almost negligible. Specifically, the winter target
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FIG. 14. The cross-validated correlation coefficient for forecasts of surface air temperature at the station Fårö based on (a) lagged correla-
tions with NAOI, (b) persistence forecasts, and (c) CCA forecasts according to experiment 13.

seasons prove to be the most skillfully predicted. A
much smaller secondary maximum in skill occurs during
the summer seasons, with practically no skill in the
intervening transition seasons. The slow decrease of
skill with increasing lead time in the winter season,
implies the possibility of meaningful seasonal forecasts
for winter at long leads. It is interesting to compare the
above-described results for northern Europe with those
for the best predictor combination for CCA forecasts
over the conterminous United States. Such a comparison
reveals a surprising similarity, both with respect to over-
all skill levels as well as to the seasonal cycle in skill
with two maxima, one in the winter and one in the
summer season. Furthermore, the similarity continues
with the winter maximum being the strongest, as well
as the slow decrease of skill with increasing lead time.
Despite these similarities the origin of skill appears to
be quite different for the two areas, as will be discussed
below.

From studying the area-averaged ACC over northern
Europe for the various combinations of predictors, we
find that most of the skill originates from the geopo-
tential height field. Some additional skill, especially in
the summer season, comes from the surface air and sea

temperature fields in the northern European area. Ex-
amination of the predictor and predictand canonical ei-
genvectors reveals that a pattern reminiscent of the
North Atlantic Oscillation (NAO) is a major factor ex-
plaining the obtained skill levels. This notion is also
supported by the high correlation between an NAO in-
dex (NAOI) and the observed surface air temperature
at a typical northern European location in winter. Fur-
thermore, we find that the CCA technique apparently
captures the lower frequency variability of the NAOI,
roughly corresponding to the 4–10-yr timescale, and is
less skillful in predicting the interannual variations in
the NAOI. Therefore we hypothesize that the NAO is
the dominant predictable low-frequency phenomenon
(at least in the winter season) on timescales ranging from
a season to a decade in the northern European area. It
is of course a strong point of CCA to capture a low-
frequency filtered version of the NAOI.

The findings of the present study can be contrasted
with those of the less detailed European temperature
study in B94. The sparsity of Scandinavian stations and
the inclusion of southern Europe in B94 cause results
to be markedly different from those found here. Skill
in B94 for northern Europe is much more modest than
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FIG. 14. (Continued)
FIG. 15. As in Fig. 3 except for CCA forecasts over the United

States with a predictor combination of surface air temperature, geo-
potential height field at 700 hPa, and quasi-global SST. The SST field
is weighted double.

that found here, being overshadowed by relatively stron-
ger relationships involving southern France and the
western Mediterranean Sea in general. The associated
forecast skill is found mainly in late summer and au-
tumn, and is found to be related to the worldwide trop-
ical SST anomaly rather than the NAO.

The above discussion points at possible ways to im-
prove the design of the CCA methodology. Consider
the target season to be in winter where we have max-
imum skill. The present methodology uses four contig-
uous 3-month predictor periods. Regardless of the fore-
cast lead time there will always be one predictor period
in the winter season, albeit not always the core winter
period of JFM. As seen from Fig. 12b there is consid-
erable longer term, interdecadal, variability of the
NAOI. This would suggest that considerably more pre-
dictor periods should be used to achieve a better reso-
lution of the status of this interdecadal variability. An
alternative, similar way to obtain information on the
relevant interdecadal variations could be to consider, for
example, only the four winter periods, NDJ, DJF, JFM,
and FMA, but doing this for several years prior to the
target season. Data from the nonwinter seasons that may
not contribute much to forecast skill, or worse introduce
noise, could thereby be omitted.

We have seen the imprint of something akin to the
NAO in the geopotential height field at 700 hPa. Upper-
air data are, however, unfortunately only available from
approximately the last 50 yr. However, the NAO is also
discernible in the surface pressure field. The use of this
field would lengthen the time series considerably and
thereby give further insight into the empirical relations
revealed in the present study as well as improve the
assessment of skill. The work by Hurrell and van Loon
(1994) give important indications of what to expect. By
studying an NAO index (similar to the one used in this
study) for the 130-yr time period 1864–1993, they find
considerable nonstationarity in the power spectrum. The
early part of the record is dominated by variance at
biennial periods while the latter part is dominated by
variability with periods of 6–10 yr. It is therefore pos-
sible that the empirical relationships obtained by a linear
technique like CCA will prove to be useful for predic-
tions for only that part of the record that has similar
nature of variability as that during the time period for
which it has been trained. This fact does not, however,
imply the absence of predictability in time periods char-
acterized by other types of variability, but rather that
an empirical method such as CCA is unable to quickly
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accommodate nonstationarities. There is no reason, for
example, why the CCA technique should not be able to
avail itself of the QBO-like behavior in the NAO found
in the latter part of the 1800s if we consider only this
time period. Because finely resolved field data are not
readily available for this earlier period, the level of skill
realizable for that period using a pattern relationship
technique such as CCA remains an open question.

To obtain a more complete assessment of the potential
of the NAO in seasonal forecasting, it is necessary to
understand the physical mechanisms that are responsible
for this phenomenon. At the present time we have some
descriptive understanding of the NAO while an under-
standing of the physical mechanisms seems to be lack-
ing. Such a physical understanding would provide the
tools to estimate the extent to which the NAO varies at
low frequencies.

It is interesting to speculate about possible physical
mechanisms that are responsible for the NAO and es-
pecially its low-frequency variability. It is then natural
to look into possible links to the ocean with its longer
timescales. One such intriguing link is the interplay be-
tween the surface air wind conditions above, and the
deep water formation in, the North Atlantic Subpolar
Sea (Norwegian, Iceland, Greenland, and Barents Seas).
The interior of this sea is characterized by a ‘‘mediter-
ranean’’ type of circulation; that is, the water that enters
into the basin becomes denser (in this case due to cool-
ing) to the point that convection starts and deep water
is formed (Stigebrandt 1985). However, there is more
than enough freshwater supply from surrounding rivers
and the relatively fresher Arctic Ocean to—given the
possibility to enter into the interior of the basin—lower
the density beyond what is necessary to halt the deep-
water formation. The climatological wind field over the
basin plays here a key role. The rather persistent cy-
clonic circulation around the Icelandic low keeps, by
the induced Ekman transports, the fresher water in coast-
al currents. In the absence of this cyclonic atmospheric
circulation the conditions in the subpolar sea would be
similar to that in the Arctic Ocean—that is, covered by
perennial sea ice. Such a drastic change is not very likely
but the amplitude and timescale of the NAO is never-
theless large enough to create anticyclonic conditions
several winters in a row.

Several recent studies have indicated the existence of
variability on the interdecadal timescale in the North
Atlantic Subpolar Sea [see, e.g., Weaver and Hughes
(1992) for a review]. Here we will just mention some
recent observational and modeling studies that suggest
that interdecadal variability in the ocean indeed occurs
and where a link to the NAO is possible. The role of
freshwater supply to the northern North Atlantic has
been studied in an oceanic GCM by Rahmstorf (1995).
That study shows that when freshwater is added (arti-
ficially) to the northern North Atlantic it is possible to
obtain variability on the interdecadal timescale. The re-
alism of this variability and possible links to the NAO

are interesting questions. Recent observations in the
North Atlantic Subpolar Sea show that a freshening has
occured during the period 1965–95. Blindheim et al.
(1996) argue that this is caused by changed wind con-
ditions in the area, which cause low saline water from
the East Greenland Current to enter into the interior of
the Subpolar Sea.
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and S. Österhus, 1996: Recent upper layer cooling and freshening
in the Norwegian Sea. Contributions of Statutory Meetings, In-
ternational Council for the Exploration of the Sea, 12 pp.
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