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ABSTRACT

In this study, an optimal weighting system is developed that combines multiple seasonal probabilis-

tic forecasts in the North American Multimodel Ensemble (NMME). The system is applied to predict

temperature and precipitation over the North American continent, and the analysis is conducted using the

1982–2010 hindcasts from eight NMME models, including the CFSv2, CanCM3, CanCM4, GFDL CM2.1,

Forecast-Oriented Low Ocean Resolution (FLOR), GEOS5, CCSM4, and CESM models, with weights de-

termined byminimizing the Brier score using ridge regression. Strategies to improve the performance of ridge

regression are explored, such as eliminating a priori models with negative skill and increasing the effective

sample size by pooling information from neighboring grids. A set of constraints is put in place to confine the

weights within a reasonable range or restrict the weights from departing wildly from equal weights. So when

the predictor–predictand relationship is weak, the multimodel ensemble forecast returns to an equal-weight

combination. The new weighting system improves the predictive skill from the baseline, equally weighted

forecasts. All models contribute to the weighted forecasts differently based upon location and forecast start

and lead times. The amount of improvement varies across space and corresponds to the average model

elimination percentage. The areas with higher elimination rates tend to show larger improvement in cross-

validated verification scores. Some local improvements can be as large as 0.6 in temporal probability anomaly

correlation (TPAC). On average, the results are about 0.02–0.05 in TPAC for temperature probabilistic

forecasts and 0.03–0.05 for precipitation probabilistic forecasts over NorthAmerica. The skill improvement is

generally greater for precipitation probabilistic forecasts than for temperature probabilistic forecasts.

1. Introduction

Multimodel ensembles have been proven to pro-

vide better climate prediction skill (on average) than

any constituent single models (Hagedorn et al. 2005;

Weisheimer et al. 2009; Kirtman et al. 2014; Becker et al.

2014). A topic remaining in debate is whether a com-

bination of multiple model predictions can significantly

improve forecast skill over a simplemultimodel average.

Strategies to combine forecasts from multiple models

have been studied by many (e.g., Krishnamurti et al.

1999, 2000; Kharin and Zwiers 2002; Peng et al. 2002;

DelSole 2007; Weigel et al. 2008; Peña and Van den

Dool 2008; Wanders and Wood 2016) with diverse re-

sults. Some research has found that the predictive skill of

weighted multimodel ensembles is significantly higher

than that of individual models and the ensemble mean

(e.g., Krishnamurti et al. 1999, 2000;Wanders andWood

2016). Other studies concluded that skill scores based on

optimal combinations of multimodel predictions are

only marginally better than those from equally weighted

forecasts (e.g., Kharin and Zwiers 2002; Peng et al. 2002;

DelSole et al. 2013). Several factors contribute to the

discrepancies, including differentmethods, datasets, and

lengths of data used in these studies.

Among the various methods, regression-based weight-

ing schemes are the most common. Regression-based

analyses suffer from two main obstacles: collinearity and

overfitting. Collinearity occurs when two or more model

forecasts are highly correlated, meaning that one can be

predicted from the others with a degree of accuracy. Col-

linearity is often encountered in multimodel combinationCorresponding author: L. Gwen Chen, lichuan.chen@noaa.gov
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studies and exacerbated when more models are added

into the forecasts. One approach to reducing collinearity

is through regularization methods, particularly ridging

(Phillips 1962; Tikhonov 1963; Tikhonov and Arsenin

1977), as seen in the work by Peng et al. (2002) and Peña
and Van den Dool (2008). Another way is to decrease the

dimension of the covariance matrix of forecasts (e.g., Yun

et al. 2003). Several studies (e.g., Doblas-Reyes et al. 2005;

DelSole et al. 2013) suggested that removing models with

no skill or negative weights prior to combining them can

effectively reduce the collinearity and increase the skill

scores. In this study, we propose an iterative elimination

approach in conjunction with ridge regression to obtain a

subset of models (i.e., varying number of models) with

optimal weights for consolidation forecasts.

Another major challenge often encountered in opti-

mization procedures is overfitting. Overfitting occurs

when the length of the training dataset is too short com-

pared to the number of input models (Peña and Van den

Dool 2008). To combat this issue, Van den Dool and

Rukhovets (1994) and Peng et al. (2002) used information

from all grid points in the region of analysis to estimate

regression parameters, thereby effectively increasing the

training dataset. Wanders and Wood (2016) showed sig-

nificant improvements in the subseasonal precipitation

P and temperature T forecast skill of the weighted mul-

timodel ensemble when the forecasts are spatially up-

scaled to a large region. However, the 22 regions (Giorgi

andFrancisco 2000) used in their analysis are so large they

would only provide a small number of forecasts over the

United States. This feature is not desirable in regional

operational forecasts that need a depiction of the forecast

variation across space. In this study, we focus on

gridpoint-wise analysis to meet this need. To reduce

overfitting, DelSole (2007) and Peña and Van den Dool

(2008) suggested that borrowing strength from training

data at neighboring grids can stabilize parameter esti-

mates and improve the performance of regression

schemes relative to the multimodel mean. In this study,

we propose to accumulate statistics from the nearest eight

grid points surrounding the target grid point, namely

from a 3 3 3 spatial mosaic. By doing so, we not only

increase the sample size for estimating the regression

coefficients, but also smooth the sample statistics as the

spatial mosaic moves across space.

The aim of this research is to develop a new weighting

system with conservative strategies to address the above

two difficulties in regression-based, gridpoint-wise ana-

lyses. Specific objectives include 1) the development of an

automatic system that optimally selects and combines a

number of probabilistic forecasts from a fixed set of avail-

able models, 2) incorporation of new strategies and con-

straints to objectively determine weights for consolidation

forecasts, and 3) evaluation of the performance of the new

system and weighted multimodel ensemble with a strict

three-year-out strategy to ensure a trustworthy skill as-

sessment.Anovelty of this research is thatwedirectlywork

with forecasts expressed as probabilities in a three-class

system (above, near, and below normal), in contrast to the

ensemble mean forecasts in physical units used in most

studies. The investigation is conducted using the 1982–2010

hindcasts from eight models in the North American Mul-

timodel Ensemble (NMME), and the study area is focused

on North America.

In the following, section 2 introduces the NMME

seasonal forecast data and verification fields. Section 3

describes the weighting methods and system design for

deriving the consolidation forecasts. Section 4 explains

the cross-validation procedure and performance met-

rics. Section 5 presents the system evaluation and dis-

cusses the results. Section 6 gives forecast examples

from the new system. Section 7 summarizes the major

findings and conclusions from the investigation.

2. Data

a. NMME seasonal forecast data

NMME is amultimodel forecasting system consisting

of coupled climate models from U.S. modeling centers

(including NCEP, GFDL, NASA, and NCAR) and

the Canadian Meteorological Centre (CMC), aimed at

improving subseasonal-to-seasonal prediction capa-

bility (Kirtman et al. 2014). The NMME seasonal

forecast system has a number of models providing

various periods of hindcasts from 1980 to 2012 with

monthly initialization. In this study, we select eight

models in NMME: CFSv2 (Saha et al. 2006, 2014),

CanCM3 (Merryfield et al. 2013), CanCM4 (Merryfield

et al. 2013), CM2.1 (Delworth et al. 2006; Gnanadesikan

et al. 2006), the Forecast-Oriented Low Ocean Resolu-

tion (FLOR) model (Vecchi et al. 2014; Jia et al. 2015),

GEOS5 (Vernieres et al. 2012), CCSM4 (Gent et al.

2011; Danabasoglu et al. 2012), and CESM (Hurrell

et al. 2013). These models have a common period of

hindcasts from 1982 to 2010 and are mapped onto a

common grid system of 18 3 18 resolution covering the

globe. The number of ensemble members for each

model ranges from 10 to 24. Detailed information

about the NMME project and its dataset is available on

NOAA’s Climate Test Bed website (http://www.nws.

noaa.gov/ost/CTB/nmme.htm).

b. Precipitation verification data

The verifying precipitation observations used in this

study are taken from the precipitation reconstruction

(PREC) global land analysis (Chen et al. 2002) from
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January 1982 to June 2011. PREC is a gridded monthly

precipitation product that interpolated gauge observa-

tions from over 17 000 stations collected in the Global

Historical Climatology Network (GHCN) and the Cli-

mateAnomalyMonitoring System (CAMS). The PREC

product is remapped onto the 18 3 18 NMME grid sys-

tem from its original 0.58 3 0.58 resolution using bilinear

interpolation.

c. Temperature verification data

The GHCN_CAMS gridded 2-m temperature data

from January 1982 to June 2011 are used to vali-

date temperature forecasts up to 6-month lead time.

This dataset combines station observations from the

GHCN and CAMS and employs the anomaly in-

terpolation approach with spatially and temporally

varying temperature lapse rates derived from the re-

analysis for topographic adjustment (Fan and Van den

Dool 2008). Similar to the PREC dataset, the GHCN_

CAMS data are also remapped onto the 18 3 18
NMME grid system, in order to be consistent with

NMME seasonal forecast data.

3. Weighting methods and system design

a. Baseline, equally weighted probabilistic forecasts

Seasonal T and P probabilistic forecasts are com-

puted using the simple count method for a three-class

forecast system (Van den Dool 2007; Becker and Van

den Dool 2016). For each model, seasonal T and P

forecasts at a given start and lead time and location/

grid point are classified into three categories (above,

near, and below normal) based on the terciles derived

from the hindcasts of all members, excluding the target

forecast year plus two randomly selected years. Here,

we implement a more stringent cross-validation ap-

proach than the traditional leave-one-out procedure to

reduce the effect of degeneracy in regression-based

forecasts when predictor–predictand relationships are

weak (Barnston and Van den Dool 1993). For T fore-

casts, the tercile thresholds are set as mean 6 0.431 3
standard deviation by assuming a Gaussian distribu-

tion. For P forecasts, the tercile thresholds are the 33th

and 67th percentiles determined by fitting a gamma

distribution to the hindcasts. The classification applies

to each individual member forecast, and the numbers

of ensemble members that fell into the three categories

are counted for target forecast years from 1982 to 2010.

The probability for each forecast year and category is

then calculated by dividing the number of counts in the

category by the total number of ensemble members for

each model.

The equally weighted NMME T or P forecast for a

given start and lead time, location, and category is

computed by

Y(t)5 �
m

i51

a
i
X

i
(t) , (1)

where Y(t) is the weighted NMME forecast for target

year t, ai is the weight for model i, Xi(t) is the forecast

probability for model i at time/forecast year t, and m is

the total number of models (m 5 8 in this study). For

equally weighted forecasts, ai 5 1/m 5 1/8. Please note

that this definition of equally weighted NMME proba-

bilistic forecasts (i.e., one model one vote) is different

from the one in Becker and Van den Dool (2016) used

for real-time NMME forecasts, in which each member

forecast is weighted equally (i.e., onemember one vote).

b. Ridge regression

When ai is not assumed to be a constant across

models, Eq. (1) can be stated as a consolidation forecast

and generalized as a linear combination of m partici-

pating predictions, each multiplied by a correspondent

weight. With a set of verification data, the best forecast

minimizes the average of an error metric (e.g., mean

squared error) over a series of training data. In proba-

bilistic forecasts, the quantity to be minimized is the

mean squared error in probability terms, known as the

Brier score (BS; Brier 1950):

BS5
1

n
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[Y(t)2O(t)]2 5
1

n
�
n

t51

��
�
m

i51
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�2

,

(2)

whereO(t) is the observed probability (either 0 or 1) for

target year t at a given start and lead time, location, and

category, and n is the total number of target forecast

years (n 5 29 in this study).

Such a problem, minimizing Eq. (2), can be solved

classically as

Aa5b , (3)

where A is the m 3 m covariance matrix with elements

aij 5�n

t51Xi(t)Xj(t), b is the covariance vector with m

elements bi 5�n

t51Xi(t)O(t), and vector a has m ele-

ments (a1, a2, . . . , am). Both A and b can be computed

from hindcasts and thus a can be solved for, in principle.

When A in Eq. (3) is ill-conditioned or nearly so, the

solution of weights becomes unstable, and the weights

can be unrealistically large, both positive and negative

(Peña and Van den Dool 2008). Weights could also vary

greatly from grid point to grid point. One way to reduce
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this problem is through ridging (Phillips 1962; Tikhonov

1963; Tikhonov and Arsenin 1977), by repeatedly

adding a small positive constant to the main diagonal of

A until a constraint is satisfied, namely that �m

i51a
2
i is

‘‘small’’ (Peña andVan denDool 2008). In this study, we

employ the penalty term proposed by DelSole (2007) to

constrain the weights deviating far from 1/m within a

Bayesian framework. So when the ridging amount in-

creases, model weights gradually converge to equal

weights. Instead of the sum of the squared weights being

small, we impose a new constraint to restrict the sum of

the weights within the range of 0.9–1.05. So the weighted

probabilistic forecast derived from ridge regression is

compatible with the equally weighted and skill-based

weighted forecasts (described in the next section), both

with the sum of the weights equal to one.

c. Skill-based weights

In areas where T or P forecast skill is low and collin-

earity is high, ridge regression does not always yield

improvements in weighted forecasts. An alternative

solution of weights can be calculated from Eq. (3) based

solely on the diagonal information:

a
i
5

b
i

fa
ii

, (4)

where f 5�m

i51bi/aii is a factor that makes �m

i51ai 5 1.

Here, ai is proportional to the probability anomaly

correlation (PAC; Van denDool et al. 2017) and reflects

model forecast skill in probability terms. This set of

weights can be viewed as if each model is regressed in-

dividually and independently against the observations

(Peña and Van den Dool 2008) and hereafter is referred

to as the skill-based weights.

d. System design

To further reduce the collinearity and overfitting that

often hinder regression-based forecast consolidations, we

develop a new weighting system to incorporate the pro-

posed new strategies and constraints. Figure 1 shows the

schematic of the system design. Without change of no-

tation in the equations, we directly work with the prob-

ability anomaly in the new system. The probability

anomaly is defined as the difference between the model

(or observed) probability and the climatology value (i.e.,

0.333), and it is calculated for NMME probabilistic

forecasts and verification fields before being inputted into

the system. For each target forecast year at a given start

and lead time, location, and forecast category, we first

compute the covariance matrix A and vector b from all

eight participating models using training data (see the

cross-validation strategy in section 4a) with a 33 3 spatial

mosaic centered at the target grid point. If bi is less than

0.01, indicating that the associated input model has no

skill, model i is removed from Eqs. (1)–(3). The remain-

ing models are used to calculate the skill-based weights

(all positive) and solve for the system of linear equations

by ridge regression. If the ridging-basedweight of amodel

ai is negative, suggesting that the associated model does

not have a ‘‘positive’’ contribution to the weighted fore-

cast (Peña and Van denDool 2008), that model is further

removed from Eqs. (1)–(3), and ridge regression is re-

peated until all ridging-based weights are positive and

have a sum close to one. This step may take several it-

erations. Because seasonal T and P forecast skill is low in

some areas, there are places where all eight models are

eliminated. When that happens, there is no solution for

the skill-based and/or ridging-based weights, and the

system automatically falls back to equal weights.

After the weights are determined from the training

data, we compute the target year’s weighted forecasts

from the available sets of weights (equal, skill-based,

and/or ridging-based weights). The above process is re-

peated for all target forecast years and then the cross-

validated BS is calculated for each available weighting

method. Although the ridging-based weights are ob-

tained through an optimization method over a series of

training data, they are not guaranteed to work the best

on independent data compared to other weighting

methods. Therefore, the weighting method that gives

the smallest cross-validated BS is chosen for that grid

point, as intended by Eq. (2), and its correspondent

weighted forecasts are denoted as the ‘‘consolidated’’

forecasts at that grid point. This step ensures that the

selected set of weights generates the best independent

forecasts among the available weighting methods. If the

regression-based (skill based and ridging based) weights

do not present an advantage over equal weights, the

system falls back to the baseline, and hence there is no

loss in skill with respect to equally weighted forecasts.

4. Performance assessment

a. Cross validation

To assess the system performance on independent

data, we use a leave-three-out cross-validation procedure

to reduce the effect of degeneracy and avoid artificial skill

(Barnston and Van den Dool 1993). Of the three years

excluded, one is the target forecast year and two are

randomly chosen among 1982–2010 without repetition.

This procedure is applied to the computation of both the

tercile thresholds of the count method and the covariance

matrix A and vector b in Eq. (3) for determining

regression-basedweights, so the target forecast year is not
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involved in any of the training analyses.More specifically,

cross validation only applies to the definition of tercile

boundaries for the equal-weight average. For skill-based

weights and full ridge regression, cross validation also

affects A and b.

b. Probability anomaly correlation

In addition to BS, we employ the PAC as a perfor-

mance metric to evaluate forecast skill. This metric was

first introduced in Chen et al. (2017) for probability

composite validation and further developed by Van den

Dool et al. (2017) for probabilistic forecast verification

and calibration. The PAC, analogous to the anomaly

correlation, quantifies the strength of the linear associ-

ation between the model probability anomaly and

the observed probability anomaly. In this study, we use

both temporal and spatial PACs for skill assessment.

The cross-validated temporal PAC (TPAC) at a given

start and lead time, location, and forecast category is

defined as

TPAC5
�
n

t51

Y 0(t)3O0(t)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n

t51

Y 0(t)2 3 �
n

t51

O0(t)2
s , (5)

where Y0(t) is the consolidated probability anomaly for

target year t and O0(t) is the observed probability

anomaly for target year t.

FIG. 1. Schematic of the system design.
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Similar to the pattern correlation often used for

comparing forecast and observation maps in de-

terministic forecasts, we can calculate a spatial PAC

(SPAC) between the consolidated and observed prob-

ability anomalymaps for a target forecast year at a given

start and lead time and forecast category by

SPAC5
�
q

s51

w(s)[Y 0(s)3O0(s)]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
q

s51

w(s)Y 0(s)2 3 �
q

s51

w(s)O0(s)2
s , (6)

where Y0(s) is the consolidated probability anomaly

at grid s, O0(s) is the observed probability anomaly

at grid s, q is the total number of land grid points

within the North American domain, and w(s) is the

areal weighting coefficient based on the latitude L of

grid s:

w(s)5 cos[L(s)] . (7)

5. Results and discussion

We start the assessment by examining the predictive

skill of the baseline forecasts. Figure 2 shows an example

of the cross-validated BS of equally weighted fore-

casts (left column) for February–April (FMA) T prob-

abilistic forecasts initialized on 1 January. The top,

middle, and bottom rows in Fig. 2 are for the above-,

near-, and below-normal (AN, NN, and BN) categories,

respectively. The spatial variations of the predictive skill

can be clearly seen in the plots. For the AN category,

FIG. 2. For FMAT probabilistic forecasts initialized on 1 Jan: (left) cross-validatedBS of equally weighted forecasts, (center) difference

in BS between the consolidated and equally weighted forecasts, and (right) average model elimination percentage of consolidated

forecasts for the (a)–(c) AN, (d)–(f) NN, and (g)–(i) BN categories. In (b), (e), and (h), the areas within the red contours are tested to have

statistically significant differences at the 5% level.
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equally weighted T forecasts are more accurate (low BS)

over the Pacific Northwest and along the Texas–Mexico

boundary. Forecast accuracy is also high over the Pacific

Northwest and northern Mexico for the BN category.

Compared to the AN and BN categories, the forecast fi-

delity of theNN category ismuch lower. This is consistent

with the findings of many studies (e.g., Van den Dool and

Toth 1991) that the skill of categorical forecasts has a

tendency to be low, if not absent or negative, in the NN

category. The center column in Fig. 2 presents the dif-

ferences in BS between the consolidated and equally

weighted forecasts for the three categories. Colors

(greens and blues) indicate improvements in T forecast

skill with weighting schemes. Because of the model

elimination and fall back, there is no loss (with respect to

equal weights) when the model skill is poor. The areas

within the red contours are tested to have statistically

significant differences at the 5% level using the method

described by DelSole et al. (2013). For the AN and BN

categories, there are large improvements in skill with the

consolidated T forecasts in the central United States.

These areas coincide with areas that have large average

model elimination percentages (shown in the right column

in Fig. 2), suggesting that the strategy of removing a priori

models with negative skill/weights is the dominant factor

contributing to the improved skill of the consolidated

forecasts. The variation of the weights among models that

passed is a lesser factor. Note that because of the elimi-

nation and fall back, the number of models used in the

consolidated forecast of a given category is different for

each forecast year and location, varying from one to eight.

Figure 3 shows the same plots but for P probabilistic

forecasts. Compared to the equally weighted T fore-

casts in Figs. 2a, 2d, and 2g, we can see that all three

forecast categories have lower accuracy when making

P probabilistic forecasts. Different from the T fore-

casts, equally weighted P forecasts perform better over

the southwestern United States, and there are large

FIG. 3. As in Fig. 2, but for P probabilistic forecasts.
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improvements seen in skill over the Pacific Northwest

and central Mexico with the consolidated forecasts.

Because rainfall variability is high across space, areas

of improvement (tested to be statistically significant)

are more scattered throughout the North American

continent. Still, there is strong correspondence be-

tween the areas with large skill improvements (Fig. 3,

center) and with large model elimination rates (Fig. 3,

right), reinforcing that model elimination is a key fac-

tor for skill improvements regardless of forecast

variable.

In Figs. 2 and 3, we calculate the average model

elimination percentage at a given location by dividing

the number of eliminated models by the total number of

models of all 29 forecast years. This percentage gives a

sense of the average number of models that were re-

moved in the consolidated forecasts without specifying

the model names. Figure 4 provides the elimination

percentage of a specific model for the same FMA T and

P forecasts initialized on 1 January. For a given model

in a given forecast category, this elimination percentage

reflects how often the specific model was removed from

the consolidated forecasts by counting from all land

grids within the North American continent and all 29

forecast years. For bothT (Figs. 4a–c) andP (Figs. 4d–f),

all models have been removed from the consolidated

forecasts some time at some points, suggesting that all

models contribute to the consolidated forecasts differ-

ently based upon location. This feature can be clearly

seen by inspecting the weight maps of all models for all

forecast years (not shown due to the large number of

figures). For the AN and BN categories, most models

were removed from the consolidated forecasts more

often for P probabilistic forecasts than for T probabi-

listic forecasts, because the predictive skill of P proba-

bilistic forecasts generally is lower than that of T

forecasts. In contrast, the elimination percentages of all

models in the NN category are smaller for P probabi-

listic forecasts than for T probabilistic forecasts. This is

caused by the predictive skill of P forecasts in the NN

category being so poor, and a large portion of them fall

back to equal weights. For a given variable and forecast

category, the elimination rate of a specific model

somewhat reflects inversely the model’s predictive skill.

For example, for T forecasts in the AN category

(Fig. 4a), CCSM4 and CESM generally have lower skill

when predicting FMA temperature from a January start

compared to other models, and thus they have higher

elimination rates.

We further examine the choice of the weighting

method at each forecast location to identify any spatial

coherence or variation of the preferred weighting

method across the North American continent. We use

the same FMA forecast example to illustrate the results

FIG. 4. Elimination percentages of a specific model for FMA probabilistic forecasts initialized on 1 Jan for the (left)

temperature and (right) precipitation forecasts for the (a),(d) AN, (b),(e) NN, and (c),(f) BN categories.
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in Figs. 5 (for T) and 6 (for P). The top row in Fig. 5

presents the fraction of North American land grids

where each weighting method is favored, and the bot-

tom row displays the map of the favored weighting

methods. Here, favored means producing the lowest

cross-validated BS during the test years. Left, center,

and right columns are for the AN, NN, and BN

categories, respectively. For all three forecast cate-

gories, ridge regression is the dominant weighting

method over the North American continent. For the

AN and BN categories, skill-based weighting has an

advantage over equal weights. The maps of the

weighting methods for all three forecast categories

clearly show clusters of weighting method results in

FIG. 5. Choice of weighting method for FMA T probabilistic forecasts initialized on 1 Jan: (left) AN, (center) NN, and (right) BN. (top)

The fraction of theNorthAmerican area selected for eachweightingmethod, and (bottom) the selectedweightingmethod at each location

using the same colors.

FIG. 6. As in Fig. 5, but for P probabilistic forecasts.
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space, suggesting that there might be an association be-

tween the preferred weighting method and the model

forecast skill. For the AN and BN categories, ridge

regression is apparent along the West Coast and the

south-central United States, and northern Canada, where

skill-based weighting is visible across the central United

States, southern Mexico, and northeastern Canada.

For the FMA P probabilistic forecasts initialized on

1 January (Fig. 6), ridge regression is still the dominant

weighting method. In contrast with the T forecasts, more

grid points in the North American continent fall back to

equal weights. In fact, equal weighting is competitive with

ridge regression in the AN and BN categories. Although

only about 26% of the grid points chose skill-based

FIG. 7. Lead-1T probabilistic forecasts for the AN category: (left) cross-validated TPAC of equally weighted forecasts, (center) dif-

ference in TPAC between the consolidated and equally weighted forecasts, and (right) average elimination percentage of consolidated

forecasts for (a)–(c) MAM, (d)–(f) JJA, (g)–(i) SON, and (j)–(l) DJF. In (b), (e), (h), and (k), the areas within the red contours are tested

to have statistically significant differences at the 5% level.
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weighting, most of these grid points are located over the

western United States and northern Mexico. Ridge re-

gression is more noticeably favored in the central United

States and Canada. For the NN category, there is no clear

pattern, and the weighting methods are randomly dis-

tributed throughout the North American continent.

To analyze seasonality, Fig. 7 shows the lead-1T prob-

abilistic forecasts in the AN category for four seasons:

March–May (MAM; top row), June–August (JJA; second

row), September–November (SON; third row), and

December–February (DJF; bottom row). Unlike Fig. 2,

the left column in Fig. 7 displays the TPAC of the equally

weighted T forecasts. It can be seen that the predictive

skill of the equally weighted forecasts varies not only

across space but also with time. For theMAM season, the

skill is higher over the Pacific Northwest and southwest

monsoon region. For the JJA season, equally weighted

forecasts perform better over the western United States.

FIG. 8. As in Fig. 7, but for P probabilistic forecasts of the BN category.
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In the fall (SON season), TPAC is above 0.3 for most

areas in the central United States. During wintertime

(DJF), equally weighted forecasts are not skillful for the

majority of the United States; however, they have skill in

predicting above-normal temperatures over eastern Can-

ada, and their skill is high in this region for all seasons. The

differences in TPAC between the consolidated and

equally weighted forecasts are presented in the center

column in Fig. 7. Skill improvements also vary with both

space and time.Among the four seasons, SONbenefits the

most from the weighting schemes, with large areas of

improvement seen over the upper Midwest and central

Canada. The winter season (DJF) also has a large gain in

skill over thewesternUnited States. Similar to the findings

from Fig. 2, the areas of large skill improvement coincide

with the areas of large average model elimination per-

centage (right column). This finding holds true regardless

of the forecast season, category, or lead time.

Figure 8 shows the same plots as those in Fig. 7 but for

P forecasts in the BN category. Similar to the obser-

vations from Fig. 3, the predictive skill of P probabi-

listic forecasts generally is low. Still, it depends on the

season and location. For the MAM season, equally

weighted P forecasts have some skill over the south-

west United States. In summertime (JJA), there is not

much skill in predicting rainfall over North America

except for areas across Idaho, Wyoming, and southern

Mexico. In the fall, some skill is observed over the

southwest monsoon region and the Gulf Coast states.

Rainfall prediction is most skillful in the wintertime

FIG. 9. Matrix charts of cross-validated TPAC averaged over NorthAmerica for all start and leadmonths. The (left) equally weightedT

probabilistic forecasts and (right) differences between the consolidated and equally weighted T probabilistic forecasts of the (a),(d) AN,

(b),(e) NN, and (c),(f) BN categories.
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(DJF) across the southern United States and northern

Mexico, likely as a result of the strong El Niño–
Southern Oscillation (ENSO) influence in this season

(Chen et al. 2017). The improvements in skill (Fig. 8,

center column) are more local and scattered compared

with the T forecasts. In the spring (MAM), large im-

provements can be seen for the East Coast, upper

Midwest, and northern California. In the summertime

(JJA), the upper Midwest, Pacific Northwest, and

northern and central Mexico benefit from the weight-

ing schemes. During the SON season, some improve-

ments appear over southwestern Alaska, the central

Rocky Mountains, and the Gulf states. For the DJF

season, when P probabilistic forecasts are most skillful,

enhancements are observed in many places over North

America, except for some areas along the U. S. East

Coast, northern Mexico, and northwestern Canada.

The areas of large skill improvement again coincide

with the areas of large model elimination rate.

To offer a complete picture of how the skill and its

improvements relate to the forecast start and lead times,

we compute the cross-validated TPAC averaged over

NorthAmerica for all 12 of the initial months and up to a

6-month lead. Figure 9 presents the results for T prob-

abilistic forecasts, and Fig. 10 is for P probabilistic

forecasts. In both figures, the left column is the average

TPAC of equally weighted forecasts, and the right col-

umn is the difference between the consolidated and

equally weighted forecasts, indicating skill improve-

ments due to weighting schemes. The top, middle, and

bottom rows are for the AN, NN, and BN categories,

respectively. For T probabilistic forecasts, the results of

the AN and BN categories are consistent and predictive

skill usually is higher at short leads and for all months

FIG. 10. As in Fig. 9, but for P probabilistic forecasts.
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except late fall. Skill is roughly a function of target

forecast month. Predictive skill is very poor for the NN

category, as discussed byVan denDool and Toth (1991).

There is no clear pattern in skill improvement associated

with the forecast start and lead times. The average in-

crease in TPAC ranges from 0.02 to 0.05 for all three

forecast categories.

Compared to the T probabilistic forecasts, the pre-

dictive skill of P probabilistic forecasts evidently is less.

However, the increases in TPAC are greater for P

probabilistic forecasts spanning within 0.03–0.05 and in

deeper brown colors. This is caused by the fact that the

intermodel variability of the P forecast skill is larger

than that of the T forecast skill for NMME models, so

there are more gains by optimally combining models

based on hindcast performance. Different from the T

forecasts, the predictive skill of equally weighted P

forecasts is higher from late fall to early winter. Similar

skill patterns are observed from both the AN and BN

categories.

Figure 11 displays the matrix charts of the fraction of

the North American land area tested to be statistically

significant at the 5% level for all start and lead times.

The left column in Fig. 11 shows the results for T

probabilistic forecasts, and the right column is for P

probabilistic forecasts. The top, middle, and bottom

rows are for the AN, NN, and BN categories, re-

spectively. The fractions of North American land area

for which the equal-weighting hypothesis is rejected are

about 4%–26% and 6%–17% at the 5% significance

FIG. 11. Matrix charts of the fraction of the North American area with differences between the consolidated and equally weighted

forecasts tested to be statistically significant at the 5% level for all start and leadmonths. The (left)T and (right)P probabilistic forecasts of

the (a),(d) AN, (b),(e) NN, and (c),(f) BN categories.
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level for T and P probabilistic forecasts, respectively,

which are both higher than reported in the study by

DelSole et al. (2013). Generally, more grid points are

tested to have statistically significant differences for T

probabilistic forecasts than for P forecasts. For T fore-

casts, the summer season has greater percentages than

other seasons. For P forecasts, large fractions appear

from late fall to early winter. These seasonal patterns are

consistent with the forecast skill patterns observed in

Figs. 9 and 10 for the equally weightedT andP forecasts,

respectively, indicating that there is a strong relationship

between the area fraction and model forecast skill.

When model forecasts are skillful, more grid points are

tested to have statistically significant improvement

coming from the weighting schemes. For the NN cate-

gory, in which no skill was found for either T or P

probabilistic forecasts, only a small portion of North

American land grids can reject the equal-weighting

hypothesis.

Last, we calculate the fraction of North American land

grids selected for each weighting method. The results are

shown in Fig. 12 forT probabilistic forecasts and in Fig. 13

forP probabilistic forecasts. Because forecast skill is poor

for the NN category and its choice of weighting method

does not have a clear spatial pattern (as seen in Fig. 6), we

only present the matrix charts for the AN (left column)

and BN (right column) categories. The top, middle, and

bottom rows are for the skill-based, ridging-based, and

equal weighting methods, respectively. For both T and P

probabilistic forecasts, ridge regression is the dominant

weighting method among the three options studied

here. It is most visible during the winter season for T

FIG. 12. Matrix charts of the fraction of the North American area selected for (a) skill-based, (b) ridging-based, and (c) equal weighting

methods for T probabilistic forecasts of the AN category. (d)–(f) As in (a)–(c), but for the BN category.
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probabilistic forecasts (both AN and BN categories) and

from late spring to summer for P probabilistic forecasts

(both AN and BN categories). Whenmodel forecasts are

skillful (i.e., summer season for T forecasts and from late

fall to early winter for P forecasts), skill-based weighting

is more apparent and complementary to the ridge re-

gressionmethod. In fact, the patterns of the matrix charts

in Figs. 12 and 13 for the skill-based and ridging-based

weighting methods correspond to the patterns of the

matrix charts of cross-validated TPAC results shown in

Figs. 9 and 10 for both the AN and BN categories.

However, because the P forecast skill generally is lower

than the T forecast skill, there are fewer grid points

choosing the skill-based weighting and more grid points

falling back to equal weights. All these features, in ad-

dition to previous observations fromFigs. 5 and 6, suggest

that the choice of weighting method strongly depends on

the model predictive skill.

6. Forecast examples

To inspect the potential impacts of the new weighting

system on forecast operations, we generate the consol-

idated and equally weighted forecast maps for all target

forecast years and start and lead months, as well as the

observed tercile category maps for comparison. Because

the weighting algorithm is applied to the three forecast

categories separately, the consolidation forecasts are

optimized independently, and the sum of the probability

of the three categories is not forced to be one. Most of the

time, these violations are within 65%. Occasionally, dis-

crepancies greater than 20% occur. A similar problemwas

FIG. 13. As in Fig. 12, but for P probabilistic forecasts.
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encounteredwith PAC-calibrated forecasts, as seen inVan

den Dool et al. (2017). We employ the iterative procedure

described in their appendix to adjust the probability of the

three terciles, so the basic definition of probability can

be met.

Figure 14 shows an example of the consolidated (after

probability adjustments) and equally weighted T prob-

abilistic forecasts of the FMA 1982 season initialized on

1 January 1982. In the forecast maps, the above-normal

shading (from yellow to red) at a grid point is shown only

when its probability is greater than 35% and the prob-

ability of conditions being below normal at the same

location is lower than 33%. In contrast, below-normal

shading (blue) is shown when its probability is greater

than 35% and the probability of above normal at the

same location is lower than 33%. Near-normal condi-

tions are shown when the probability of the neutral

tercile is more than 35%, and the probabilities of above

and below normal are both less than 33%.When no class

is dominant (either all categories are under 35% or both

above and below normal are over 33%), no shading is

shown. Although the probabilities in the consolidated

and equally weighted forecast maps are different, they

present similar spatial patterns with colder than normal

temperature covering most of the North American

continent and some warming areas appearing over the

southern Mexico and eastern Canada. None of the

probabilities captures the above-normal temperatures

along the U.S. and Canada boundary as seen in the ob-

servations. The SPAC for the equally weighted forecasts

of the AN, NN, and BN categories are 0.115, 0.279, and

0.429, respectively. The SPAC for the consolidated

forecasts of the AN, NN, and BN categories are 0.138,

0.287, and 0.474, respectively, which are slightly in-

creased from the equally weighted forecasts.

Figure 15 shows the same maps but for the P probabi-

listic forecasts and observations. The overall patterns be-

tween the maps of consolidated and equally weighted

forecasts are still similar, but their discrepancies are

greater when compared to the T probabilistic forecasts.

Major differences are seen over the Pacific Northwest and

central Mexico. For the Pacific Northwest, the rainfall

FIG. 14. (a) Consolidated and (b) equally weightedT probabilistic forecasts for FMA 1982 initialized on 1 Jan 1982. Blue colors indicate

the probability of the BN category, gray colors indicate the probability of the NN category, and yellow-to-red colors indicate the prob-

ability of the AN category. (c) Observed tercile categories for the FMA 1982 temperature. Solid gold, gray, and blue shadings are for the

AN, NN, and BN categories, respectively.
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category changes from near normal to above normal,

which is consistent with the observations. For central

Mexico, forecasts flip from drier to wetter than normal

conditions, verifying well with the above-normal rainfall

observations. Compared to the elimination percentage

maps of the AN and BN categories in Fig. 3, these two

areas coincide with the areas that have high elimination

rates and large increases in cross-validated BS, demon-

strating the new weighting system’s ability to identify

skillful models and improve forecast skill. The SPAC for

the equally weighted forecasts of the AN, NN, and BN

categories are 0.108, 0.049, and 0.107, respectively. The

SPAC for the consolidated forecasts of the AN, NN, and

BNcategories are 0.198, 0.126, and 0.173, respectively. The

improvements in SPAC for P probabilistic forecasts are

greater than those for T probabilistic forecasts in this case.

Although Fig. 15 illustrates a successful example of

the new weighting system and its potential use for op-

erational forecasts, cases like this (with forecast cate-

gory changes) are infrequent. Figure 16 displays the time

series of SPAC for all target years of FMA probabilistic

forecasts initialized on 1 January. For the AN (top row)

and BN (bottom row) categories of T probabilistic

forecasts (left column), only a few years present large

increases in SPAC. There are more gains in SPAC for P

probabilistic forecasts (right column), in both the AN

and BN categories. Yet, the increases are small for most

years. If we take into account the target years of all

forecast start and lead months, about 10% of the time,

on average, we see a greater than 0.1 increase in SPAC

for an individual forecast (either T or P). In most cases,

the consolidated forecast maps are similar to the equally

weighted forecast maps as seen in Fig. 14.

Despite the limited (mainly local) improvements from

the new weighting system, several analyses presented in

section 5 (e.g., Figs. 11–13) point to a strong linkage

between model forecast skill and weighting improve-

ments.Whenmodel forecasts are skillful, there aremore

gains with weighting schemes. When model predictive

skill is poor, equal weighting is a competitive method for

combining multiple model predictions. This feature may

be attributed to the conclusion by some studies in the

FIG. 15. (a) Consolidated and (b) equally weighted P probabilistic forecasts for FMA 1982 initialized on 1 Jan 1982. Brown colors

indicate the probability of the BN category, gray colors indicate the probability of the NN category, and green colors indicate the

probability of the AN category. (c) Observed tercile categories for the FMA 1982 precipitation. Solid green, gray, and brown shadings are

for the AN, NN, and BN categories, respectively.
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past decades that weighted forecasts were only mar-

ginally better than equally weighted forecasts, since

many models in the DEMETER era (Doblas-Reyes

et al. 2005; Peña and Van den Dool 2008) have less skill

compared to NMME models. As climate models con-

tinue to advance, more benefits are expected from

weighting schemes with the next-generation models.

7. Summary and conclusions

We have developed an objective weighting system to

combine multiple seasonal probabilistic forecasts in the

North American Multimodel Ensemble (NMME), in

contrast to conventional work on ensemble means. The

system is applied to predict precipitation P and tem-

perature T over the North American continent, and the

analysis is conducted using the 1982–2010 hindcasts

from eight NMME models, including the CFSv2,

CanCM3, CanCM4, CM2.1, FLOR, GEOS5, CCSM4,

and CESM models, with weights determined by min-

imizing the Brier score using ridge regression. We

exploited two conservative strategies to improve the

performance of ridge regression: eliminating a priori

models with negative skill (and/or negative weight)

and increasing the effective sample size by pooling

information from neighboring grids. A set of new con-

straints is put in place to confine the weights within a rea-

sonable range or restrict the weights from departing wildly

from equal weights, which is the fallback. So when the

predictor–predictand (model forecast–verifying observa-

tion) relationship is weak, the multimodel ensemble fore-

cast returns to an equal-weight combination. The system

performance is assessed using a leave-three-out procedure

to reduce the effect of degeneracy in cross-validated skill in

regression-based forecasts. Our major findings are sum-

marized below.

d The new system is able to optimally select a varying

number of skillful models based on hindcast perfor-

mance and assign weights accordingly. All models

contribute to the consolidated forecasts differently

based upon location and forecast start and lead times.
d The system shows improved skill from the baseline,

equally weighted forecasts. Because of the elimination

and fall back, there is no loss (with respect to equal

weights) when model skill is poor.
d For a given forecast start and lead time, the amount

of improvement over equal weights varies across

space and corresponds to the average model elimi-

nation percentage. Areas with higher elimination

FIG. 16. Time series of SPAC for FMA 1982–2010 probabilistic forecasts initialized on 1 Jan for (left) temperature

and (right) precipitation forecasts of the (a),(d) AN, (b),(e) NN, and (c),(f) BN categories.
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rates tend to have larger improvements in cross-

validated verification scores.
d Some local improvements can be as large as 0.6 in

cross-validated temporal probability anomaly corre-

lation (TPAC). On average, improvements are about

0.02–0.05 in TPAC for T probabilistic forecasts and

0.03–0.05 for P probabilistic forecasts over the North

American continent.
d The skill improvement is generally greater for P prob-

abilistic forecasts than for T probabilistic forecasts.
d The choice of weighting method within the designed

system and the significance testing results strongly

depend on the model predictive skill.

For years, scientists have debated about whether

weighting methods can significantly improve the fore-

cast skill of multimodel combinations from simple

multimodel means. We have demonstrated that with

proper strategies to reduce collinearity and increase the

sample size of the training dataset, it is beneficial to

combine multiple model predictions with regression-

based weighting schemes, especially when model fore-

casts are skillful. The strong linkage between model

forecast skill and the choice of weighting method sug-

gests that the benefits with regression-based weighting

schemes would be even greater if the model skill is

higher. When model predictive skill is low, equally

weighted forecasts have an advantage. This may have

led to earlier conclusions by some studies based on using

climate models from a previous era. As climate models

continue to advance and their skill continues to improve,

we believe that weighting methods will achieve more

gains in skill with the next-generation models.

In this study, we have designed a system to fall back to

the baseline when all models are eliminated or no skill is

enhanced by the weighted forecasts. We use equally

weighted forecasts as the baseline for the evaluation to

be in alignment with the literature. In operation, fore-

casts are damped to climatology (equal chance in

probabilistic forecasts) when unskillful (i.e., calibrated),

and it is desirable to have the system fall back to cali-

brated forecasts when predictive skill is poor. How to

combine multimodel forecast calibration and weighting

into a single optimal system with effective strategies (as

proposed in this research) is a challenging topic and

requires further endeavors to meet this goal.
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