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ABSTRACT

A simple bias correction method was used to correct daily operational ensemble week-1 and week-2 pre-

cipitation and 2-m surface air temperature forecasts from the NCEP Global Forecast System (GFS). The

study shows some unexpected and striking features of the forecast errors or biases of both precipitation and

2-m surface air temperature from the GFS. They are dominated by relatively large-scale spatial patterns and

low-frequency variations that resemble the annual cycle. A large portion of these forecast errors is removable,

but the effectiveness is time and space dependent. The bias-corrected week-1 and week-2 ensemble pre-

cipitation and 2-m surface air temperature forecasts indicate some improvements over their raw counterparts.

However, the overall levels of week-1 and week-2 forecast skill in terms of spatial anomaly correlation and

root-mean-square error are still only modest. The dynamical soil moisture forecasts (i.e., land surface hy-

drological model forced with bias-corrected precipitation and 2-m surface air temperature integrated forward

for up to 2 weeks) have very high skill, but hardly beat persistence over the United States. The inability to

outperform persistence mainly relates to the skill of the current GFS week-1 and week-2 precipitation

forecasts not being above a threshold (i.e., anomaly correlation . 0.5 is required).

1. Introduction

Precipitation (P) and 2-m surface air temperature

(T2m) are two meteorological variables that have most

important impacts on human society. For soil moisture,

the so-called sea surface temperature (SST) has also

been considered important for weather and climate

prediction, in particular during the warm season when

the land and atmosphere are more tightly coupled

(Dirmeyer 2000; Kanamitsu et al. 2003; Koster et al.

2003; Van den Dool et al. 2003; Zhang and Frederikson

2003; Van den Dool 2007). Soil moisture is also an im-

portant indicator for real-time drought and flood mon-

itoring. Therefore, for obvious reasons, accurately

predicting these three variables is of great practical im-

portance. In 1997 the Climate Prediction Center (CPC)

of the National Centers for Environmental Prediction

(NCEP) started a soil moisture ‘‘dynamical’’ week-1 and

week-2 outlook program, over the United States only, on

a daily basis, using CPC’s leaky bucket (LB) land surface

hydrological model (Huang et al. 1996; Van den Dool et al.

2003) forced with week-1 and week-2 P and T2m from

a single-member forecast of the NCEP Medium-Range

Forecast (MRF), now known as the Global Forecast System

(GFS). From late 2001 onward, the GFS ensemble mean

forecast was used to replace the single-member forecast

and the procedure was further improved in late 2003 to

include the bias-corrected GFS ensemble mean forecast.

In mid-2007, the CPC initiated its monitoring and

prediction of the variability of global (African, Asian,

Australian, and American) monsoon systems, in col-

laboration with the international community’s efforts on

improving monsoon monitoring and providing timely

and hopefully useful weather and climate information

for different users and decision makers regionally and

globally. With the release of the CPC gauge-based daily

Global Unified Land Surface Precipitation Analysis in

late 2007 (Chen et al. 2008), the daily bias-corrected

GFS ensemble week-1 and week-2 precipitation fore-

casts have been expanded to the global land surface.

The reader should understand that the LB model is

kept up to date every day by forcing it with the observed
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P and T2m. One can look upon this as an integration of

the LB from 1931 to 1200 UTC yesterday (to provide

initial conditions), and then the GFS’s T2m and P are

appended to this ongoing LB integration to jump an-

other 2 weeks ahead (to make soil moisture forecasts).

We do not use the GFS’s soil moisture directly, there by

avoiding having to deal with the potentially very biased

soil moisture states of the GFS. We note that the LB land

surface hydrological model is integrated in, what is called,

an offline fashion (i.e., not coupled to the atmosphere).

More primitive approaches to avoiding the GFS soil

moisture bias include considering the 2-week change in the

GFS’s soil moisture predicted by the GFS itself, a product

launched by Center for Ocean–Land–Atmosphere Study

(COLA) around 1995.

In this paper we report upon our research into oper-

ational products. When we talk below about research,

we mean research ‘‘on the fly’’ applied to products that

were generated in real time, that is, only a few years’

worth of data have been saved (sometimes with holes or

a few days of missing data in the archive) and nothing

was rerun since it is too costly to rerun the GFS. The

work reported here is thus quite different from research

in which hindcasts with a constant or frozen model were

made with the express purpose of model calibration

(Hamill et al. 2006; Saha et al. 2006).

The NCEP GFS is not a frozen system but has been

upgraded frequently in terms of its dynamical core and

physics package in recent years. In the early stages

of CPC’s soil moisture ‘‘dynamical’’ outlook, its perfor-

mance was relatively poorer. In recent years, there is

considerable anecdotal evidence that the NCEP GFS and

GFS ensemble produce skillful forecasts, which motivates

a formal quantitative verification of the modeling system.

The first part of this work is to assess the GFS ensemble

mean week-1 and week-2 P forecasts over global land and

T2m forecasts over the United States. The main attention

is on the skill of the bias-corrected GFS ensemble mean P

forecasts over the North American, South American,

Asia–Australian, and African monsoon regions. Detailed

analysis is conducted on the spatiotemporal distribution

of the bias, in order to address questions like: What does

the bias look like and is it removable? Does bias correc-

tion improve the GFS forecast skill? The second part of

this research focuses on the predictability of the land

surface, but over the United States only. Since the pre-

dictability of soil moisture critically depends on the

quality of the GFS ensemble precipitation and the surface

air temperature forecasts, further analysis is done on the

spatiotemporal features of the GFS-driven soil moisture

forecast skills, that is, when, where, and to what extent the

soil moisture can be predicted on week-1 and week-2 time

scales beyond the skill of a persistence forecast.

2. Methodology and data

When compared with other meteorological variables,

precipitation is more difficult to forecast due to its epi-

sodic and short-lived nature. The forecasts for T2m are

generally better than those for precipitation. The spa-

tiotemporal distribution of T2m is also relatively more

homogeneous, but this does not mean that T2m is easier

to forecast everywhere because it is strongly impacted

by the complexity of the lower boundary conditions

(such as land and water surface, soil properties, and

vegetation covers) and topography. The current level of

forecast skill for P and T2m directly from numerical

weather prediction (NWP) models in week-1 and week-2

time scales is still not good enough and a bias correction

or postprocessing process is needed before the forecast is

issued or applied elsewhere.

In this study, a simple running-mean error correction is

implemented to remove biases from the NCEP GFS en-

semble mean forecasts. That is, every day at 0000 UTC

the week-1 and week-2 GFS ensemble mean P and

T2m forecasts have been corrected with the past N-day

FIG. 1. Time series of the daily spatial correlation of week-1

(solid) and week-2 (dotted) observed and forecasted precipitation

anomalies over North America (averaged over 108–558N, 1408–

608W) for the period 1 Jan 2008–31 Mar 2010. Bias correction is

based on 30-day mean forecast errors on 0.58 3 0.58 grid. Units are

dimensionless.
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running-mean forecast errors (i.e., biases), defined as

follows:

Bias1 5 S[Pf(week1)� Po(week1)]/N and (1)

Bias2 5 S[Pf(week2)� Po(week2)]/N, (2)

where Pf is the weekly mean or accumulated model output

and Po is the observed weekly mean or accumulated data.

In addition, N is the number of days (e.g., 30 or 7 days,

these being the only two choices being maintained in real

time at CPC) and the choice of N is subjective. In general,

the mean forecast errors calculated from larger N (e.g., 30

FIG. 2. Time series of 5-day running-mean daily spatial correlations of (left) week-1 and (right) week-2 observed and

forecasted precipitation anomalies over (top to bottom) North America (NA), South America (SA), Asia-Australia

(AS), and Africa (AF). Bias-corrected (raw) forecast scores are shown by the solid (dotted) line. The bias correction is

based on 30-day mean forecast errors. Units are dimensionless.
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days) are more robust than those from the smaller N (e.g.,

7 days or 1 day), but N cannot be too much larger than 30

because seasonality may interfere; keep in mind that the

N day mean is backward looking. The N 5 7 estimate,

while noisy, is also maintained because forecasters

sometimes believe that a regime-dependent systematic

bias can be applied.

The model data used here are from the NCEP Global

Ensemble Forecast System (GEFS; Toth et al. 1997),

which is a GFS (a global spectral data assimilation and

forecast model system) based modeling system. It runs

with 20 ensemble members per cycle plus one control

at T126. The GEFS forecasts are produced for up to

28 levels every 6 h at 0000, 0600, 1200, and 1800 UTC.

FIG. 3. As in Fig. 2, but for RMSEs. Units are mm week21.
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All runs are up to 384 h at 6-h intervals. Data are in-

terpolated to 18 3 18 resolution from 0 to 384 forecast

hours. The NCEP GFS is an unfrozen system and major

changes have been implemented frequently (information

online at http://www.emc.ncep.noaa.gov/GFS/doc.php).

The above simple running-mean bias correction has

been applied to the NCEP GEFS ensemble mean week-1

and week-2 P accumulation forecasts at 0000 UTC. The

observed week-1 and week-2 precipitation is from the

CPC daily U.S. (Higgins et al. 1996) and Global Unified

Precipitation Analysis (Chen et al. 2008). The very same

bias correction method is also applied every day to the

week-1 and week-2 averaged GFS ensemble T2m fore-

casts, but over the United States only, because the cur-

rent CPC daily T2m analysis (Janowiak et al. 1999) is

available for the United States only.

Of course, one can calculate the mean forecast errors

for the bias correction with more complicated methods,

such as nonequal weighting (giving larger weights to

more recent days) or the use of probability density

function (PDF) adjustment (Wang and Xie 2007) based

on the forecasted and observed precipitation in the past

few days. Another more sophisticated model output sta-

tistics (MOS) technique (Glahn and Lowry 1972) is also

used for operational weather forecasts at the National

Weather Service, which relates observed meteorological

elements (predictands) to appropriate variables (predictors,

such as model outputs) through a statistical approach.

The daily bias-corrected GFS ensemble week-1 and

week-2 P and T2m forecasts and other land surface var-

iables (i.e., soil moisture, evaporation, and runoff) from

the CPC leaky bucket hydrological model (Huang et al.

1996) forced with the above bias-corrected P and T2m

over the United States are archived from late 2003.

However, the daily bias-corrected GFS ensemble week-1

and week-2 P forecasts over the globe are archived from

late 2007, with some missing data in the first few months.

Therefore, when comparing or analyzing P and T2m

forecast skills over the different regions, the common

period from 1 April 2008 to 31 March 2010 was used.

While for other variables (i.e., soil moisture) over the

U.S. region, the data were used for as long a period of

record as possible (i.e., perhaps as far back as late 2003).

This study does not intend to compare bias correction

methods, but focuses on the spatiotemporal features of

model forecast errors or biases, and whether and to what

extent they are removable. All results were based on the

above simple running mean bias correction [Eqs. (1) and

(2)] method.

3. Performance of NCEP GFS week-1 and week-2
bias-corrected ensemble mean P and T2m fore-
casts

Since the above simple running-mean bias correc-

tions (with both 30- and 7-day mean forecast errors) are

performed every day, the raw (no bias correction ap-

plied) datasets and bias-corrected datasets have been

archived on a daily basis for verification and research.

Figure 1 shows the time evolution of the daily spatial

correlation between the week-1 and week-2 observed

precipitation anomalies and the GEFS ensemble fore-

casted precipitation anomalies over North America (av-

eraged over 108–558N, 1408–608W), corrected with the

30-day running-mean forecast errors. The dominant

features are a large day-to-day fluctuation in skill and a

seasonal cycle in the GEFS precipitation forecast skill,

with the relatively higher skill in the cold season and

lower skill in the warm season. In general, the mean of

the daily spatial correlation skill for the week-1 GEFS

ensemble mean precipitation forecasts is around 0.49

and it is 0.24 for the week-2 GEFS ensemble mean

precipitation forecasts over the period of 1 January

2008–31 April 2010. The same levels of daily forecast

skill over other major monsoon regions (e.g., South

America, Asia–Australia, and Africa) show similar large

day-to-day fluctuation but with somewhat different

levels of skill (not shown).

Here, one of our main questions is: Does bias cor-

rection actually improve the GEFS forecast skill? Figs. 2

and 3 display time series of the 5-day running-mean

daily spatial correlation and root-mean-square error

TABLE 1. Averaged (1 Apr 2008–31 Mar 2010) spatial correla-

tions of observed and GFS forecast week-1 and week-2 pre-

cipitation anomalies over different monsoon regions.

Week 1 Week 2

Bias correction

No bias

correction Bias correction

No bias

correction

NA 0.49 0.48 0.24 0.26

SA 0.45 0.25 0.31 0.18

AS 0.47 0.40 0.29 0.26

AF 0.40 0.24 0.25 0.13

TABLE 2. Averaged (1 Apr 2008–31 Mar 2010) RMSEs of ob-

served and GSF-forecasted week-1 and week-2 precipitation over

different monsoon regions (mm week21).

Week 1 Week 2

Bias

correction

No bias

correction

Bias

correction

No bias

correction

NA 19.18 22.82 21.61 23.58

SA 29.55 41.06 32.27 41.72

AS 22.65 27.62 25.24 29.15

AF 17.06 19.47 17.66 19.33
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(RMSE) of week-1 and week-2 observed and forecasted

ensemble P over the different major monsoon regions

[i.e., North America (NA), South America (SA), Asia–

Australia (AS), and Africa (AF)] with bias correction

based on 30-day running-mean forecast errors. The

results (also see the mean values in Table 1) show that

in terms of spatial anomaly correlation the bias cor-

rection offers very little help to correct the spatial

anomaly patterns of the GEFS-forecasted precipitation

over North America (bias correction greatly reduces

FIG. 4. Time series of 30-day running-mean (top) spatial anomaly correlation and (bottom) RMSE of (left) week-1

and (right) week-2 observed and forecasted T2m over the United States. Bias-corrected (raw) forecast scores are

shown by the solid (dotted) line. Bias correction is based on 30-day mean forecast errors. Units are 8C for RMSE and

dimensionless for the spatial correlation.
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the annual mean bias; see discussion concerning Fig. 5

later), some help in the Asia–Australia monsoon regions,

and considerable help around South America and Africa,

where the week-1 ensemble raw forecast skill and bias-

corrected forecast skill changed from 0.25 to 0.45 (in-

creased by 80%) and 0.24 to 0.4 (increased by 67%), re-

spectively. In terms of RMSE, bias correction helps

everywhere (see mean values in Table 2). Therefore, the

effectiveness of the bias correction not only depends on

the way the skill is measured, but it also depends on the

location and time of year.

Two general conclusions suggest themselves about

precipitation forecasts. The first is that bias correction is

more effective over Africa and South America than over

North America. Second, while bias correction decreases

the root-mean-square error in all domains studied, the

anomaly correlation improves considerably only over

Africa and South America.

Because the resolution of the GEFS ensemble mean

week-1 and week-2 forecasts used here is on a 2.58 3 2.58

grid and the observed CPC daily Unified Global Pre-

cipitation Analysis is on a 0.58 3 0.58 grid, one can do the

verification on either grid. Therefore, one question

raised here is whether the above levels of forecast skill

are grid (or resolution) dependent. A test has been

conducted on both grids and the results show that the

skill assessment does not depend much on the grids,

despite that some higher-resolution information may be

lost when working on the 2.58 3 2.58 grid. Similar results

were found in analyzing precipitation forecast skill

(Higgins et al. 2008) from the NCEP Climate Forecast

System (CFS; Saha et al. 2006).

Another question is whether the above levels of

forecast skill are impacted by the number of days (N)

that is used to calculate the running-mean bias for bias

correction on the GEFS ensemble raw forecast data.

Some comparisons also have been done on the levels of

week-1 and week-2 forecast skill from bias corrections

based on 30- and 7-day running-mean forecast errors.

The results indicate that the performance of the bias

correction when using the 30-day running-mean forecast

errors are better overall than those found when using the

7-day running mean forecast errors (not shown).

Since the daily global T2m gridded analysis is not

available during the same period at the present time, the

time evolution of the 30-day running mean of the daily

spatial anomaly correlation and RMSE from the week-1

and week-2 observed T2m and bias-corrected ensemble

T2m results over the United States only is displayed in

Fig. 4 and Table 3. Compared to the precipitation, the

spatial anomaly correlation between the bias-corrected

GEFS ensemble week-1 and week-2 T2m forecast and

observation results is relatively high (averaging around

0.72 for week 1 and around 0.48 for week 2). The week-1

and week-2 T2m RMSEs also show a clear seasonal

cycle. Bias correction presents some improvements for

both the week-1 and week-2 ensemble T2m forecasts, in

terms of both spatial anomaly correlation and RMSE.

4. Analysis of week-1 and week-2 forecast errors

For bias correction purposes, the best scenario is that

the biases do not change with time; that is, they are

constant, so that they can be easily removed by simply

subtracting the operationally obtained estimate from model

outputs. If they are not constant, it will be desirable that

they have large-scale spatial structures and vary regu-

larly and slowly with time. Thus, it is relatively easier to

remove these parts of the biases. Obviously, if the biases

have small-scale spatial structures and vary irregularly and

quickly with time, it will be very difficult to remove them.

To understand why bias correction works while it

varies in space and time, some detailed analysis on

the spatiotemporal structure of the GEFS week-1 and

week-2 ensemble mean forecast errors has been con-

ducted. In general, the GEFS ensemble mean forecast

errors can be separated into two parts, that is, the annual

mean forecast errors and their variations around the an-

nual means, which were further decomposed by using

empirical orthogonal function (EOF) analysis as follows:

Bias1, 2(s, t) 5 Mean 1 �
M

m51
PC

m
(t) 3 EOF

m
(s), (3)

where 1, 2 refers to either the week-1 or week-2 en-

semble means and s and t represent spatial and temporal

points, respectively.

The annual means (averaged over 1 April 2008–31

March 2010) of the GEFS week-1 and week-2 ensemble

precipitation forecast errors (Fig. 5) show that the GEFS

ensemble forecasts tend to produce too much rainfall in

most regions. The pattern and amplitude of the week-1

and week-2 forecast errors are very similar to each other,

indicating this component of the GEFS forecast errors is

nearly saturated in the week-1 period. The variation part

TABLE 3. Averaged (1 Apr 2008–31 Mar 2010) spatial anomaly

correlations and RMSEs (8C) of forecasted and observed week-1

and week-2 T2m over the United States.

Week 1 Week 2

Bias

correction

No bias

correction

Bias

correction

No bias

correction

Spatial correlation 0.72 0.68 0.48 0.44

RMSE 2.13 2.30 3.04 3.15
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(around the above annual mean) of the GEFS week-1

and week-2 ensemble mean precipitation (30-day running

mean) forecast errors is displayed in Fig. 6. The un-

expected and most prominent features are that the GEFS

ensemble mean forecast errors are of relative large

scale and low frequency (which appear to be annual and

semiannual cycles). The first two EOF modes [scaled by

the RMS value of the associated principal components

(PCs)] of the interannual GEFS week-1 and week-2 en-

semble mean forecast errors explain about 60% of the

total variance. The above features exist almost every-

where in four major monsoon regions (Asia–Australia

FIG. 5. (a) Annual mean bias of week-1 forecasted precipitation over NA, SA, AS, and AF for the period 1 Apr

2008–31 Mar 2010. Negative values are shown inside the dashed contour (mm week21). (b) As in (a), but for week-2

forecasted precipitation.
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and Africa are not shown here). These are the un-

expected and most striking features found in this study.

The bias correction shows that a very large portion of the

annual mean raw forecast errors can be removed. The

annual mean forecast errors after bias correction are

about 5 times smaller than their annual mean raw forecast

errors. The EOF analysis on the interannual variation

portion of the bias-corrected forecast errors shows that

part of the variable forecast errors can also be effectively

removed, especially in the cold season (not shown).

The annual means (also averaged over 1 April 2008–

31 March 2010) of the GEFS week-1 and week-2

ensemble mean T2m forecast errors before and after

bias corrections over the United States are displayed in

Fig. 7. The results show that the GEFS ensemble mean

week-1 and week-2 T2m forecast errors have relatively

FIG. 5. (Continued)
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large-scale spatial patterns, with about 18–38C cold biases

in the central United States and warm biases in the eastern

and western United States, respectively. A very large

portion of the annual mean bias can be easily removed by

just simply subtracting the 30-day running-mean bias that

was determined from previous data. However, the GEFS

ensemble mean T2m forecast errors seem more com-

plicated in some U.S. western coastal and mountain

regions, as the above simple running-mean bias correc-

tion method does not work well in these areas.

Like GEFS ensemble mean precipitation forecast er-

rors, the EOF analysis (Fig. 8) reveals that the first EOF

FIG. 6. (a) (left) EOF patterns (scaled by the RMS value of the associated PCs, with negative values inside the

dashed contour) and (right) their PCs (normalized to unit variance) of week-2 forecasted precipitation biases over

NA for the period 1 Apr 2008–31 Mar 2010. (b) As in (a), but for SA.
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mode (scaled by the RMS value of the associated PC1)

of the interannual week-2 ensemble mean T2m forecast

errors is dominated by relatively large-scale spatial

structures and low-frequency (annual cycle) evolution.

This mode represents that summers are too cold and

winters are too warm over a large part of the United

States for the GEFS ensemble mean T2m forecasts. The

first two EOF modes of the GFS week-1 and week-2

ensemble mean T2m forecast errors can explain over 60%

of the total variance. Parts of these varying forecast errors

can be easily removed. The EOF analysis of the week-1

ensemble mean T2m forecast errors has features that are

very similar to the above results (not shown).

One is tempted to conclude, based on Figs. 5–8, that the

NCEP GEFS has some simple and correctable forecast

errors with the annual cycle. In general, these features of

FIG. 6. (Continued)
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P and T2m annual mean forecast errors and their in-

terannual variation components are also robust.

5. Application of the GEFS ensemble forecasts:
Soil moisture outlook

The bias-corrected week-1 and week-2 GEFS en-

semble mean P and T2m forecasts are used to drive the

CPC leaky bucket land surface hydrological model for-

ward up to 2 weeks over the United States. Obviously,

the prediction skill of the land surface soil moisture

crucially depends on the quality of the forecasted P and

T2m inputs. Because there is very little ground truth to

be used, all land surface initial conditions and verifica-

tion datasets are generated by running the CPC leaky

bucket model forced with observed daily P and T2m,

that is, after the fact.

Like sea surface temperature, land surface soil mois-

ture is one of the most important lower boundary con-

ditions for the atmosphere and it also has very high

persistence (or memory). So one interesting question

FIG. 7. Annual mean of (left) week-1 and (right) week-2 T2m forecast errors (top) before and (bottom) after bias

correction over the United States for the period 1 Apr 2008–31 Mar 2010 (8C). Positive areas show forecasts warmer

than the observations. Negative areas (inside the dashed contour) show forecasts colder than the observations.
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(and an old ‘‘standard’’ in meteorology) is: Can the soil

moisture ‘‘dynamical’’ outlooks (forced with the bias-

corrected GEFS week-1 and week-2 ensemble mean P

and T2m forecasts) beat persistence of the initial states?

For most land surface models, the land surface hydro-

logical budget can be represented as

dW/dt 5 P� E� R 5 F or (4)

W(t 1 1) 5 W(t) 1 F, (5)

where W is soil moisture and P, E, and R are pre-

cipitation, evaporation, and total runoff, respectively.

FIG. 8. (left) EOF patterns (scaled by the RMS values of the associated PCs, with negative values inside the dashed

contour) and (right) their PCs (normalized to unit variance) of the week-2 T2m forecast errors over the United States

for the period 1 Apr 2008–31 Mar 2010.
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FIG. 9. The temporal anomaly correlation of the GFS week-2 soil moisture forecast minus its persistence, for all 12 months during the

period 2004–09. Each pixel shows a difference based on about 180 cases (6 yr, ;30 forecasts per month). Positive regions denote that the

forecast is better than persistence. Negative regions (dashed contours) mean the forecast cannot beat persistence.
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From Eq. (5) it is clear that if the F term does not have

sufficient skill, the GEFS dynamical forecasts will lose

against persistence (i.e., when F 5 0). So the question

about persistence corresponds to the question of F 5 P 2

E 2 R having (sufficient or useful) skill. Figure 9 displays

the spatiotemporal distribution of the correlation of the

daily week-2 forecasted soil moisture anomalies minus

the persistence of the soil moisture anomalies (i.e.,

anomalies from the GEFS ensemble mean forecasts

forced run against anomalies from the observation forced

run) for 12 months for the period of 1 January 2004–31

December 2009 (total 6 yr of daily forecasts). So for each

month it has about total 6 3 30 5 180 day daily records.

Regions with positive values mean that the forecast beats

persistence. In general, the GEFS shows some useful

forecast skill over the west coast region, the southeastern

United States, and Texas, but constantly (except May)

loses against persistence over the Rocky Mountain

regions, which seriously degenerates the U.S. overall

performance of the GEFS. It indicates indirectly that the

GEFS week-1 and week-2 ensemble mean P (or P 2 E 2

R rather, but this is dominated by P) forecast skill is much

poorer in these areas.

Figure 10 depicts the time evolution of the forecast skill

and its persistence of week-1 and week-2 soil moisture

anomalies averaged over the United States from late

2003 to middle April of 2010. If the GEFS was perfect

(i.e., if it can reproduce the observed P and T2m on a

2-week time scale), the spatial correlation of the soil

moisture forecasts will be one and its RMSE will be

zero. In general, both forecast skill and persistence

reach their lowest values (least predictable time) around

September, when soil moisture is in its driest season

climatologically in the year. Since the persistence of soil

moisture is very high, the overall GEFS dynamical soil

moisture forecasts beat persistence only by a very small

margin in week 1 and lose to persistence in week 2 in

terms of their spatial correlation over the United States.

In terms of RMSE, the GEFS dynamical forecast loses

to persistence in both weeks 1 and 2.

6. Summary

In this paper, a simple operationally feasible bias

correction method was used to correct the NCEP GEFS

ensemble mean week-1 and week-2 P and T2m forecasts

on a daily basis. The results show the bias-corrected

forecast skill (i.e., anomaly correlation) of the GEFS

week-1 and week-2 ensemble mean P and T2m has large

day-to-day fluctuations but a clear seasonal cycle with

better scores in winter. The bias-corrected forecasts, in

general, are better than the raw forecasts and the degree

FIG. 10. The time series of 30-day running-mean spatial correlation (3100) and RMSEs from

(top) GFS week-1 and (bottom) week-2 forecasted soil moisture anomalies (solid and dashed)

and persistence of soil moisture anomalies (dotted–dashed and dotted–dotted–dashed) over

the United States for the period 1 Nov 2003–20 Jun 2009. Units are dimensionless for the spatial

correlation and in mm for RMSE.
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of improvement is regional and time-of-year dependent.

Overall, the levels of bias-corrected week-1 and week-2

ensemble mean P and T2m forecast skill are still only

modest for the current GEFS.

Ideally, if the forecast errors were constant, they could

be easily removed by subtracting an operationally avail-

able estimate. If they are not constant, it would be de-

sirable that their spatio–temporal structures be simple so

that it would not be difficult to partly remove them. The

annual mean of the forecast errors from both week-1

and week-2 GEFS ensemble mean P and T2m forecasts

presents relatively large-scale spatial structures. This

portion of the forecast errors was found to be the easiest

part to remove. Surprisingly, the variation parts of the

GEFS ensemble mean P and T2m forecast errors are

dominated by low frequency (annual and semiannual cy-

cles) and also have relatively large-scale spatial patterns.

Part of these forecast errors is removable as well. The

effectiveness of the bias correction is time and space

dependent. Although the reasons for the above unex-

pected large-scale and slowly varying forecast errors are

not clear at the present time; these bias features may

provide some indications or hints to model developers

looking to improve the GFS.

The dynamical soil moisture forecasts (i.e., land

model forced with the bias-corrected GEFS week-1 and

week-2 ensemble mean P and T2m) have very high skill

because of the high persistence of soil moisture, but our

results indicate that in general the current GEFS is

barely good enough to beat soil moisture persistence

(which is very high) over the United States. The inability

to outperform the persistence by a noteworthy margin

relates mainly to the skill of the forecasted week-1 and

week-2 P not being above the threshold (i.e., anomaly

correlation .0.5 is required).
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