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ABSTRACT

Retrospective forecasts of the new NCEP Climate Forecast System (CFS) have been analyzed out to 45

days from 1999 to 2009 with four members (0000, 0600, 1200, and 1800 UTC) each day. The new version of

CFS [CFS, version 2 (CFSv2)] shows significant improvement over the older CFS [CFS, version 1 (CFSv1)] in

predicting the Madden–Julian oscillation (MJO), with skill reaching 2–3 weeks in comparison with the

CFSv1’s skill of nearly 1 week. Diagnostics of experiments related to the MJO forecast show that the sys-

tematic error correction, possible only because of the enormous hindcast dataset and the ensemble aspects of

the prediction system (4 times a day), do contribute to improved forecasts. But the main reason is the im-

provement in the model and initial conditions between 1995 and 2010.

1. Introduction

It is commonplace to assume that changes made to

numerical weather prediction (NWP) systems will lead

to better predictions. After all, these changes are in-

spired by improved insights in physics, data assimilation,

numerics, and/or by increases in computing power (i.e.,

higher spatial resolution). While this has to be generally

true, the introduction of model changes into a real-time

environment can be disappointing. The new model may

not seem much better than the (now discontinued) old

one, in part because interannual variability of predictability

may obscure the improvement, if any. It is only when

verification scores over many years are considered that

the truly impressive general upward trend in forecast

skill at all NWP centers is seen. The day 5 anomaly cor-

relation for NH 500-mb height has steadily improved

from the 0.6–0.7 range in 1985 to the 0.8–0.9 range in

2012. An up-to-date comparison of National Centers for

Environmental Prediction (NCEP) and European Centre

for Medium-Range Weather Forecasts (ECMWF) scores

is available online (http://www.emc.ncep.noaa.gov/gmb/

STATS/html/aczrnmn4.html). This great improvement

amounts to a revolution accomplished inch by inch by

dozens of changes in computing, models, and data as-

similation over 25 yr.

From an improvement of 20 anomaly correlation

points in 25 yr, and say one model upgrade per year,

one may surmise that a new model is on average only

order 1 point better than its immediate predecessor.

That too makes it hard to see the improvement in real

time with only one model running at any given time.

A different way of improving NWP forecasts is to

generate a large set of retrospective forecasts (also

called hindcasts or reforecasts) before implementing

a new model. This is a considerable investment re-

quiring initial states for past cases that suit a modern

modeling system, and lots of computer time, and thus

this method is not very popular, but it does allow prac-

titioners to correct models in real time for known bia-

ses, whether it be in the mean, higher-order moments,

or even spatial pattern offsets. Upfront one must dis-

tinguish two limiting situations: 1) the early leads with

high forecast skill and a small bias and 2) the longer

leads with low forecast skill and potentially very large

biases. Obviously, when a model has only small biases

(typically the early leads), the generation of hindcasts is

not going to help much because there is little to correct.

Equally obvious is that when a model has virtually no

skill intrinsically (at the ultralong leads), the avail-

ability of hindcasts may help to correct embarrassing
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systematic errors but will still fail to deliver skillful

forecasts. It is somewhere in between, at intermediate

leads with nonzero intrinsic skill and significant sys-

tematic error, that hindcasts may be expected to help

us the most. It is not always clear a priori where these

‘‘intermediate’’ leads really are. For precipitation it

may be within 24 h, while for the Madden and Julian

oscillation (MJO) it may be days 10–30. The MJO,

a dominant 20–70-day phenomenon in the tropics, has

been predicted by NWP with only modest skill out to

about 10 days, and with limited progress in forecast

skill over the years [see Gottschalck et al. (2010) and

references therein). Intuitively, however, one assumes

that the predictability horizon is related to the phe-

nomenon’s life time (Van den Dool and Saha 1990),

which would be much more than 10 days for a 20–

70-day oscillation.

We recently had a rare opportunity to compare two

NCEP models of vintage ;1995 and ;2010, both of

which were accompanied by an impressive set of hind-

casts. We focus here exclusively on the challenging

MJO prediction by studying the relative merits of

model improvement (in this case between 1995 and

2010) and the availability of hindcasts for each. We

will report here on rather large improvements of

the NCEP Climate Forecast System, version 2 (CFSv2),

versus version 1 (CFSv1), and good improvement for

both systems thanks to the availability of hindcasts.

Saying that CFSv2 is much better than CFSv1 does not

mean the CFSv2 is the best model in the world; in fact,

we will report levels of skill for CFSv2 that appear to be

comparable to those reported by Rashid at al. (2010) for

the Predictive Ocean–Atmosphere Model for Australia

(POAMA).

In section 2 we describe the models and the data used,

as well as the procedures used to focus on MJO, do

systematic error correction, etc. In section 3 we present

the results and we close with conclusions and discussion

in section 4.

2. Data and analyses

a. Models

In the spring of 2010, NCEP finished a new global

reanalysis, the Climate Forecast System Reanalysis

(CFSR), for the period 1979–present (Saha et al. 2010).

This new reanalysis, at T382L64 resolution in the at-

mosphere, was primarily motivated by the need to pro-

vide initial conditions for retrospective predictions that

will go along with the implementation of the new

CFSv2, which became operational at NCEP in March

2011. CFSv2 will replace the older CFSv1, which has

been operational since mid-2004. The new CFSv2 has

as much consistency as possible between the histori-

cal initial conditions and the hindcast model as well

as with the real-time coupled prediction model. The

CFSv2 reforecasts are described by S. Saha et al.

(2012), unpublished manuscript). The CFSv1, im-

plemented in 2004 at an atmospheric T62L64 resolu-

tion, was built around such diverse pieces as the NCEP/

Department of Energy Global Reanalysis 2 (R2) atmo-

spheric initial conditions (Kanamitsu et al. 2002), a global

atmospheric model (Global Forecast System, GFS) of

vintage 2003, a near-global ocean model (version 3 of the

Modular Ocean Model), near-global ocean initial condi-

tions produced by the stand-alone Global Ocean Data

Assimilation System (GODAS), plus hindcasts from 1981

to 2004 thereof (Saha et al. 2006). Because of R2, the

oldest and probably the weakest link, the vintage of

CFSv1 is described here as mid-1990s. Both CFSv1 and

CFSv2 are coupled to the ocean.

b. Data of model forecasts

For CFSv1 (CFSv2), we study 30- (45-) day forecasts

during 1999–2009. CFSv2 begins forecasts every 6 h, at

0000, 0600, 1200, and 1800 UTC, 365 days a year. CFSv1

has starts at 0000 UTC in three groups of 5 days centered

on the 1st, the 11th, and the 21st of the month, for a total

of 15 days per month. The CFSv1 forecasts are treated

and verified as 15 individual runs, not as a lagged en-

semble (as we do for the seasonal CFSv1 forecasts). The

CFSv2 forecasts are also treated and verified as in-

dividual runs, not as a lagged ensemble (as we do for the

seasonal CFSv2 forecasts), except that in most plots we

have averaged the 0000, 0600, 1200, and 1800 UTC

forecast from the same initial date into an ensemble

mean. Later (Fig. 3), we will compare the ‘‘0000 UTC

only’’ predictions of both systems.

For MJO applications purposes, we retain only three

fields: the zonal wind (u) components at 850 and 200 hPa,

and the outgoing longwave radiation (OLR), all on a

2.5 3 2.5 grid. The meridional average between 158S and

158N is taken, yielding a one-dimensional array depend-

ing on longitude only, denoted as X(t, t, l) for any of the

three variables, where l is longitude, t is lead time, and t

is the starting day [t runs through time, both days (1–365)

and years (1–11)]. The notation X(t, t, l) covers both

initial states (t 5 0) and forecasts (t . 0), although we

have to understand that there is no model-generated or

model-analyzed OLR at the initial time. Below, we will

refer to Xv1(t, t, l) and Xv2(t, t, l) as the data from CFS

versions 1 and 2, respectively.

We need to define a general purpose ‘‘observed’’

dataset X(t, t 5 0, l) where the observations,

1046 W E A T H E R A N D F O R E C A S T I N G VOLUME 27



consistent with Climate Prediction Center (CPC)

operational practice, are taken from a satellite dataset

of OLR, and u200 and u850 are taken from R2. This

observed dataset, to be considered the daily mean

data, covers 1979–2010. CFSv1 and CFSv2 forecasts

are verified against the same observed dataset to avoid

ambiguities.

c. Climatologies

We need climatologies for X(t, t, l), to form obser-

vational and forecast anomalies, and to define the sys-

tematic error correction (SEC) as practiced here. Smooth

climatologies of X are formed by fitting the annual

mean and four harmonics to a time series of raw cli-

matologies of any of the three variables at any given

longitude for forecast lead t, t 5 0. . ..30 (or 45), fol-

lowing the method of Schemm et al. (1997), described

in great detail as it was applied to CFSv1 by Johansson

et al. (2011). [‘‘Raw’’ climatology is defined as the

multiyear average for each day of the year; this forms

a very noisy time series of length 365 days even when

based on 24 (CFSv1) or 11 (CFSv2) yr] For the ob-

servations, t 5 0, the period 1981–2004 is used to

determine a smooth climatology of X, denoted as

C(t, 0, l, 1981–2004) where the 4th argument reminds

us of the range of years in the climatology, a very

important detail. The variable t in C runs through the

days of the years, but repeats itself each year.

The harmonic fit does not only smooth noisy clima-

tologies, but also interpolates them to the dates for

which no historical hindcasts are available; this com-

ment applies particularly to CFSv1 because it has three

groups of 5 days (15 per month) with forecasts and

holes in between.

Observed anomalies are then given by X(t, 0, l) 2

C(t, 0, l, 1981–2004). Verification will be done in terms

of anomalies relative to 1981–2004. CFSv1 has its

forecast climatology based on 1981–2004. CFSv2 has

its forecast climatology based on 1999–2009 only. This

discrepancy is addressed in section 2d. The forecast

climatologies are denoted by Cv1(t, t, l, 1981–2004)

and Cv2(t, t, l, 1999–2009).

d. Systematic error correction

The generic definition of the systematic error (SE) is

the difference in the expected value of the forecasts and

verifying observations—and this is estimated as the

mean over as many cases (years) as possible. For in-

stance, for CFSv1 we have SE 5 Cv1(t, t, l, 1981–2004) 2

C(t, 0, l, 1981–2004). In that case, subtracting from

a forecast the lead dependent forecast climatology is

enough to obtain forecast anomalies corrected for the

systematic error in the mean; that is,

Xv1(t, t, l) 1 «[2Cv1(t, t, l, 1981--2004)

1 C(t, 0, l, 1981--2004)] 2 (1 2 d)C(t, 0, l, 1981--2004),

(1)

where we obtain full fields for d 5 1 and anomalies for

d 5 0. For « 5 1 (or « 5 0), we perform (or do not perform)

an SEC. For CFSv2, the situation is more complicated

because the matching years are only 1999–2009, while

anomalies relative to 1981–2004 are required for verifica-

tion in the same way as CFSv1. This can be achieved by

Xv2(t, t, l) 1 «[2Cv2(t, t, l, 1999--2009)

1 C(t, 0, l, 1999--2009)] 2 (1 2 d)C(t, 0, l, 1981--2004),

(2)

where, again, we obtain full fields for d 5 1 and anom-

alies for d 5 0. Notice that we have an intermediate

observed climatology denoted as C(t, 0, l, 1999–2009),

which is based on a satellite dataset of OLR, and u200

and u850 are taken from CFSR.

Below in section 3 we compare scores for systematic

error corrected forecasts (« 5 1) to raw uncorrected

forecasts (« 5 0).

e. MJO and verification

Following Wheeler and Hendon (2004), a joint EOF

analysis is performed on the observed OLR, u200, and

u850 fields over 1979–2004, and two PCs of combined

EOFs (real-time multivariate MJO series 1 and 2,

RMM1 and RMM2) describing the propagating MJO

are kept. They explain about 25% of the variance in

filtered data and are used, unchanged, in all seasons. The

EOF analysis has been done after the observed data are

filtered as follows: (a) the climatology is removed, (b)

ENSO variability is removed (by regression on Niño-

3.4), and (c) the latest 120-day mean is removed. The

forecasts, in anomaly form, are projected onto these

EOF1 and EOF2 patterns for verification purposes. The

verification is done by the bivariate anomaly correlation

(BAC) given in Lin et al. [(2008), their Eq. (1)]:

COR(t) 5

�
N

i51

[a1i(t)b1i(t) 1 a2i(t)b2i(t)]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
N

i51

[a2
1i(t) 1 a2

2i(t)]

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
N

i51

[b2
1i(t) 1 b2

2i(t)]

s ,

(3)

where a1i(t) and a2i(t) are the observed RMM1 and

RMM2 amplitudes at day t, and b1i(t) and b2i(t) are their
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respective forecasts, for the ith forecast with a t-day

lead. Here, N is the number of forecasts. COR(t) is

equivalent to a spatial pattern correlation between the

observations and the forecasts when they are reconstructed

from the two leading combined EOFs.

The verification of the forecasts made from initial

conditions during 1999–2009 and the forecast lead is

measured in units of days; for instance, today’s 0000 UTC

forecast verifying tomorrow is counted as a 1-day lead.

The CFSv2 forecasts are, in general, a lagged-average

forecast, based on 0000, 0600, 1200, and 1800 UTC, and

the starting point in that case is 1800 UTC. The difference

in lead between CFSv1 (which has only a 0000 UTC

forecast) and CFSv2 (which has four starts a day) is

taken into account in the comparisons that follow. Note

that we include (Fig. 3) a comparison between CFSv2

and CFSv1 using only the 0000 UTC data; that is, we

forego in Fig.3 the advantage CFSv2 may have over

CFSv1 from the ensemble of four starts a day.

3. Results

Although the new CFSv2 has been developed os-

tensibly as a seasonal prediction system, there will be

viable applications to much shorter forecasts leads as well

because the forecasts will be run in real time without

delay. Below, we highlight the skill in MJO hindcasts in

the range of 1–45 days and compare CFSv2 to CFSv1,

ignoring the fact that CFSv1 was run with a delay.

Figure 1a shows the annually aggregated correlation

of CFSv2 (black solid), and CFSv1 (dashed), for all ca-

ses. The forecast lead is horizontal, and the correlation

3 100 is applied along the vertical axis. We calculate

correlations as a function of lead for each initial day, that

is, for given t over 11 3 365 cases, one case for each day

(labeled ‘‘All’’ in Fig. 1a), MJO cases (2590 cases) when

the MJO amplitude [square root of (RMM12 1

RMM22)] is greater than the MJO standard deviation,

and strong MJO cases (663 cases) when the MJO am-

plitude (square root of (RMM12 1 RMM22) is greater

than 2 times the standard deviation.

Figure 1a shows the skill [as per anomaly correlation

(AC)] of CFSv2 in predicting the MJO, as expressed by

the Wheeler and Hendon (WH) index (two EOFs of

combined zonal wind and OLR), which is subjected to

SEC. It is quite clear that CFSv2 has much higher skill

than CFSv1 for the ‘‘All cases’’ and the forecast skill for

the MJO and strong MJO cases is out to 2 and 3 weeks,

FIG. 1. (a) The BAC 3 100 of bias-corrected CFSv2 (solid black line) and CFSv1 (dashed black line) in predicting

the MJO during the period 1999–2009, as expressed by the WH index (two EOFs of combined zonal wind and OLR).

The BACs of CFSv2 for selected MJO cases and strong MJO cases, respectively, are plotted in the green and red

lines. (b) The BAC of the eight MJO initial phases of CFSv2 for all cases. The black lines [horizontal in (a), vertical in

(b)] designates the 0.5 level for the BAC.

1048 W E A T H E R A N D F O R E C A S T I N G VOLUME 27



respectively. An increase in the anomaly correlation (a

signal-to-noise measure), when the (initial) signal is

stronger (from all via MJO to strong MJO), is to be

expected (see Van den Dool and Toth 1991). Figure 1a

shows the improvement over half a generation (;15 yr

of work by many people), taking into account that many

physical processes have been improved and that CFSv1

has rather old R2 atmospheric initial conditions as its

weakest component (S. Saha et al. 2012, unpublished

manuscript). One rarely sees such a demonstration of

improvement. This is because atmospheric NWP models

are normally abandoned when a new model comes in.

But in the application to seasonal climate forecasting,

systems tend to have a longer lifetime. This gave us

a rare opportunity to compare two models that are about

15 yr apart in vintage. The causes for the enormous

improvement seen in Fig. 1 are probably very many and

result from the model physics improvements, and from

the improved initial states in the tropical atmosphere

and the consistency of the initial state and the model

used to make the forecasts play a role (S. Saha et al.

2012, unpublished manuscript). Further research should

bring out the importance of coupling to the ocean and its

quantitative contribution to skill.

We believe that the improved atmospheric initial

conditions are the main reason for the large improve-

ment seen in CFSv2 relative to CFSv1. Such improve-

ments were anticipated in studies by Vintzileos and Pan

(2008) and Fu et al(2011), who made a limited set of

CFSv1 integrations starting from operational GDAS

initial states and found a major improvement in skill

relative to CFSv1 initialized by R2.

The right panel in Fig. 1 is the categorized correlation

for the eight phases of MJO (Wheeler and Hendon

2004) against the forecast lead day for the all cases of

CFSv2. The higher skill levels around phases 2 and 8

indicate the longer time predictability of MJO when it

forms and redevelops over Africa and the western In-

dian Ocean with eastward propagating into the Western

Hemisphere, respectively. The skill levels in phases 3

and 5 are lower, corresponding to the difficulties of

predicting MJO over the Indian Ocean and the Mari-

time Continent, where convection involves complex air–

sea interaction and has a strong seasonally varying

component of northward propagation (Fu et al. 2003).

Figure 2 is plotted with the day of the year in the

vertical (months are labeled for reference) and forecast

lead horizontally, and the correlation 3 100 is con-

toured. It shows the results with and without the benefit

of SEC for CFSv2. In Fig. 2 we show the MJO scores for

CFSv2 for raw model predictions (left), after systematic

error correction (middle), and the gain (or difference)

on the right. We see that SEC results in improvements

for CFSv2 far more often than not, and overall the im-

provement is between 5 and 10 points, which could be

the equivalent of several new model implementations.

As expected the improvement depends on both lead and

season. There is very clear improvement for leads of 10–

30 days for starts in August and September, which

means the model (CFSv2) has a large correctable bias in

these months. For some long leads, the scores actually

deteriorate when applying SEC. This happens when the

error in the estimate of the SE is large in a relative sense,

that is, relative to the true systematic error (which is

unknown), or when skill cannot be salvaged (long leads).

Figure 2 also shows a seasonal cycle in forecast skill

with maxima in May–June and November–December,

respectively, and minima in between, something we also

find for CFSv1 (not shown). This semiannual timing of

higher skill may be related to those two times of the

year when the eastward propagation of the dominant

wavenumber 1 in the anomaly velocity potential along

the equator was found to be climatologically at a max-

imum (;10–11 m s21) in May and November (Van den

Dool and Saha 2002), with much smaller phase

speeds (;6 m s21) in between in February and

August–September. Additional reasons for (semi-) an-

nual behavior may be related to the more northward

propagation of the intraseasonal oscillation (Fu et al.

2003) in certain seasons and the inability of the season-

invariant EOFs to handle this aspect properly.

As is the case with CFSv2, CFSv1 did benefit notice-

ably from the availability of its hindcasts (not shown).

While the distribution of the improvement with lead and

season is different for CFSv1, the overall improvement

is rather comparable.

We summarize in Fig. 3 the comparison of both

systems by taking an annual mean of the BAC for leads

1–45 days for CFSv2 and out to 30 days for CFSv1. Both

with and without SEC, CFSv2 is some 11–12 days ahead

of CFSv1, when measured at the 0.5 correlation level.

Both CFSv1 and CFSv2 appear to gain about 2–3 days

by applying an SEC. Obviously, the model and data

assimilation improvements between 1995 and 2010

count for much more than the availability of the hind-

casts, but the latter still corresponds to a few years of

model improvement. There is third, smaller factor to

consider: a small gain (at most a day) achieved by

CFSv2 hindcasts through a lagged-average forecasting

approach over forecasts from 0000, 0600, 1200, and

1800 UTC; see the dashed green line in Fig. 3, which

indicates when only raw 0000 UTC data are used. Since

CFSv1 has only 0000 UTC forecasts (the black and blue

full lines), it is appropriate to compare its results to the

CFSv2 0000 UTC scores (red and green dashed lines).

The added advantage of CFSv2 having an ensemble is
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at most a day, and this gain is so small partly because

the ensemble is ‘‘lagged’’ in nature (causing a setback

of 18 h). Note that in real time CFSv2 will have four

members from 0000 UTC (as well as four from the

previous 1800, 1200, and 0600 UTC), so the skill of

CFSv2 in real time should be higher than what is shown

here for the hindcasts.

4. Conclusions and discussion

Two conclusions suggest themselves. The first is that

CFSv2 is markedly better than CFSv1 in predicting

MJO. The credit goes to all the hard work done at NWP

centers between 1995 and 2010. The second is that the

availability of hindcasts really helps with MJO fore-

casting and, quantitatively, appears to be worth as much

as several new model implementations. This has rarely

been demonstrated, although it is often assumed to be

true, especially for seasonal prediction where the SE can

be embarrassingly large. We hasten to point out that we

have only addressed the correction of the mean error.

Other benefits that can be harvested from having gone

through the trouble of making hindcasts may lie in

correcting 1) higher-order moments and 2) offsets in

pattern. This, however, takes a significant amount of data

(large sample) and these issues have come up more often,

naturally, within the context of having hindcasts in an

FIG. 2. The BAC calculated from CFSv2 forecasts (left) before and (middle) after systematic error correction. (right) The difference in

the contouring of 0.05, with red (blue) areas of increased (decreased) skill. A slight smoothing is applied in the vertical (across adjacent

start days).

FIG. 3. Annual mean score (BAC) as a function of lead for

CFSv2 (curves on the right) and CFSv1 (curves on the left). The

dashed lines are for CFSv2 using only the 0000 UTC forecasts.
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ensemble prediction setting (Hamill et al. 2006), which is

yet another track for improving forecasts.
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Johansson, Å., C. Thiaw, and S. Saha, cited 2011: CFS retro-

spective forecast daily climatology. [Available online at

http://cfs.ncep.noaa.gov/cfs.daily.climatology.doc.]

Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo,

M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II

Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643.

Lin, H., G. Brunet, and J. Derome, 2008: Forecast skill of the

Madden–Julian oscillation in two Canadian atmospheric

models. Mon. Wea. Rev., 136, 4130–4149.

Rashid, H. A., H. H. Hendon, M. C. Wheeler, and O. Alves, 2010:

Prediction of the Madden–Julian oscillation with the POAMA

dynamical prediction system. Climate Dyn., 36, 649–661,

doi:10.1007/s00382-010-0754-x.

Saha, S., and Coauthors, 2006: The NCEP Climate Forecast Sys-

tem. J. Climate, 19, 3483–3517.

——, and Coauthors, 2010: The NCEP Climate Forecast System

Reanalysis. Bull. Amer. Meteor. Soc., 91, 1015–1057.

Schemm, J.-K. E., H. M. van den Dool, J. Huang, and S. Saha, 1997:

Construction of daily climatology based on the 17-year NCEP–

NCAR reanalysis. Proceedings of the First WCRP In-

ternational Conference on Reanalyses, WMO/TD-876, WCRP-

104, 290–293.

Van den Dool, H. M., and S. Saha, 1990: Frequency dependence in

forecast skill. Mon. Wea. Rev., 118, 128–137.

——, and Z. Toth, 1991: Why do forecasts for ‘‘near normal’’ often

fail? Wea. Forecasting, 6, 76–85.

——, and S. Saha, 2002: Analysis of propagating modes in the

tropics in short AMIP runs. WCRP/WGNE AMIPII Work-

shop, Toulouse, France, WMO, 87–90. [Available online at

http://www.cpc.ncep.noaa.gov/products/people/wd51hd/mjo/

AMIPIIdoolsaha.pdf.]

Vintzileos, A., and H.-L. Pan, 2008: On the importance of hori-

zontal resolution and initial conditions to forecasting tropical

intraseasonal oscillations: The maritime continent prediction

barrier. Proc. CTB–COLA Joint Seminar Series, Camp Springs,

MD, NOAA/NWS/Office of Science and Technology. [Avail-

able online at http://www.nws.noaa.gov/ost/climate/STIP/CTB-

COLA/ctb-cola_seminar_summaries.pdf.]

Wheeler, M., and H. H. Hendon, 2004: An all-season real-time

multivariate MJO index: Development of an index for moni-

toring and prediction. Mon. Wea. Rev., 132, 1917–1932.

AUGUST 2012 Z H A N G A N D V A N D E N D O O L 1051


