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ABSTRACT

An ordinary regression of predicted versus observed probabilities is presented as a direct and simple

procedure for minimizing the Brier score (BS) and improving the attributes diagram. The main example

applies to seasonal prediction of extratropical sea surface temperature by a global coupled numerical model.

In connection with this calibration procedure, the probability anomaly correlation (PAC) is developed. This

emphasizes the exact analogy of PAC and minimizing BS to the widely used anomaly correlation (AC) and

minimizing mean squared error in physical units.

1. Introduction

This paper is about calibrating the probability fore-

cast derived from an ensemble of numerical forecasts.

The need for calibration arises because of systematic

errors made by forecast models. There are at least two

ways to assess the outcome of a forecast. The first

approach, which is quite common, is to compare the

ensemble of forecasts (usually as an ensemble mean)

to the verifying datum in physical units. The second

approach, explored here, is to compare predicted

probabilities to the observed probability.1 We design a

regression method for the second approach. The paper

is organized around the formal similarity of regression

using variables in physical and probabilistic units,

respectively.

One of the more prevalent skill metrics for tracking

the skill of numerical weather prediction (NWP) is the

anomaly correlation (AC). As a notion and as an ac-

cepted measure of skill, the AC has been around in the

literature since about 1970 (Miyakoda et al. 1971). The

word ‘‘anomaly’’ in the AC refers to both 1) the differ-

ence of the verifying observation/analysis and some

reference state or climatology and 2) the difference of

an actual forecast and that same climatology. Although

used mainly as a metric to track skill over time or to

compare model A to model B, a correlation always has a

deeper interpretation that refers to the most basic verifi-

cation attributes of all, the mean-square error (MSE): the

correlation (a number in the range 0–1)2 is proportional to

Corresponding author e-mail: Huug van den Dool, huug.

vandendool@noaa.gov

1 Probability as such cannot be observed, so observed probability

(usually 0 or 1, depending on whether an event occurs or not) is a

bit of an abstraction.
2 Strictly speaking, a correlation is in the range between 21

and11, but in forecast verification on a sufficient sample significant

negative correlation should not happen. Indeed, we do not ever

contemplate changing the sign of a predicted anomaly.
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the regression coefficient by which one should multiply

the predicted anomalies by in order to minimize the

MSE. When an NWP model is evaluated over many

cases and is found to predict anomalies of the same

magnitude as the observed anomalies, the predicted

anomalies should be multiplied by the correlation itself,

if minimizing MSE is the main goal3—in that circum-

stance the correlation equals the regression coefficient.

When AC 5 0, the forecasts should be damped all the

way back to climatology in order to minimize MSE.

Minimizing a cost function like MSE has been funda-

mental in many sciences for hundreds of years. The

correspondence of the correlation and a skill score based

on MSE as an attribute for accuracy was discussed at

length in Murphy and Epstein (1989).

The point of this article is to extend the logic and

purpose of the AC to the realm of probability forecasts.

Probabilistic forecasting has started in earnest recently,

when production of multiple runs to generate an en-

semble of NWP forecasts became computationally fea-

sible (Tracton and Kalnay 1993). As it turns out, there

was already an MSE within the context of probability

forecasts: it is called the Brier score (BS; Brier 1950), or,

more generally, the probability score. We here present

the probability anomaly correlation (PAC), which not

only is a measure of skill in its own right as a single

number (0–1), but also directly suggests that by damping

probability anomalies the BS can be minimized. To our

knowledge the PAC has not been exploited before.

While the AC generally works with variables expressed

in physical units, the PAC works with probabilities (i.e.,

fractions or percentages).

To simplify matters greatly, we characterize a proba-

bility forecast (a very detailed pdf in principle) in terms

of probabilities for three terciles that are designed such

that they climatologically happen 1/3 of the time. Nothing

we present depends fundamentally on the number of

classes used; three is traditional in some settings (Hamill

et al. 2004). The probability anomaly would be the dif-

ference of the predicted probability from 1/3, which is the

climatological probability for a tercile-based system.

Both in the case of AC and PACwe speak of damping

(reducing anomalies via regression). In theory, the in-

flation of anomalies may be called for if (P)AC is high

and the predicted anomalies are smaller than what

would minimize the squared error term. However, this

underconfidence, or the need for inflation in order to

minimize the MSE or BS, rarely happens in practice.

A formal procedure to minimize a probability score

appears to be rare. Dutton (2009; see his Fig. 9) appears

to rotate lines in the attribute diagram closer to perfect

reliability, but the formal method to do so is not speci-

fied. We are only aware of Gneiting et al. (2005), who

minimize the continuous ranked probability score.

Hamill et al. (2004) used logistic regression (using the

ensemble mean as a predictor) to predict the probability

of, for example, the above median tercile.

In section 2 we present the basic concept and equa-

tions, simple linear regression arguments, and the da-

tasets used. A precise definition of what we mean by

damping is given in section 2a. We then present an ex-

ample in section 3 to show howwell the PACworks. The

example is for the prediction of sea surface temperature

in the next month during 1982–2010 in the extratropical

Northern Hemisphere (NH) by the Climate Forecast

System version 2 (CFSv2) (Saha et al. 2014). The at-

tractive reduction in BS is further illustrated by the usual

attributes diagram (Hsu and Murphy 1986). Section 4

presents a few conclusions.

2. Methods and data

a. Equations

The traditional anomaly correlation is given by
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where F and O are the forecast and (verifying) obser-

vation in physical units (Wilks 2006; Van den Dool

2007). The prime represents a departure from a refer-

ence state C, usually observed climatology Co; that is,

F0 5 F 2 Co and O0 5 O 2 Co. The summation is over

time, i 5 1, . . . , N with N pairs of forecasts and obser-

vations. As described, the AC is a regular correlation

pointwise. Sometimes theAC also features a summation

in space across grid points (not shown). When the cli-

matology C used to form anomalies, via F 0 5 F2 C and

O0 5 O 2 C, is external to the sample at hand, the AC

has a distinctly noncentered flavor (Van denDool 2007).

3 For statisticians it may seem obvious that MSE should be

minimized, but practitioners in meteorology have a more practical

concern: damping of forecast anomalies toward climatology may

result in blank predicted weather maps at longer forecast times.

The correspondence of formal metrics such as MSE and what

forecasters want (on behalf of their customers) is always an issue.

Here, the implicit properties of the (P)AC are actually helpful.
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The resulting AC in that situation is still within normal

bounds for a correlation, since all terms, the covariance

cov(F, O) and the standard deviation of the forecast sdF
andobservation sdO, are evaluatedwith respect to the same

C with appropriate summing over time, space, or both.

The mean square error is given by

MSE5
1

N
�
N

i51

(F 0
i 2O0

i)
2 , (2)

with the symbols as explained above. The primes are

immaterial in (2) if the sameC is subtracted from both F

and O. Via standard regression, the MSE is minimized

by creating an adjusted forecast as

F
0adj
i 5 aF 0

i 1b , (3)

where the regression coefficient a can be expressed as

a 5 cov(F, O)/sdF
2 or AC 3 sdO/sdF . The intercept b is

zero when C is the sample mean. As stated in the in-

troduction and expressed in (3), if sdO5 sdF, one should

mulitiply Fi
0 by AC in order to minimize MSE. Another

option is to attempt this as a two-step process: the sdO/sdF
factor first corrects for the overall amplitude error in

the forecasts F 0, followed by multiplication by AC if

the lowest MSE is desired.

The minimized MSE can be calculated without ex-

plicitly having to amplitude calibrate forecast anoma-

lies. The AC has this implicit quality and is telling us

about skill (in the form of an MSE attribute) using the

minimizedMSE. TheMSEof the climatological forecast

(i.e., always predicting climatology) corresponds to the

‘‘no skill’’ situation.

We can now describe the PAC in exactly the same

terms, using lowercase letters for probabilities instead of

uppercase letters as above for physical units:

PAC5

1

N
�
N

i51

p0
io

0
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N
�
N

i51

p0 2
i

1

N
�
N

i51

o02
i

s (4)

or

cov(p,o)

sd
p
sd

o

,

where the prime is the departure of p from the reference

or climatological probability cp of 1/3 (by design when

using terciles); the index i goes across time from 1 toN; p

is the predicted probability for a particular tercile; and o

is 0 or 1 depending on the event (a hit of that tercile)

happening or not. The BS is given by

BS5
1

N
�
N

i51

(p0
i 2 o0

i)
2 . (5)

One minimizes the BS by multiplying pi
0 by a regression

coefficient, which is proportional to PAC as follows:

p
0adj
i 5PAC

sd
o

sd
p

p0
i . (6)

We dropped the intercept in (6), assuming the sample

mean of the primed quantities is zero.

The word ‘‘damping’’ is used throughout the paper.

We define damping in general as multiplying F 0 5 F2C

by a constant, usually in the [0, 1] range, therefore

moving F closer to C in physical units. Similarly, we

define damping within the probability context as multi-

plying p0 5 p 2 cp by a constant, usually in the [0, 1]

range, moving the forecast p closer to cp in terms of

probability units. Equations (3) and (6) determine the

amount of damping required.

In addition to the BSfct of the forecast method at hand

calculated by (5), we require an expression for the Brier

skill score (BSS) as follows:

BSS5 (BS
control

2BS
fct
)/BS

control
, (7)

where BScontrol is the Brier score of always predicting cli-

matology, which, in this case means always predicting 1/3.

The BS can be decomposed in several terms, including

resolution (RES), reliability (REL), and an ‘‘uncertainty’’

termU (Wilks 2006). Symbolically,BS5REL2RES1U.

The REL and RES terms are illustrated in an attributes

diagram (Hsu and Murphy 1986). In forecast verification,

reliability represents the comparison of a forecast proba-

bility for an event to the observed frequency of that event.

For example, for a reliable forecast, all forecasts of 40%

probability of above normal T2m should be observed

40% of the time. Resolution indicates the use of different

forecast probabilities: the ability of the forecast system to

assign probabilities different from the climatological

probability. The third term U depends only on the obser-

vations and is not discussed further.

One can entertain various extensions, like summing

over all terciles, summing in space, or using fractional

numbers for oi, instead of 0 or 1 (Candille and Talagrand

2008; Chen et al. 2017).

b. Data: Model forecasts

The forecasts are extracted for the period 1982–2010

from the dataset produced by the CFSv2 model (Saha

et al. 2014). We are studying lead 11-monthly retroac-

tive forecasts available at 18 latitude 3 18 longitude

resolution for sea surface temperature (SST). All
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datasets are global but are used here for certain domains

specified below. Lead 11 means that, for example,

forecasts for the month of February are generated from

initial conditions near 1 January.

c. Data: Verification fields

For SST verification we use the Optimum Interpola-

tion Sea Surface Temperature, version 2, analysis of

Reynolds et al. (2002). This analysis uses both satellite

data and in situ records from ships and buoys. The native

resolution of the Reynolds et al. (2002) SST is 18
latitude 3 18 longitude. The observation period used in

this study runs from 1982 to 2010.

3. Example

In the example we consider the prediction of extra-

tropical SST by the CFSv2 during 1982–2010 (29 yr). The

target is the February monthly mean SST at all grid

points over the ocean between 258 and 758N. For each

year there are 24 total initial states, from four sequential

runs (initialized at 0000, 0600, 1200, and 1800 UTC) on

each of six days, once every pentad in late December

and early January.We choose this SST example as being

representative of monthly or seasonal prediction of

varying lead times in general; extratropical SST is not

predicted as well as tropical SST in the Pacific, but the

results are much better than those for air temperature

and, especially, for precipitation over land.

Forecast probabilities are formed from the retrospec-

tive forecasts in the following manner. For each of the

29yr in the sample, the thresholds delimiting the upper

and lower thirds of the historical record (terciles) are

calculated from the other 28 yr. The sample size is 628;

that is, 24 ensemble members times 28 yr. For example,

the tercile thresholds for the 1982 test case are calculated

from the 1983–2010 hindcasts. Then, the 24 ensemble

members from the test year are sorted into above-normal,

near-normal, and below-normal categories according to

the tercile thresholds. The percentage of ensemble

members falling in each tercile is the forecast probability;

this is the ‘‘count’’ method.

Figure 1 aggregates across the entire grid the verifi-

cation results of the raw or unadjusted probabilities for

FIG. 1. Attributes diagram of CFSv2 forecasts of monthly mean SST during February 1982–2010 starting from

initial conditions in early January. Results are aggregated for all grid points over the extratropical oceans between

258 and 758N. The probabilities are divided into 11 bins: ,5%, 5%–15%, 15%–25%, . . . , 85%–95%, and .95%.

Each cross in the left panel gives the observed frequency as a function of the predicted probability. Blue, green, and

red lines are for three terciles representing below normal, near normal, and above normal. The three histograms on

the right report the total number of forecasts in each bin in thousands. Example: there were about 75 000 occasions

with a 0%–5% probability for the below-normal tercile [i.e., only 0 or 1 ensemble members (out of 24) in that

tercile].
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the three terciles separately; the colors red, blue, and

green refer to forecasts for above, below, and normal

terciles, respectively, and are sometimes abbreviated as

A, B, andN. The results here are familiar (e.g., Barnston

et al. 2003; Palmer et al. 2005, 2008). First, the forecasts

are overconfident, which means, for example, that an

event conditioned on a predicted probability of 60% is

verified to happen only about 40% of the time. All three

lines have a slope of less than 458 (the line indicating a

perfect correspondence between forecast probabilities

and event occurrence—a ‘‘reliable’’ forecast). Second,

for lack of skill, the overconfidence problem is the most

severe for the middle tercile. This too is well known

(Van den Dool and Toth 1991; Kharin et al. 2009). The

inset histograms on the right show how often the 11

probability bins (bin 0 counts all forecasts of 0%–5%,

bin 1 all forecasts of 5%–15%, etc.) are used: for each

tercile (A, B, and N) each bin shows howmany forecasts

in that range were issued, aggregated for all years, for all

grid points. It is possible that the CFSv2 system is too

bullish (we see U-shaped histograms for the outer ter-

ciles, indicating a disproportionate number of forecasts

are for the very highest or lowest probabilities) and as-

signs at times unrealistically high/low probabilities that

need to be tempered in view of the modest overall skill.

One note of caution: although we call the situation

depicted in Fig. 1 raw or unadjusted, we did in fact

correct already for systematic errors in the mean and

distributional aspects of the models, since the tercile

thresholds are derived from the model’s hindcast data

before applying the count method. The verification

terciles, which are derived from observations, may be

very different from the model’s tercile boundaries. If we

had assigned model forecasts to observed terciles, Fig. 1

would look substantially worse, because the probabilis-

tic verification scores would be negatively impacted not

only by the mean bias, but also by the wrong standard

deviation or higher-order pdf problems. The PAC ad-

justment and its benefits that we present in this study

take Fig. 1 as the starting point. In Fig. 1 the model

(CFSv2) looks flawed, but the results are not terrible.

Figure 2 is the same as Fig. 1, but after the PAC ad-

justment, where (4)–(6) have been applied. As we will

see below, the BS was indeed reduced (minimized by

linear means). We did not have a clear a priori sense of

how the reduction in BSwould work out in the attributes

diagram, but Fig. 2 confirms a favorable result. For all

three classes, the lines in the forecast probability versus

observed frequency plot are close to the 458 line. This
means ‘‘reliability’’ (one of the terms in the BS de-

composition) is near perfect and makes a near-zero

contribution to BS. The resolution has also improved.

The latter can be judged visually from the angle of these

three lines with the horizontal, which is higher in Fig. 2

than in Fig. 1; the higher the angle, the higher the res-

olution. The minimum BS is thus at 458, where the

FIG. 2. As in Fig. 1, but after PAC adjustment.
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resolution is as great as possible without harming the

reliability. [We do not offer ‘‘proof’’ that this is so, but

see the comments by Mason (2012) concerning ex-

changing reliability for resolution or vice versa.] A

beneficial impact of the PAC approach is also seen in the

histograms on the r.h.s. of Fig. 2. The frequency of occur-

rence of the extreme bins (,5% and .95%) has been

reduced, and the U-shape has turned into a bell shape, so

forecasts for an extreme probability are fewer in number

(compared with Fig. 1), but not zero. Since skill is low for

the N class, its histogram has been pulled inward into the

25%–35%bin (bin 3 in the histogramfigures)more so than

for the A and B classes. But even in the N class, we are

allowed an occasional probability anomaly of 5% or 10%.

This is only allowed when the PAC . 0 (i.e., the method

surmises inherent skill), even when BS skill for the raw

forecast is negative. When PAC is zero, or negative (this

has to be due to sampling) the PAC-adjusted prediction is

set to the climatological probability of 1/3, a frequent oc-

currence for the N tercile, as shown by the high number of

forecasts in this bin (Fig. 2, center histogram).

The area-aggregated PAC [i.e., summing (4) in space;

not shown] for this example is about 0.4 for the A and B

terciles, and 0.15 for theN class, but the PACvaries greatly

in space. Values of 0.4 might give the impression of strong

damping being required. However, the standard deviation

from the observations is often larger than that of the

forecast (e.g., Becker et al. 2014). Since sdo is usually on the

order of 50% larger than sdf, and the actual damping factor

is relative to this ratio [(6)], the damping is not as large as

PAC alone indicates. The high sdo/sdf ratio for probabili-

ties is largely caused by observations being either 0 or 1, or

probability anomalies being either 1/3 or 2/3, while the

forecasts are any fractional number, and their probability

anomalies are smaller. So aPACof 0.4 indicates a damping

of the probability anomaly by about 0.6.

Table 1 shows the BS and BSS (Brier skill score) for this

example. It is evident that the BS is reduced, and by about

the same amount in all three terciles, when the PAC ad-

justment is executed. The improvements expressed as per

BSS, that is, the improvement over a purely climatological

forecast, look quite good for theA andB classes. Themore

noticeable improvement, however, is for theNclass. For the

raw forecasts the BSS is negative, because the BS is worse

than the climatological control. Applying the PAC adjust-

ment turns out to be more beneficial than just allowing the

avoidance of embarrassment, which would be to bring the

negativeBSSup to zero.ThePAC is positive for theNclass,

which means that with sufficient damping the BSS can ac-

tually be turned positive, and the histograms on the right in

Fig. 2 do not have to be delta functions right at 0.333.

A nuisance problem with PAC-corrected probabilities

is that the regression, as formulated, does not force

probabilities for any tercile to be $0 or #100, nor is the

sum of the probabilities of the three terciles forced to be

100%. Most of the time, these violations are inconse-

quential, but sometimes discrepancies on the order of

5%–10% occur. The appendix describes an iterative

procedure for correcting these problems. The iteration

always converges. This is called adjusted1 in the bottom

rowof Table 1. In no case does theBS suffer frompushing

probabilities inside bounds; in fact, the BS is lowered by a

tiny amount in all cases. Although BS was already mini-

mized, it was minimized by linear means, and this does

not preclude it from being lowered further. We did not

pursue a more formal approach that would guarantee a

priori proper behavior for PAC-adjusted probabilities;

see Glahn (2014) for comments on such problems.

The SST forecast above simply serves as an illustra-

tion; other variables show the exact same behavior. A

more complete study (all variables, all start months) is

forthcoming, with the baseline (raw or unadjusted) al-

ready described in Becker and Van den Dool (2016).

4. Conclusions and discussion

A method is proposed to calibrate raw forecast proba-

bilities coming from a dynamical model or other prediction

methods. It is simply a regression between predicted and

observed probabilities, which should by definitionminimize

the Brier score. The name probability anomaly correlation

(PAC) was chosen to stress the analogy of the traditional

anomaly correlation and its relation to minimizing MSE.

The PAC method is simple, direct, and appears to be suc-

cessful on the examples studied. It is, however, unusual to

think of regression applied directly to probabilities.

There are at least two reasons why probabilities coming

straight from a model need some damping and/or

smoothing. The first reason is noise. The most typical

situation is one of a model being overconfident, espe-

cially when too few ensemble members are gener-

ated. The situation is aggravated by the count method,

which has large round-off errors. In the limit of a single

TABLE 1. Tabulations of BSs and BSSs by tercile for the 1-month

lead prediction of monthly mean SST prediction aggregated for all

grid points in NH extratropical oceans. Raw means forecasts from

CFSv2 are assigned to terciles by the count method. Adjusted

means that probability anomalies are regressed toward zero by the

PAC method. For the definition of adjusted1, see the text.

BS 3 100 BSS 3 100

A N B A N B

Raw 18.7 23.5 20.1 14.6 26.8 11.5

Adjusted 16.4 20.6 17.7 25.1 6.5 22.1

Adjusted1 16.3 20.4 17.4 25.7 7.4 23.2
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ensemble member, the single outcome will be mapped

(in the count method) as two 0s and one 1 for the pre-

dicted probability of the three classes. This would be a

silly forecast. Unless inherent skill is perfect, the 0s and 1

should be moved toward 1/3; that is, the probability

anomalies (which were either21/3 or12/3 in the example

of a single ensemble member) are to be damped toward

zero to improve the BS. The PAC tells us exactly by how

much. This damping is close to smoothing that can be

achieved in many other ways. Any procedure that

reduces a 1 (‘‘certainty’’) to 1 2 «, and giving the re-

maining « to a neighboring class (or classes), is likely to

make probability forecasts look better. It follows logi-

cally that, everything else being the same, a model with

small ensemble size has more to gain from PAC-based

probability adjustments than a model with a large en-

semble. This consideration is especially important when

comparing a single model to a multimodel ensemble.

A second reason, which is more subtle and profound,

for damping is that counting model outcomes give an

impression of potential predictability under the perfect

model assumption: the degree to which a model is able to

predict itself, thus illustrating the divergence of forecasts

over time and the potential growth of errors (Lorenz

1982). As shown in Becker et al. (2014), predictability

(where the ensemble ofN2 1 members is used to predict

one withheld member) tends to be higher than prediction

skill (N-member ensemble mean versus the observation)

for seasonal prediction. The PAC measures prediction

skill—information that can be used to appropriately re-

duce predictability-based probabilities.

Although we claim that the PAC approach of calibrat-

ing probabilities is novel, we do not claim that this method

is necessarily the best. Being ‘‘best’’ depends on the criteria

and metrics used, and there must be at least a half-dozen

postprocessing methods that clean up raw probabilities

satisfactorily. Among them are the aforementioned

Gneiting et al. (2005) approach, ‘‘ensemble regression’’

(Unger et al. 2009), and a regression method described in

Tippett et al. (2014). The latter two methods design a re-

gression between the ensemble mean and the observa-

tions, minimizing MSE in physical units at the start.

Neither optimizes a probabilistic score by design. Com-

pared with methods that only use the ensemble mean as

predictor (Hamill et al. 2004; Tippett et al. 2014) the PAC

method distinguishes itself by using predicted probabilities

as predictors, in theory using distributional information.

Whether this helps remains to be demonstrated.

As of April 2016 the PAC method was implemented

and applied in real time to the North American Multi-

model Ensemble (NMME); examples can be seen online

(http://www.cpc.ncep.noaa.gov/products/NMME/). While

the present article included an example for a single

dynamical model, the NMME includes seven or eight

models. There are various ways of going from a single to

multiple PAC-adjusted models. This will be described

in a forthcoming paper. Here, we present the idea of the

PAC adjustment, and, as an example, we have applied it

to a single model.
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APPENDIX

Final Alterations to Adjusted Probabilities

Alterations may need to be made to address three

types of violations of probabilities listed below. If nec-

essary, steps 1–3 are executed more than once.

1) When the adjusted probability pk for class k is

negative, we define a discrepancy (a negative num-

ber) as pk 2 0.01. Half the discrepancy is added

to the two other classes, and pk is set equal to

0.01. (Example: if the PAC-adjusted p1 5 20.05,

then p1 is set to 10.01, and 20.03 is added to both

p2 and p3.) This rule is applied to all classes in turn,

k 5 1, 2, 3, when applicable.

2) When the adjusted probability pk for class k is larger

than 100%, we define a discrepancy (a positive num-

ber) as pk 2 0.99. Half the discrepancy is added to the

two other classes, and pk is set equal to 0.99. This rule is

applied to all classes k 5 1, 2, 3, when applicable.

3) Third, we define a discrepancy as (p11 p2 1 p3)2 1.

One-third of this discrepancy (positive or negative) is

subtracted from pk, k 5 1, 2, 3.

We keep repeating these three steps until nomore action

is needed. Two iterations generally appear to be enough.

REFERENCES

Barnston, A. G., S. J. Mason, L. Goddard, D. G. Dewitt, and S. E.

Zebiak, 2003: Multimodel ensembling in seasonal climate

forecasting at IRI. Bull. Amer. Meteor. Soc., 84, 1783–1796,

doi:10.1175/BAMS-84-12-1783.

Becker, E., and H. Van den Dool, 2016: Probabilistic seasonal

forecasts in the North American Multimodel Ensemble: A

baseline skill assessment. J. Climate, 29, 3015–3026, doi:10.1175/
JCLI-D-14-00862.1.

——, ——, and Q. Zhang, 2014: Predictability and forecast skill in

NMME. J. Climate, 27, 5891–5906, doi:10.1175/JCLI-D-13-00597.1.

FEBRUARY 2017 VAN DEN DOOL ET AL . 205

http://www.cpc.ncep.noaa.gov/products/NMME/
http://dx.doi.org/10.1175/BAMS-84-12-1783
http://dx.doi.org/10.1175/JCLI-D-14-00862.1
http://dx.doi.org/10.1175/JCLI-D-14-00862.1
http://dx.doi.org/10.1175/JCLI-D-13-00597.1


Brier, G. W., 1950: Verification of forecasts expressed in prob-

abilities. Bull. Amer. Meteor. Soc., 78, 1–3, doi:10.1175/

1520-0493(1950)078,0001:VOFEIT.2.0.CO;2.

Candille, G., andO. Talagrand, 2008: Impact of observational error

on the validation of ensemble prediction systems. Quart.

J. Roy. Meteor. Soc., 134, 959–971, doi:10.1002/qj.268.

Chen, L.-C., H. Van denDool, E. Becker, andQ. Zhang, 2017: ENSO

precipitation and temperature forecasts in the North American

Multimodel Ensemble: Composite analysis and validation.

J. Climate, doi:10.1175/JCLI-D-15-0903.1, in press.

Dutton, J. A., 2009: Weather, climate, and the energy industry.

Management of Weather and Climate Risk in the Energy In-

dustry, A. Troccoli, Ed., NATO Science for Peace and Secu-

rity Series C: Environmental Security, Springer, 3–23.

Glahn, B., 2014: A nonsymmetric logit model and grouped pre-

dictand category development. Mon. Wea. Rev., 142, 2991–

3002, doi:10.1175/MWR-D-13-00300.1.

Gneiting, T., A. E. Raftery, A. H.Westveld, and T.Goldman, 2005:

Calibrated probabilistic forecasting using ensemble model

output statistics and minimum CRPS estimation. Mon. Wea.

Rev., 133, 1098–1118, doi:10.1175/MWR2904.1.

Hamill, T. M., J. S. Whitaker, and X. Wei, 2004: Ensemble refor-

ecasting: Improving medium-range forecast skill using retro-

spective forecasts.Mon.Wea. Rev., 132, 1434–1447, doi:10.1175/

1520-0493(2004)132,1434:ERIMFS.2.0.CO;2.

Hsu, W.-R., and A. H. Murphy, 1986: The attributes diagram: A

geometrical framework for assessing the quality of proba-

bility forecasts. Int. J. Forecasting, 2, 285–293, doi:10.1016/

0169-2070(86)90048-8.

Kharin, V. V., Q. Teng, F. W. Zwiers, G. J. Boer, J. Derome, and

J. S. Fontecilla, 2009: Skill assessment of seasonal hindcasts

from the Canadian Historical Forecast Project. Atmos.–Ocean,

47, 204–223, doi:10.3137/AO1101.2009.

Lorenz, E. N., 1982: Atmospheric predictability experiments with

a large numerical model. Tellus, 34A, 505–513, doi:10.1111/

j.2153-3490.1982.tb01839.x.

Mason, S., 2012: Do statistical models trade resolution for re-

liability? Seminar on Seasonal Prediction: Science and Appli-

cations, Reading, United Kingdom, ECMWF, 73–82.

Miyakoda, K., R. F. Strickler, C. J. Nappo, P. L. Baker, and G. D.

Hembree, 1971: The effect of horizontal grid resolution in an

atmospheric circulation model. J. Atmos. Sci., 28, 481–499,

doi:10.1175/1520-0469(1971)028,0481:TEOHGR.2.0.CO;2.

Murphy, A. H., and E. S. Epstein, 1989: Skill scores and

correlation coefficients in model verification. Mon. Wea.

Rev., 117, 572–582, doi:10.1175/1520-0493(1989)117,0572:

SSACCI.2.0.CO;2.

Palmer, T. N., G. J. Shutts, R. Hagedorn, F. J. Doblas-Reyes,

T. Jung, andM.Leutbecher, 2005:Representingmodel uncertainty

in weather and climate prediction. Annu. Rev. Earth Planet. Sci.,

33, 163–193, doi:10.1146/annurev.earth.33.092203.122552.
——, F. J. Doblas-Reyes, A. Weisheimer, andM. J. Rodwell, 2008:

Toward seamless prediction. Bull. Amer. Meteor. Soc., 89,

459–470, doi:10.1175/BAMS-89-4-459.

Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and

W. Wang, 2002: An improved in situ and satellite SST anal-

ysis for climate. J. Climate, 15, 1609–1625, doi:10.1175/

1520-0442(2002)015,1609:AIISAS.2.0.CO;2.

Saha, S., and Coauthors, 2014: The NCEP Climate Forecast

System version 2. J. Climate, 27, 2185–2208, doi:10.1175/

JCLI-D-12-00823.1.

Tippett, M. K., T. DelSole, andA. G. Barnston, 2014: Reliability of

regression-corrected climate forecasts. J. Climate, 27, 3393–

3404, doi:10.1175/JCLI-D-13-00565.1.

Tracton, M. S., and E. Kalnay, 1993: Operational ensemble

prediction at the National Meteorological Center: Practical

aspects. Wea. Forecasting, 8, 379–398, doi:10.1175/

1520-0434(1993)008,0379:OEPATN.2.0.CO;2.

Unger, D., H. Van den Dool, E. O’Lenic, and D. Collins, 2009:

Ensemble regression. Mon. Wea. Rev., 137, 2365–2379,

doi:10.1175/2008MWR2605.1.

Van den Dool, H. M., 2007: Empirical Methods in Short-Term

Climate Prediction. Oxford University Press, 215 pp.

——, and Z. Toth, 1991: Why do forecasts for near normal

often fail? Wea. Forecasting, 6, 76–85, doi:10.1175/

1520-0434(1991)006,0076:WDFFNO.2.0.CO;2.

Wilks, D., 2006: Statistical Methods in the Atmospheric Sciences.

2nd ed. Academic Press, 627 pp.

206 WEATHER AND FORECAST ING VOLUME 32

http://dx.doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
http://dx.doi.org/10.1002/qj.268
http://dx.doi.org/10.1175/JCLI-D-15-0903.1
http://dx.doi.org/10.1175/MWR-D-13-00300.1
http://dx.doi.org/10.1175/MWR2904.1
http://dx.doi.org/10.1175/1520-0493(2004)132<1434:ERIMFS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2004)132<1434:ERIMFS>2.0.CO;2
http://dx.doi.org/10.1016/0169-2070(86)90048-8
http://dx.doi.org/10.1016/0169-2070(86)90048-8
http://dx.doi.org/10.3137/AO1101.2009
http://dx.doi.org/10.1111/j.2153-3490.1982.tb01839.x
http://dx.doi.org/10.1111/j.2153-3490.1982.tb01839.x
http://dx.doi.org/10.1175/1520-0469(1971)028<0481:TEOHGR>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1989)117<0572:SSACCI>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1989)117<0572:SSACCI>2.0.CO;2
http://dx.doi.org/10.1146/annurev.earth.33.092203.122552
http://dx.doi.org/10.1175/BAMS-89-4-459
http://dx.doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2
http://dx.doi.org/10.1175/JCLI-D-12-00823.1
http://dx.doi.org/10.1175/JCLI-D-12-00823.1
http://dx.doi.org/10.1175/JCLI-D-13-00565.1
http://dx.doi.org/10.1175/1520-0434(1993)008<0379:OEPATN>2.0.CO;2
http://dx.doi.org/10.1175/1520-0434(1993)008<0379:OEPATN>2.0.CO;2
http://dx.doi.org/10.1175/2008MWR2605.1
http://dx.doi.org/10.1175/1520-0434(1991)006<0076:WDFFNO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0434(1991)006<0076:WDFFNO>2.0.CO;2

