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ABSTRACT

The characteristics of extratropical low-frequency variability are examined using a comprehensive atmospheric
general circulation model. A large experiment consisting of 13 45-yr-long integrations forced by prescribed sea
surface temperature (SST) variations is analyzed. The predictability of timescales of seasonal to decadal averages
is evaluated. The variability of a climate mean contains not only climate signal arising from external boundary
forcing but also climate noise due to the internal dynamics of the climate system, resulting in various levels of
predictability that are dependent on the forcing boundary conditions and averaging timescales. The focus of this
study deviates from the classic predictability study of Lorenz, which is essentially initial condition sensitive.
This study can be considered to be a model counterpart of Madden’s ‘‘potential’’ predictability study.

The tropical SST anomalies impact more on the predictability over the Pacific/North America sector than the
Atlantic/Eurasia sector. In the former sector, more significant and positive impacts are found during El Niño
and La Niña phases of the ENSO cycle than during the ENSO inactive period of time. Furthermore, the
predictability is significantly higher during El Niño than La Niña phases of the ENSO cycle. The predictability
of seasonal means exhibits large seasonality for both warm and cold phases of the ENSO cycle. During the
warm phases, a high level of predictability is observed from December to April. During the cool phases, the
predictability rapidly drops to below normal from November to March. The spring barrier in the atmospheric
predictability is therefore a distinct phenomenon for the cold phase, not the warm phase, of the ENSO cycle.
The cause of the barrier can be traced to the smaller climate signal and larger climate noise generated during
cold events, which in turn can be traced back to the rapidly weakening negative SST anomalies in the tropical
Pacific east of the date line.

Due to the fact that the signal to noise ratio of this model climate system is very small, an upper bound in
atmospheric predictability is present, even when a perfect model atmosphere is considered and large ensemble
mean predictions are exploited. The outstanding issues of the dynamical short-term climate prediction employing
an atmospheric general circulation model are examined, the current model deficiencies identified, and continuing
efforts in model development addressed.

1. Introduction

The atmospheric predictability of a climate mean at
timescales of a season or longer is examined employing
a comprehensive atmospheric general circulation model
(AGCM). An approach and emphasis different from the
classical predictability study of Lorenz (1982) are adopt-
ed here and the results and implications discussed. The
classical studies focus on growth rate of an initial error
(Lorenz 1965; Smagorinsky 1969; Shukla 1981) and
determine the limit to the deterministic predictability,
which has been established to be about 3 weeks for an
instantaneous atmospheric state (e.g., Lorenz 1982;
Dalcher and Kalnay 1987; Roads 1987; Palmer and Ti-
baldi 1988; Schubert and Suarez 1989; Tracton et al.
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1989; Chen 1989; Van den Dool 1994). Some potential
predictability beyond this limit has also been demon-
strated for time means (or lower-frequency variations)
(e.g., Shukla 1981; Blackmon et al. 1983; Miyakoda et
al. 1986; Mansfield 1986; Roads 1986). The initial error
divergence approach has also been explored in the El
Niño–Southern Oscillation (ENSO; Rasmusson and
Wallace 1983) associated predictability studies (Frae-
drich 1988; Goswami and Shukla 1991; Blumenthal
1991).

Although covering a wide range of timescales, from
instantaneous state to interannual variability, the classic
predictability studies have one thing in common: they
examine the loss of predictability due to growth and
divergence of an initial error. The classic study is there-
fore on the predictability that is initial condition sen-
sitive (ICS).

In this article, we will look into the predictability that
is boundary condition dependent (BCD). After (and be-
fore) complete loss of the ICS predictability, the at-
mosphere might possess BCD predictability due to the
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existence of externally forced variability. There are sit-
uations when (or where) the predictability is both initial
and boundary condition dependent. For our present
study, we will focus on those that are only boundary
value dependent. For a pair of 45-yr-long AGCM runs
forced by identical, prescribed time varying boundary
conditions, it is easy to comprehend that the initial con-
ditions will become irrelevant after some time. After
this initial condition sensitive period, the predictability
evaluated from the similarity of anomalies in the pair
occurring at the same time can exhibit varying mag-
nitude depending on the underlying forcing boundary
conditions. We will explore this kind of boundary-con-
dition-dependent predictability, for climate means rang-
ing from seasonal, annual, to decadal timescales, for the
northern extratropical atmosphere.

The interannual variability of a climate mean consists
of not only climate signal but also climate noise. The
climate signals are those variations forced by the slowly
varying anomalous boundary conditions external to the
climate system (e.g., Hoskins and Karoly 1981; Horel
and Wallace 1981; Wallace and Blackmon 1983; Black-
mon et al. 1983; Cubash 1985), while the climate noise
is due to the dynamical nature internal to a fluid flow
even when the external forcing is constant (e.g., Leith
1973; Jones 1975; Madden 1976; Lau 1981; Trenberth
1984; Chervin 1986; Zwiers 1987; Chen and Van den
Dool 1995a). The climate noise, as the words imply, can
not be predicted beyond some point, generally believed
to be about 3 weeks. However, a climate anomaly may
display a certain degree of predictability if the percentage
of climate signal in its total variability is large enough
to overcome the destructive effect of the climate noise.

In the real world, it is exceedingly difficult to separate
climate signal from climate noise (Trenberth 1984;
Chervin 1986; Zwiers 1987). For the GCM climate vari-
ability simulations, the signal to noise separation prob-
lem becomes manageable. Approaches and formulism
to separate signal from noise and the analysis of the
interannual variability in an ensemble of climate sim-
ulations can be found in Folland and Rowell (1995) and
Zwiers (1996). In this article, we are interested in what
level of boundary condition dependent predictability the
extratropical atmosphere displays. Is there a large dif-
ference in this kind of predictability over the Pacific/
North America (PNA) sector from the Atlantic/Eurasia
(AEA) sector? Are there substantial differences in the
level of BCD predictability during El Niño, La Niña,
and ENSO inactive years? Furthermore, is there also a
‘‘spring barrier’’ in the BCD predictability in the ex-
tratropical atmosphere? If there is a spring barrier, can
we gain some insights into the physical processes?

2. Data and treatments

The ocean–atmosphere coupled model group of the
National Centers for Environmental Predictions (NCEP)
has conducted a large climate variability experiment in

1995 (M. Ji 1996, personal communication). Altogether,
13 45-year-long AGCM runs have been generated at a
reduced resolutions of T40L18 by a global spectral mod-
el developed for medium-range forecasting (MRF) at
NCEP. A complete documentation of the MRF system
can be found in Sela (1980), with updates of the model
by Kanamitsu (1989), Kalnay et al. (1990), and Kumar
et al. (1996). All 13 runs began in January 1950 and
integrated out to 45 years ending in February 1995. The
sea surface temperatures were prescribed for the entire
45 years using NCEP’s SST analyses. That is, the model
was run in perfect ocean uncoupled mode. For the early
period when no operational SST analyses were avail-
able, the NCEP’s ‘‘reanalysis’’ for the period 1950–92
(T. M. Smith et al. 1997, manuscript submitted to J.
Climate) was used. The solar radiation was updated ev-
ery day according to the astronomical calendar. The
snow depth, soil moisture, and sea ice conditions were
updated every day according to their known climatol-
ogies. The Hadley Centre of the U.K. Meteorological
Office has made a similar but less restricted ensemble
of multidecadal AGCM integrations (Folland and Row-
ell 1995), forced by not only the observed SST but also
the observed sea ice data. The snow, ice, and surface
hydrology may be important components of the mech-
anisms that induce the climate’s remote response to the
slow SST variations. Our current study cannot reflect
this possible response due to the use of climatological
snow, ice-cover data.

In this study, the geopotential height fields at 500-mb
level (Z500) were employed. The climatologies for each
month were constructed first by averaging that month
over all 45 years and over all 13 runs. A set of monthly
anomalies was then obtained by subtracting the cli-
matology from the monthly data. Since the seasonal to
decadal timescale predictability is to be evaluated, we
form the seasonal, yearly, and decadal means (denoted
by SM, YM, and DM, respectively) first in the following
manner. Let anom(m, i, k) stand for an anomaly for
month (m), year (i), and AGCM run number (k). Then
we form

SM(m, i, k) by averaging anom(m, i, k) over 3 months
centered on m;

YM(i, k) by averaging anom(m, i, k) over all m
from August of year (i 2 1) to July of
year i; and

DM(l, k) by averaging YM(i, k) over 10 years,
where

l 5 1 for 1951–60,

l 5 2 for 1961–70,

l 5 3 for 1971–80, and

l 5 4 for 1981–90.

Note that the anomaly and the averaged SM, YM, and
DM all are a function of position.
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FIG. 1. The mean (horizontal bold line) and fluctuations of the
yearly mean predictability, measured by anomaly pattern correlation.
The x axis shows the case number of a total of 78 3 44 (53432)
cases. Spatial domains are the PNA sector for 1208E eastward to
608W and the AEA sector for 608W eastward to 1208E. Both domains
cover only from 208 to 708N.

TABLE 1. Mean (M) and standard deviation (SD) of APCs before
and after the Fisher’s Z transformation for yearly and decadal climate
means.

Time-
scale

Z trans-
formation

Northern
Hemisphere

M SD

PNA sector

M SD

AEA sector

M SD

Yearly Before 0.22 0.28 0.26 0.34 0.18 0.33
After 0.25 0.33 0.31 0.41 0.21 0.39

Decadal Before 0.40 0.27 0.45 0.25 0.34 0.35
After 0.46 0.33 0.54 0.33 0.41 0.43

We choose the anomaly pattern correlation (APC) as
a measure to gauge the level of predictability that we
are interested in. Between a pair of anomaly fields, de-
noted here by a and b, APC is defined as in Miyakoda
(1972) and Saha and Van den Dool (1988):

[ab]
APC 5 , (1)

2 1/2 2 1/2[a ] [b ]

where the [ ] represents averaging over the spatial do-
main of interest. In addition to hemispheric averaging
(NH), which covers the area from 208N to 708N, two
smaller longitudinal domains are also considered: one
is over the North Pacific/North America sector (1208E
eastward to 608W) and the other the North Atlantic/
Eurasia sector (608W eastward to 1208E).

Note that a collection of APCs can be obtained for
each year for SMs and YMs by correlating all possible
pairs valid at the same time. With 13 runs that provide

altogether 78 APCs each year, we are thus able to obtain
a statistically stable estimate of APC as follows:

44 781
APC 5 APC . (2)O O i,j44 3 78 i51 j51

Note that there are only 44 YMs (as defined previously
by averaging from August to the following July) al-
though there are 45 years of the monthly data. For DMs
the number is 4 instead of 44.

3. Predictability of the seasonal to decadal means

The seasonal to decadal climate mean predictability
is estimated by the above formula. Based on a perfect
model point of view, each run represents a sample of
the true model atmospheric states, thus serving as a
prediction for any other run as well as being a realization
to be verified against. An APC can therefore be obtained
between any pair among the 13 realizations to represent
a sampled ‘‘skill score.’’ Note that the observed at-
mospheric states are not invoked and verified with; the
APC thus obtained is only an idealistic, henceforth a
theoretical or potential predictability, not a practical or
easily realizable skill level.

Figure 1 presents the mean and the fluctuations of the
boundary condition dependent predictability for the
yearly means. The x axis shows the case number of a
total of 78 3 44 (53432) cases. The horizontal bold
line represents the mean of the 3432 APCs. The upper
panel is the results for the PNA sector, and the lower
panel is for the AEA sector. The means and standard
deviations are listed in Table 1 along with some statis-
tical significance data to be discussed shortly. We see
that both mean predictability levels are small, less than
0.26. However, the mean (APC) for the PNA sector is
noticeably larger than that for the AEA sector, implying
that larger (or better detectable) impact of the SST forc-
ing can be found in the PNA than in the AEA sector.

The APC difference between PNA and AEA sectors
appears to be small, 0.26 versus 0.18, especially when
considering the large standard deviations associated
with both of them. Is the difference between these two
means statistically significant? We proceed to make a
statistical significance test.

The probability distribution of the APCs reported here
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FIG. 2. As in Fig. 1 except for the decadal-mean predictability
instead of the yearly mean. The x axis shows the case number of a
total of 78 3 4 (5312) cases.

is not Gaussian but highly skewed. This is because the
APCs are bounded by 11 (and 21). Branstator (1986)
has examined the problem pertaining to the interpre-
tation of variability from two time periods. A simple
Fisher’s Z transformation (e.g., Morrison 1983) on
APCs, that is,

1 1 1 APC
Z(APC) 5 ln , (3)1 22 1 2 APC

will make the new distribution more Gaussian and com-
parison of variability in Z distribution will be more
meaningful. For this reason, we obtained Z(APC) and
list their means and standard deviations also in Table 1.

Now, let us form a null hypothesis that there is no
real difference between the two means. Let m and s
stand for mean and standard deviation, in general, and
X1 and X2 the sample means obtained in large samples
of size N1 and N2, drawn from respective populations
having means m1 and m2 and standard deviations s1 and
s2. Since a null hypothesis is assumed, we should have

2 5 m1 2 m2 5 0.m 5 m m(X 2X ) X X1 2 1 2
(4)

According to sampling theory (e.g., Morrison 1983), we
should also have

5 ( /N1 1 /N2)1/2.2 2s s s(X 2X ) 1 21 2
(5)

Next, let us standardize the difference variable (X1 2
X2) to obtain the z score by

(X 2 X ) 2 m1 2 (X 2X )1 2z 5
s(X 2X )1 2

(X 2 X )1 25 . (6)
2 2 1/2(s /N 1 s /N )1 1 2 2

Using the sample standard deviations (those listed in Table
1) as estimates of s1 and s2, we can now test the null
hypothesis at any level of significance. Now, we have

0.31 2 0.21
z 5 5 10.0.

2 2 1/2(0.41 /3432 1 0.39 /3432)

With a critical value zc 5 10.0, a Gaussian distribution
table assures us that the null hypothesis can be true with
probability of near zero. Therefore, the APC difference
between PNA and AEA sectors (0.26 vs 0.18) is sta-
tistically significant at a confidence level of 100%. We
are thus as sure as can be that the tropical SST anom-
alous forcing impacts more over the PNA sector than
the AEA sector in the northern extratropical atmosphere
in this model.

The decadal-mean predictability (Fig. 2) shows much
larger APCs than those of the yearly means and pro-
nounced variability from one decade to the next. The x
axis is again the case number of a total of 78 3 4 (5312)
cases. The larger decadal APC than the yearly APC is
expected since the model climate noise of a decadal
mean is much smaller than that of the yearly mean, and
it is understood that the noise always degrades an APC.

The statistics of the decadal predictability are also listed
in Table 1. The APC difference between PNA and AEA
sectors, 0.54 versus 0.41, is again statistically signifi-
cant. The decadal zc, between PNA and AEA sectors,
obtained by Eq. (6) is 4.05. It is not as large as that of
the yearly zc mainly because of the much smaller sample
size, 3432 versus 312. However, the Gaussian table as-
sures us that the difference in the decadal APC between
PNA and AEA sectors is statistically significant with a
confidence level of 100%.

Another interesting feature observed in Fig. 2 is the
large variability in the mean predictability from one
decade to the next, especially so for the AEA sector.
Note that there are 4 decades of APC in the figure, with
78 pairs for each decade. The statistics of each 78-pair
subgroup (decade) are listed in Table 2. Taking AEA
sector for example, the mean predictability drops from
0.63 to 0.02 from the 1951–60 decade to the 1961–70
decade; then it rises to 0.56 for the 1971–80 decade and
then drops back down again to 0.15 for the 1981–90
decade. For this case, the change in mean predictability
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TABLE 2. Mean (M) and standard deviation (SD) of APCs before
and after Fisher’s Z transformation for decadal climate means of all
4 decades.

Decade
Z trans-

formation

Northern
Hemisphere

M SD

PNA sector

M SD

AEA sector

M SD

1951–60 Before
After

0.60
0.71

0.11
0.18

0.57
0.68

0.16
0.25

0.63
0.78

0.13
0.22

1961–70 Before
After

0.16
0.17

0.25
0.27

0.31
0.34

0.28
0.33

0.02
0.02

0.30
0.34

1971–80 Before
After

0.59
0.70

0.13
0.21

0.62
0.76

0.15
0.25

0.56
0.68

0.18
0.28

1981–90 Before
After

0.25
0.26

0.19
0.21

0.32
0.36

0.23
0.27

0.15
0.17

0.26
0.29

from one decade to the next is statistically significant
according to the z statistics and Eq. (6).

It should be interesting to explore why the 1950s and
1970s have much higher predictability than the other two
decades. But, this effort will diffuse our current focus. We
will try to expand on this interesting subject elsewhere.

The roles the climate signal and climate noise play
in determining the boundary condition dependent pre-
dictability will be discussed in detail in the next section.
The seasonal means were constructed for all 12 over-
lapping seasons (December–February (DJF), January–
March, and February–April, etc.). The seasonality of
the seasonal-mean predictability can be detected if there
is any. The characteristics will be discussed in later
sections in detail.

4. Variance of climate signal and climate noise

In order to account for the higher level of predict-
ability for the PNA sector than the AEA sector and why
the decadal-mean predictability is larger than the yearly
mean predictability, we resort to the geographical dis-
tributions of the climate signal and noise of this model
climate variability. In a recent workshop on simulations
of the climate of the twentieth century held at the Hadley
Centre, Rowell (1995) presented a methodology for us-
ing an ensemble of multidecadal GCM simulations to
assess the percentage variance explained by SST forc-
ing. Zwiers (1996) has also described a formulism for
analyzing the interannual variability and predictability
in an ensemble of climate simulations. For our present
purpose of assessing the boundary condition dependent
predictability, the Rowell’s methodology appears to be
suitable. We therefore follow Rowell to define our model
climate signal and noise.

For illustrative purposes, we use the yearly means.
At a given location, let a yearly mean anomaly be de-
noted by aik, where i is the year index that goes from
1 to 44 and k the case number of the AGCM run that
goes from 1 to 13. For year i, the climate signal (CSi)
is estimated as the average of all 13 cases, that is,

131
CS 5 a . (7)Oi ik13 k51

The climate noise for run number k and year i (CNik)
is simply a deviation from the signal, that is,

CNik 5 aik 2 CSi. (8)

The variance of the model climate noise for year i (vni)
can then be obtained by

131
2vn 5 CN . (9)O1 ik(13 2 1) k51

Note that the denominator is 12 instead of 13 because
the degrees of freedom are one less than the total number
of realizations for a second moment.

Let VN represent the average of noise variance over
44 years; then,

441
VN 5 vn . (10)O i44 i51

Although the monthly mean climatology is already re-
moved from the monthly dataset, we recalculate the
yearly mean climatology as

441
clim 5 CS . (11)O i44 i51

The variance of the climate signal (VS) is simply ob-
tained with reference to the clim, as

441
2VS 5 (CS 2 clim) . (12)O i44 2 1 i51

Again, there is one less than the total degrees of freedom
for this second moment.

In Eq. (7), the climate signal for a given year is ob-
tained from an ensemble of only 13 members. It rep-
resents a small sample estimate, albeit a fairly good one.
Because of the uncertainty in CSi from the true popu-
lation climate signal, the VS obtained by Eq. (12) will
always overestimate the externally forced international
variability. The amount of overestimation is VN/13, ac-
cording to a standard analysis of variance (e.g., Scheffe
1959, 226). For our current interest in understanding
the qualitative aspect of the boundary condition depen-
dent predictability, Eq. (12) is probably good enough.

Figure 3 presents the variance of the yearly mean
climate signal and noise for Z500 (the unit is m2). The
climate noise variance is, in general, considerably larger
than the variance of the signal. The signal develops
mainly over the North Pacific, between Hawaii and the
Aleutian Islands. A lesser amount of signal variance is
found over western Canada and the Arctic Siberia. A
large amount of climate noise develops over the Arctic
Siberia, where the noise variance is overwhelming when
compared with the noise variance over the northeastern
Pacific, explaining why the APC for the AEA sector is
significantly smaller than that of the PNA sector. Over
the North Pacific sector, it is interesting to note that the



JUNE 1997 1241C H E N A N D V A N D E N D O O L

FIG. 3. Comparison of variance of yearly means between climate
signal and noise (the contour unit is m2).

FIG. 4. As in Fig. 3 except for the decadal means.

climate noise mainly develops over the Gulf of Alaska
area, in between the two climate signal centers.

The variances of the decadal-mean climate signal and
noise are shown in Fig. 4 (also in units of m2). The
decadal variance is about an order of magnitude smaller
than the yearly variance. The pattern of the noise vari-
ance is similar to that of the yearly means. However,
the signal pattern is somewhat different. The decadal
signal develops mainly over the western North Pacific
and the adjacent Asian continent. Locally, the signal to
noise ratio is better than 1. A slight amount of signal

variance can also be found over Europe. Again, much
larger noise to signal ratio is observed over the AEA
sector, explaining the significantly lower APC for AEA
than PNA sector, as shown in Fig. 2.

The magnitude and patterns of the seasonal-mean cli-
mate signal and noise variance will be shown and dis-
cussed in the following sections.

5. Predictability due to El Niño versus La Niña
type of forcing

Our experience and other recent studies (e.g., Kumar
et al. 1996; Barnett 1995) suggest that the boundary
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FIG. 5. Sea surface temperature time series over Niño-3. A low-pass temporal filter of
5-month running mean has been applied to the monthly mean data.

TABLE 3. Mean (M) and standard deviation (SD) of APCs before
and after Fisher’s Z transformation for yearly climate means over the
PNA sector.

Time-
scale

Z trans-
formation

El Niño
years

M SD

La Niña
years

M SD

ENSO
inactive

years

M SD

Yearly Before
After

0.45
0.56

0.33
0.46

0.40
0.48

0.28
0.36

0.20
0.23

0.33
0.38

FIG. 6. Comparison of the stratified yearly mean predictability over
the PNA sector. Result for all 44 years is denoted by ‘‘all yrs,’’ for
the 6 El Niño/La Niña years by ‘‘ElN yrs/LaN yrs,’’ and for the 32
ENSO inactive years by ‘‘other yrs.’’

condition dependent predictability over the North Pa-
cific is higher during the El Niño phase of the ENSO
cycle than during the La Niña phase. The BCD pre-
dictability is not expected to be a simple linear response
of the atmospheric time-mean flow to the tropical SST

anomalies. The present 13 45-yr GCM simulations
should be able to bring this aspect into sharper focus.

The NCEP’s sea surface temperature reanalysis for
the period from 1950 to 1992 (T. M. Smith et al. 1997,
manuscript submitted to J. Climate) was used to con-
struct the SST anomalies for the eastern tropical Pacific
area. Niño-3, which covers the domain of 58S–58N and
1508W–908W, was chosen to indicate the phase of the
ENSO variation. Niño-3 SST anomalies from 1950 to
1992 are shown in Fig. 5. Based on this SST time series,
El Niño and La Niña years can be identified. There were
6 El Niño and 6 La Niña events with the DJF seasonal-
mean SST anomaly exceeding 18C. Labelling the year
(from August to next July) by January, the El Niño years
are 1958, 1966, 1973, 1983, 1987, and 1992. The La
Niña years are 1956, 1965, 1971, 1974, 1976, and 1989.

Figure 6 presents the stratified BCD predictability for
the yearly means for 6 El Niño, 6 La Niña, and 32 other
ENSO inactive years, for the PNA sector only. It is clear
that the yearly mean predictability of the El Niño years
is well above the average of those of the ENSO inactive
years, 0.45 versus 0.20. The predictability for the La
Niña years is similarly much higher but smaller than
that of the El Niño years. The means and standard de-
viations and those of the Z-transformed statistics are
listed in Table 3. The difference in APC between El
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Niño and La Niña years, 0.45 versus 0.40, is small.
However, the critical z score value, based on Eq. (6),
regarding this difference turns out to be 2.96. At this
level, it assures us that the difference is statistically
significant with 99.5% confidence. We are now sure that
over the PNA sector the BCD predictability is signifi-
cantly higher during the El Niño years than the La Niña
years, and both are much higher in predictability than
the ENSO inactive years.

The variances of the yearly mean climate signal and
noise are contrasted in Fig. 7 between the El Niño and
La Niña years. The left-hand panels are for the climate
signal, while the right-hand panels show the climate
noise (the contour unit is m2). Over the North Pacific,
the variance of climate signal during the El Niño phase
is at least three times larger than during the La Niña
phase, and about 10 times larger than during the ENSO
inactive period of times. The variance of the climate
noise is observed to be on the same order of magnitude
for all three phases.

Comparison of the seasonal-mean predictability is
next shown in Fig. 8, again for the PNA sector only.
Large seasonality in predictability is immediately clear.
During the warm phase of the ENSO cycle (top panel),
the predictability is substantially above the average (the
open circles) from early winter to late spring, reaching
a maximum in January–March. During the cool phase
of the ENSO cycle (middle panel), the predictability is
higher than the average from the second half of the
summer to the early winter, but the predictability drops
rapidly to near average in spring. While the El Niño
phase yields a high predictability in the spring, the La
Niña phase encounters what might be called a spring
barrier in predictability. A spring barrier has been re-
ported for the SST predictions in the Tropics (Cane
1991; Latif and Graham 1991) and for the predictability
of other tropical variables (e.g., Webster and Yang
1992). To our knowledge, there is no report available
regarding an extratropical atmospheric predictability
barrier. The atmospheric predictability barrier in spring
appears to be a distinct characteristic for the La Niña
episodes, not at all for the El Niño phases of the ENSO
cycle. For ENSO inactive periods the seasonal-mean
predictability is below average throughout the year (bot-
tom panel).

6. Spring barrier in atmospheric predictability

The rapid drop in predictability for the La Niña ep-
isodes in springtime can be traced back to the climate
signal and noise characteristics of this model’s climate
variability, as shown in Figs. 9 and 10. The evolution
in climate signal (Fig. 9; in units of m), as defined by
(7) and averaged over six events, indicates 1) much
larger magnitude and 2) much more persistence into the
springtime for the El Niño years than the La Niña years.
The evolution of the climate noise variance (Fig. 10; in
units of dm2), as defined by (9) and averaged over six

events, indicates that more climate noise occurs in the
spring for the La Niña years than the El Niño years.
While the climate signal gives rise to predictability, the
climate noise degrades it. The relative magnitude of
climate signal and noise, as shown in Figs. 9 and 10,
helps explain why the predictability remains at a high
level in the springtime for El Niño events, while a spring
barrier in predictability is encountered for the La Niña
episodes.

The evolution of the northern extratropical climate
signal can, in turn, be traced back to the forcing of the
SST anomalies in the tropical Pacific, as shown in Fig.
11. In general, the El Niño years (left panels) start to
increase their positive anomalies in May, reaching a
maximum in December before they deceases gradually
to an insignificant amount of positive SST anomaly in
June. In contrast, the La Niña years (right panels) attain
a larger magnitude of negative anomalies early in May
and June, but relatively smaller negative SST anomalies
thereafter; the negative SST anomaly rapidly diminishes
to an insignificant amount right after reaching a maxi-
mum in December.

The spring barrier in the extratropical atmospheric
predictability can therefore partially be associated with
the inherently weak tropical SST forcing conditions for
the La Niña phases of the ENSO cycle in the boreal
springtime. Many improvements in tropical SST pre-
diction have been reported in the last few years, and
the spring barrier has largely been reduced (D. Chen
1995, personal communication). Based on the present
result, however, the extratropical atmospheric BCD pre-
dictability will still encounter a spring barrier during
the La Niña years when the tropical Pacific negative
SST anomalies, in general, decrease in strength in the
spring, as shown in the right-hand panels of Fig. 11.
Even when the weak negative SST anomalies are well
forecast by the ocean model (implying no barrier in the
SST predictability), a spring barrier in the extratropical
atmospheric predictability will still be present because
of the weak tropical SST forcing conditions and high
levels of climate noise cited above.

7. Reduction of climate noise by ensemble
averaging

The relative magnitude of climate signal and noise
shown in Figs. 3 and 4, as well as those in Figs. 7, 9,
and 10, facilitate in explaining why the boundary-con-
dition-dependent predictability can be raised if the cli-
mate noise is reduced. There are a few ways to reduce
the climate noise: besides temporal smoothing (as those
shown previously that the yearly mean predictability is
larger than the seasonal-mean predictability) another
readily available technique is to average a few realiza-
tions to form a new prediction, the ensemble forecasting
approach (Kumar et al. 1996; Barnett 1995). Figure 12
presents another example showing higher predictability
due to ensemble mean prediction. For this illustration,
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FIG. 7. Comparison of variance of yearly means between climate signal (left panels) and climate noise (right panels)
for El Niño, La Niña, and ENSO inactive years (the contour unit is m2).
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FIG. 8. Seasonality of the predictability of seasonal means over the
PNA sector. Note that the predictability level is quite different be-
tween El Niño and La Niña years, especially in springtime.

we form a yearly mean ensemble prediction by averaging
12 out of the 13 total runs and saving the unused run as
the realization to be verified against. (Since the real at-
mospheric state can not occur more than once, we ought
to use only one run to represent it, although the simulated
observation could be formed by more than one run.)
Altogether 13 prediction–verification pairs can be con-
structed for each year, versus 78 twin experiments real-
ized earlier. The statistical reliability of the estimated
predictability is no longer as stable as the earlier ones,
as shown in Fig. 6. But when comparing Fig. 12 to Fig.
6, it is clear that the climate noise of an ensemble-mean
prediction can be reduced and the theoretical predict-
ability can be raised, as has been reported by Kumar et
al. (1996) and Barnett (1995). Taking the El Niño years,
for instance, the predictability level is now 0.63 versus
0.45 found in Fig. 6, a gain of nearly 20 points through
the employment of the ensemble-mean operator.

The seasonality in predictability has been seen in Fig.
8 to be widely different between El Niño and La Niña
type of forcing conditions. It should be interesting to see
whether or not the ensemble mean prediction still shows
the same seasonality behavior. Figure 13 presents the
results. For this case the ensemble mean was also formed

by 12 runs and there were 13 prediction–verification pairs
for each season. Besides yielding higher predictability
values for the ensemble-mean predictions, the relative
magnitude among those three groups shown in Fig. 13
is much the same as in Fig. 8. The ensemble predictability
for the El Niño type of forcing conditions is higher in
springtime, while it is much lower for the La Niña-type
of forcing conditions and below the average predictability
level for those ENSO inactive seasons.

8. Implication in short-term climate prediction

From Figs. 12 and 13 we may extrapolate that, even
if the climate noise can be reduced to a minimum and
the climate signal isolated to its full extent owing to
sufficient computational power, we still have to face the
fact that the boundary condition dependent predictabil-
ity has an upper limit. This is simply because the ver-
ification field, be it a model or real atmosphere, always
contains a huge amount of climate noise.

The problem in application of an atmospheric general
circulation model to short-term climate prediction ap-
pears to be reduced to 1) How good is the atmospheric
model’s climatology? 2) How close to reality is the mag-
nitude of the model variability? 3) How similar are the
climatic-scale model teleconnection patterns to those
observed? The following figures offer some insights into
the above questions.

Figure 14 compares the Z500 climatology and vari-
ability between the model (MDL) and the observed
(OBS) for the winter season. The climatologies, after
the zonal mean is removed to focus on the stationary
waves (the upper panels), show grossly similar patterns
except for the Siberia region. The lower panels compare
the interannual variability of the seasonal means (the
contour unit is dam2). Now we find a serious discrepancy
between the MDL and the OBS: much smaller vari-
ability for the model runs. Taking the North Pacific cen-
ter of variance, for instance, it is about 60 versus 45
dam2 and the MDL variance is shifted downstream, as
described earlier by Chen and Van den Dool (1995b).
The interannual variance of the model atmosphere is
only about 75% of the real atmosphere except over No-
vaya Zemlya where the model has an odd maximum.

Perhaps a couple of specific examples would help in
gaining some insights into the current model deficiencies
described above. For El Niño DJF (1986/87) and La Niña
DJF (1988/89) observations, predictions and validation
are shown in Figs. 15 and 16. The observed Z500 anom-
alies are displayed in the top left panel, the ensemble
averaged climate signals in the top right panel, the in-
dividual and ensemble APC forecast skill in the bottom
right panel, where the solid bar stands for the ensemble
forecast skill and the dashed horizontal line the average
of the 13 APCs. The model anomalies of each individual
run are labeled as GCM runs 1–13 in the figure.

From so much information in the figures, we simply
would like to point out a few features.
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FIG. 9. Comparison of climate signal evolution between the El Niño years (left panels) and the La Niña years (right
panels) (the seasonal mean contour unit is m).
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FIG. 10. As in Fig. 9 except for the climate noise variance (the contour unit is now dam2).
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FIG. 11. As in Figs. 9 and 10 except for the tropical Pacific SST anomaly composites for the monthly means (the
contour unit is 8C).
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FIG. 12. As in Fig. 6 except for ensemble-mean predictability. The
ensemble means were constructed from 12 runs. Details can be found
in section 7. Note that the level of predictability is about 20 points
higher than those in Fig. 6.

FIG. 13. As in Fig. 8 except for ensemble-mean predictability. Note
that the level of predictability is about 20 points higher than those
in Fig. 8.

1) The model anomalies are very noisy from case to
case in both magnitude and location, implying a huge
amount of model climate noise. Careful inspection
will show that those in Fig. 16 (La Niña DJF) are
noisier than those in Fig. 15 (El Niño DJF).

2) In general, the model anomalies are too weak relative
to the OBS. In Fig. 15, only runs 2 and 9 out of 13
have comparable negative anomaly in the North Pa-
cific; only runs 7, 9, 10, and 13 out of 13 have
comparable positive anomaly over North America.
Similar weaknesses in the model anomalies can also
be detected in Fig. 16. The weakness in model anom-
alies is consistent with earlier observations that the
MDL variability is much weaker than the observed
(Fig. 14), a major model deficiency indeed.

3) The climate signals (top right panels) are rather small
in magnitude, to the extent that not all of the tele-
connection anomaly centers are present as observed
(top left panels), although we have to recognize that
the OBS anomalies represent only one possible re-
alization of the atmospheric states and contain there-
fore a large amount of climate noise. However, we
have repeatedly observed recognizable PNA or TNH
(Barnston and Livezey 1987) multicentered telecon-
nection patterns in the real atmosphere during both
warm and cold phases of the ENSO cycle. Therefore,
lack of a multicentered teleconnection pattern in the

ensemble forecast constitutes another major model
deficiency. This, in a way, is closely related to the
deficiency mentioned above in 2).

4) The bottom right panels show, on average, that there
is skill in the model forecasts. The ensemble forecast
is much better than the average of the individual
forecast. Finally, the El Niño ensemble forecast is
much better than the La Niña forecast, as expected.

From the above specific cases and the comparisons
of the interannual variance as shown in Fig. 14, a major
deficiency of the current atmospheric model appears to
be the inability of the model to generate climate anom-
alies with sufficient magnitude. The implication is that
an extreme climate event will likely be underestimated
by an individual GCM run and, almost for sure, cannot
be expected from an ensemble average prediction. How
to enhance the model climate variability appears to be
an important task in the continuing effort of improving
the atmospheric model performance.

9. Summary and conclusions
The variability and predictability of climate means

for the northern extratropical atmosphere are examined.
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FIG. 14. Upper panels: comparison of the Z500 DJF climatologies (with the zonal mean removed) between the model results
and those observed. Contour unit is gpm. The positive deviations from zonal mean are shaded for better contrast. Lower panels:
comparison of the interannual variance between the model results and those observed the contour unit is dam2.

The emphasis and approach of this article deviates from
the classic predictability studies. While the classic study
focuses on the sensitive dependence on the initial con-
ditions, our emphasis is on the dependence of the pre-
dictability on the boundary forcing conditions. The clas-
sic predictability examines the error growth rate and the
limit of deterministic predictability; the present study
investigates the climate signal and noise contained in
the climate variability and determines how dependent

they are upon the external boundary conditions. The
study of externally forced potential predictability is not
new. In fact, it has been extensively explored in recent
decades by various groups and individuals, such as listed
in the introduction and the references. While most of
the previous studies conducted comparisons between the
simulated variability and the observed, we narrow our
focus to a perfect model point of view. Without refer-
ence to the real atmospheric states, we tried to determine
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FIG. 15. Top left: observed anomalies for El Niño DJF (1986/87). Top right: the corresponding GCM 13-run
ensemble-averaged climate signals. Bottom right: the individual and ensemble-mean (solid bar) APC forecast skill
scores. The dashed horizontal line is the average of the 13 individual APCs. The rest: the model anomalies for each
individual run.
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FIG. 16. As in Fig. 15 except for La Niña DJF (1988/89).
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the theoretical upper bound of the atmospheric pre-
dictability that is boundary condition dependent.

A large climate variability experiment conducted by
the Coupled Model Project of the National Centers for
Environmental Prediction was analyzed. The boundary-
condition-dependent predictability at seasonal to decad-
al timescales is evaluated. Major limitations and defi-
ciencies of the current atmospheric model for the pur-
pose of short-term climate prediction are also examined.

The decadal-mean predictability is found to be less
than 0.40 in APC skill score for the Northern Hemi-
sphere domain (208–708N). The predictability decreases
to 0.22 for the yearly means and to less than 0.15 for
the seasonal means. When examined separately for dif-
ferent regions, the BCD predictability over the PNA
sector (1208E–608W) is found to be significantly larger
than over the AEA sector (608W–1208E): 0.26 versus
0.18 for the yearly means and 0.45 versus 0.34 for the
decadal means. The differences in the mean predict-
ability cited above are statistically significant with near
100% confidence. The above results imply that there is
a larger or better detectable impact from the tropical
Pacific SST anomaly forcing on the predictability over
the PNA sector than the AEA sector.

The geographical distribution of the interannual vari-
ability of climate signal and climate noise shows larger
signal variance over the PNA sector than the AEA sec-
tor, while the noise variance shows much small mag-
nitude over the PNA than the AEA sector. This large
difference in signal to noise ratio results in much larger
APC score (cf. Van den Dool and Toth 1991) for the
PNA sector than the AEA sector.

When the predictability is evaluated separately for
the El Niño, La Niña, and ENSO inactive periods of
time, then a large difference in impact of the ENSO SST
anomalous forcing on the predictability over the PNA
sector can be observed. The El Niño phase of the ENSO
cycle yields much higher predictability than the 44-year
average, while the ENSO inactive phase exhibits lower
predictability than normal. The La Niña years also yield
significantly higher predictability than normal, but it is
significantly smaller than those of the El Niño years.
Taking the yearly mean predictability for example, the
APC score is 0.45 for the El Niño years and 0.40 for
the La Niña years versus 0.20 for the ENSO inactive
years. The reason for the large difference can be found
in the magnitude of the climate signal generated by the
tropical SST anomalous forcing. The noise variance is
to the same order of magnitude for all three phases of
the ENSO cycle. These results are consistent with those
reported by Kumar et al. (1996) and Barnett (1995).

For seasonal means, a substantial seasonality in pre-
dictability is observed. In warm ENSO years, the BCD
predictability increases way above the average from ear-
ly winter to late spring. In contrast, the predictability
drops rapidly to near average in spring for the cold
ENSO episodes. The spring barrier in atmospheric pre-
dictability appears to be a phenomenon for the La Niña

type forcing conditions only. The cause of the predict-
ability barrier in spring can be traced back to the in-
herently weak tropical SST forcing conditions in the
springtime for the La Niña years of the ENSO cycle
and the higher noise level.

In this paper the predictability is gauged by the APC
scores and the closely related climate-signal to climate-
noise ratio. There are other measures that could bring
to light other aspects of the predictability issue not dis-
cussed here. For instance, using the full probability dis-
tribution function may bring to light changes in prob-
ability too subtle to be measured by the APC skill score.

Due to the nature of the large magnitude of climate
noise in the climate interannual variability, the predict-
ability of climate means will always have an upper bound,
even for a perfect model atmosphere and even when a
large ensemble mean prediction is exploited. This is be-
cause the verification field, in order to simulate the real
atmospheric state that can never occur more than once,
always contains a large amount of climate noise.

Three aspects regarding the application of an atmo-
spheric general circulation model in short-term climate
prediction were examined: 1) how good is the atmo-
spheric model climatology, 2) how realistic is the mod-
el’s low-frequency variability, and 3) how similar to the
observed is the multicentered pattern of the telecon-
nectivity in the model climate variability.

The climatology of the current atmospheric model
compares well with the observed. The interannual vari-
ability of the model climate shows, however, only about
75% of the real atmospheric variance, constituting a
major deficiency in this model. Due to this weakness,
nature’s multicentered teleconnection pattern cannot be
reproduced in a single member prediction, let alone in
an ensemble average. A large c1imate event will likely
be underestimated by an individual GCM run due to
small chances that an individual run will attain large
climate anomaly, and a multicentered teleconnection
pattern may not be expected by an ensemble mean fore-
cast. Therefore, how to enhance the model climate vari-
ability appears to be an urgent task in the continuing
effort in improving the performance of this atmospheric
general circulation model. The displacements of the
variance centers (MDL vs OBS) are other model defi-
ciencies to be improved upon.
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