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ABSTRACT

The Climate Forecast System (CFS), the fully coupled ocean–land–atmosphere dynamical seasonal pre-
diction system, which became operational at NCEP in August 2004, is described and evaluated in this paper.
The CFS provides important advances in operational seasonal prediction on a number of fronts. For the first
time in the history of U.S. operational seasonal prediction, a dynamical modeling system has demonstrated
a level of skill in forecasting U.S. surface temperature and precipitation that is comparable to the skill of the
statistical methods used by the NCEP Climate Prediction Center (CPC). This represents a significant
improvement over the previous dynamical modeling system used at NCEP. Furthermore, the skill provided
by the CFS spatially and temporally complements the skill provided by the statistical tools. The availability
of a dynamical modeling tool with demonstrated skill should result in overall improvement in the opera-
tional seasonal forecasts produced by CPC.

The atmospheric component of the CFS is a lower-resolution version of the Global Forecast System
(GFS) that was the operational global weather prediction model at NCEP during 2003. The ocean com-
ponent is the GFDL Modular Ocean Model version 3 (MOM3). There are several important improvements
inherent in the new CFS relative to the previous dynamical forecast system. These include (i) the atmo-
sphere–ocean coupling spans almost all of the globe (as opposed to the tropical Pacific only); (ii) the CFS
is a fully coupled modeling system with no flux correction (as opposed to the previous uncoupled “tier-2”
system, which employed multiple bias and flux corrections); and (iii) a set of fully coupled retrospective
forecasts covering a 24-yr period (1981–2004), with 15 forecasts per calendar month out to nine months into
the future, have been produced with the CFS.

These 24 years of fully coupled retrospective forecasts are of paramount importance to the proper
calibration (bias correction) of subsequent operational seasonal forecasts. They provide a meaningful a
priori estimate of model skill that is critical in determining the utility of the real-time dynamical forecast in
the operational framework. The retrospective dataset also provides a wealth of information for researchers
to study interactive atmosphere–land–ocean processes.

1. Introduction
It is generally assumed that the memory of the geo-

physical system that could aid in seasonal climate fore-
casting resides mainly in the ocean. The strong El Niño
events of 1982/83 and 1997/98 appeared to provide em-

pirical evidence that, at least in some cases, this is in-
deed true (Barnston et al. 1999). It is thus logical for the
scientific community to develop global coupled atmo-
sphere–ocean models to aid in seasonal forecasting.

At the National Centers for Environmental Predic-
tion (NCEP) in Washington, D.C., coupled ocean–
atmosphere models are looked upon as an extension of
existing numerical weather prediction infrastructure.
For this task, one obviously needs numerical models of
both the atmosphere and the ocean, along with their
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own data assimilation systems. Global numerical pre-
diction models for weather (and their attendant data
assimilation systems) have matured since about 1980
and are the tool of choice today for day-to-day global
weather forecasting out to one or two weeks. On the
other hand, while numerical prediction models for the
ocean coupled to an atmosphere have existed for a long
time in research mode (Manabe and Bryan 1969), such
models had not been tested in real-time forecasting, nor
had a data assimilation system been developed for the
ocean until the 1990s.

Ji et al. (1995) described the early data assimilation
effort at NCEP [then the National Meteorological Cen-
ter (NMC)] for a tropical strip of the Pacific Ocean
using the Modular Ocean Model version 1 (MOM1),
developed at the Geophysical Fluid Dynamics Labora-
tory (GFDL) in Princeton, New Jersey. An ocean re-
analysis was performed by Ji et al. (1995) and Beh-
ringer et al. (1998) for the Pacific basin (20°S–20°N)
starting from July 1982 onward. This provided the
ocean initial conditions for coupled forecast experi-
ments, including retrospective forecasts.

The first coupled forecast model at NCEP in the mid-
1990s consisted of an ocean model for the Pacific
Ocean, coupled to a coarser-resolution version of the
then operational NMC Medium Range Forecast
(MRF) atmospheric model at a spectral triangular trun-
cation of 40 waves (T40) in the horizontal and 18 sigma
levels (L18) in the vertical (Ji et al. 1994, 1998). To
avoid very large biases, “anomaly flux corrections”
were applied at the ocean–atmosphere interface. The
final stand-alone atmospheric forecasts were made in
“tier-2” mode in which the sea surface temperature
fields produced during the coupled integration were
used, after more bias correction, as a prescribed time-
varying lower boundary condition for an ensemble of
atmospheric general circulation model (AGCM) runs.
The tier-2 approach and its attendant flux correction
procedure is common to this day. Since the SST outside
the tropical Pacific had to be specified as well, damped
persistence became a common substitute. This early
setup of the coupled model was known as MRFb9x for
the atmospheric component and CMP12/14 for the oce-
anic component. The atmospheric component was up-
graded both in physics and resolution to T62L28 several
years later (Kanamitsu et al. 2002b). This upgraded sys-
tem, known as the Seasonal Forecast Model (SFM) was
operational at NCEP until August 2004.

Very few operational centers have been able to af-
ford the development of a high-resolution coupled at-
mosphere–ocean–land model (no flux correction) for
real-time seasonal prediction. The European Centre for
Medium-Range Weather Forecasts (ECMWF) has

been engaged in this effort along with NCEP. At
ECMWF, the first coupled model (System-1) was de-
veloped around 1996 (Stockdale et al. 1998), with a
second update (T95L40: System-2) in 2003 (Anderson
et al. 2003). An evaluation against empirical models for
all starting months during 1987–2001 can be found in
Van Oldenborgh et al. (2003). In Australia, a coupled
operational system (at R21L9 resolution) was run in
retrospective mode over the period 1981–95 from four
initial months (Wang et al. 2002). In the United King-
dom, similar operational efforts have been reported in
Gordon et al. (2000) and Pope et al. (2000). In Europe,
a large research experiment was conducted recently,
called the Development of a European Multimodel En-
semble System for Seasonal to Interannual Prediction
(DEMETER) in which seven different atmospheric
models were coupled to about four ocean models; see
Palmer et al. (2004). Other quasi-operational models
with flux correction include the model described in
Kirtman (2003). At several other centers, such as the
International Research Institute for Climate Prediction
(IRI), the tier-2 system continues to be used (Barnston
et al. 2003). In research mode, there are many more
coupled models; see Schneider et al. (2003) for a recent
overview.

The purpose of this paper is to document the new
NCEP Climate Forecast System (CFS), which became
operational in August 2004. As part of the design of the
CFS, three major improvements were made to the old
operational coupled forecast system. First, the compo-
nent models have been greatly modernized. The ocean
model, MOM1, has been replaced by MOM3, and the
atmospheric model, SFM, has been replaced by a
coarse-resolution version of the operational (as of
2003) NCEP Global Forecast System (GFS). Most no-
tably, this change includes an upgrade in vertical reso-
lution from the old SFM from 28 to 64 sigma layers.
Second, the ocean–atmosphere coupling is now nearly
global (64°N–74°S), instead of only in the tropical Pa-
cific Ocean, and flux correction is no longer applied.
Thus, the CFS is a fully “tier-1” forecast system. The
coupling over the global ocean required an important
upgrade in the ocean data assimilation as well (see D.
Behringer et al. 2005, unpublished manuscript). Third,
an extensive set of retrospective forecasts (“hindcasts”)
was generated to cover a 24-yr period (1981–2004) in
order to obtain a history of the model. This history can
be used operationally to calibrate and assess the skill of
the real-time forecasts. Hindcast histories that were
generated to assess the skill of all previous tier-2 sea-
sonal forecast systems in use at NCEP were obtained by
prescribing “perfect” (observed) SST. This methodol-
ogy is often assumed to provide an “upper limit of pre-
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dictability.” However, this method did not provide an
accurate estimate of the skill of the tier-2 operational
model, which used predicted, not perfect, SST. This
methodology is still being practiced elsewhere to deter-
mine the “skill” of multimodel ensembles, etc. In the
current CFS system, the model skill is assessed solely by
the use of a tier-1 retrospective set of forecasts.

The first two improvements include several advances
in physics and a much better coupled system, both in
multidecadal free runs (Wang et al. 2005) and in
9-month forecasts from many initial conditions. Specifi-
cally, the ENSO simulation and the synoptic tropical
activity (the Madden–Julian oscillation, easterly waves,
etc.) appear to be state of the art in the CFS with 64
vertical levels. The third item, retrospective forecasts,
while costly in terms of computer time and resources,
are especially important since they provide a robust
measure of skill to the user of these forecasts.

The layout of the paper is as follows: In sections 2
and 3 we describe the components of the CFS and the
organization of the retrospective forecasts, respectively.
In section 4 we discuss the CFS performance for its
main application as a monthly/seasonal forecast tool. In
section 5 we present some diagnostics highlighting
strengths and systematic errors in the CFS. Summary
and conclusions are found in section 6.

2. Overview of the NCEP Climate Forecast
System

The atmospheric component of the CFS is the NCEP
atmospheric GFS model, as of February 2003 (Moorthi
et al. 2001). Except for having a coarser horizontal reso-
lution, it is the same as that used for operational
weather forecasting with no tuning for climate applica-
tions. It adopts a spectral triangular truncation of 62
waves (T62) in the horizontal (equivalent to nearly a
200-km Gaussian grid) and a finite differencing in the
vertical with 64 sigma layers. The model top is at 0.2
hPa. This version of the GFS has been modified from
the version of the NCEP model used for the NCEP–
National Center for Atmospheric Research (NCAR)
reanalysis (Kalnay et al. 1996; Kistler et al. 2001), with
upgrades in the parameterization of solar radiation
transfer (Hou et al. 1996, 2002), boundary layer vertical
diffusion (Hong and Pan 1996), cumulus convection
(Hong and Pan 1998), and gravity wave drag (Kim and
Arakawa 1995). In addition, the cloud condensate is a
prognostic quantity with a simple cloud microphysics
parameterization (Zhao and Carr 1997; Sundqvist et al.
1989; Moorthi et al. 2001). The fractional cloud cover
used for radiation is diagnostically determined by the
predicted cloud condensate.

The oceanic component is the GFDL Modular
Ocean Model version 3 (MOM3) (Pacanowski and
Griffies 1998), which is a finite difference version of the
ocean primitive equations under the assumptions of
Boussinesq and hydrostatic approximations. It uses
spherical coordinates in the horizontal with a staggered
Arakawa B grid and the z coordinate in the vertical.
The ocean surface boundary is computed as an explicit
free surface. The domain is quasi-global extending from
74°S to 64°N. The zonal resolution is 1°. The meridional
resolution is 1⁄3° between 10°S and 10°N, gradually in-
creasing through the Tropics until becoming fixed at 1°
poleward of 30°S and 30°N. There are 40 layers in the
vertical with 27 layers in the upper 400 m, and the
bottom depth is around 4.5 km. The vertical resolution
is 10 m from the surface to the 240-m depth, gradually
increasing to about 511 m in the bottom layer. Vertical
mixing follows the nonlocal K-profile parameterization
of Large et al. (1994). The horizontal mixing of tracers
uses the isoneutral method pioneered by Gent and
McWilliams (1990; see also Griffies et al. 1998). The
horizontal mixing of momentum uses the nonlinear
scheme of Smagorinsky (1963).

The atmospheric and oceanic components are
coupled with no flux adjustment or correction. The two
components exchange daily averaged quantities, such
as heat and momentum fluxes, once a day. Because of
the difference in latitudinal domain, full interaction be-
tween atmospheric and oceanic components is confined
to 65°S to 50°N. Poleward of 74°S and 64°N, SSTs
needed for the atmospheric model are taken from ob-
served climatology. Between 74° and 65°S and between
64° and 50°N, SSTs for the atmospheric component are
a weighted average of the observed climatology and the
SST from the ocean component of the CFS. The
weights vary linearly with latitude such that the SSTs at
74°S and 64°N equal observed climatology and the
SSTs from 65°S and 50°N equal values from the ocean
component. Sea ice extent is prescribed from the ob-
served climatology.

The ocean initial conditions were obtained from the
Global Ocean Data Assimilation System (GODAS; D.
Behringer et al. 2005, unpublished manuscript), which
was made operational at NCEP in September 2003. The
ocean model used in GODAS is the same as that used
in the CFS retrospective forecasts. The ocean data as-
similation system uses the 3D variational technique of
Derber and Rosati (1989), modified to include vertical
variations in the error covariances (Behringer et al.
1998). The ocean model in GODAS was forced with
weekly fluxes of heat (Q), surface buoyancy fluxes (E �
P) and wind stress vectors (�) from NCEP Reanalysis-2
(R2: Kanamitsu et al. 2002a). The GODAS sea surface
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temperatures were relaxed to Reynolds SST (Reynolds
et al. 2002) with a time scale of 5 days. Similarly, the sea
surface salinity (SSS) was relaxed to Levitus monthly
climatological SSS fields (Levitus et al. 1994) but with a
time scale of 10 days. The subsurface temperature data
that were assimilated were obtained from expendable
bathythermographs (XBTs), the tropical atmosphere–
ocean (TAO) array of moored buoys, and Argo and
Argo-like floats. The subsurface salinity variability
strongly influences the density stratification in the
ocean through the formation of salt-stratified barrier
layers, especially in the western and central equatorial
Pacific Ocean (Maes and Behringer 2000; Ji et al. 2000).
Therefore, synthetic salinity data were created by im-
posing a climatological temperature–salinity (T–S) re-
lationship on the observed subsurface temperature pro-
files, and these synthetic salinity profiles were assimi-
lated during the ocean model runs.

For the prediction of land surface hydrology, a two-
layer model described in Mahrt and Pan (1984) is used
in the CFS.

3. Design of the CFS retrospective forecasts

The CFS includes a comprehensive set of retrospec-
tive runs that are used to calibrate and evaluate the skill
of its forecasts. Each run is a full 9-month integration.
The retrospective period covers all 12 calendar months
in the 24 years from 1981 to 2004. Runs are initiated
from 15 initial conditions that span each month,
amounting to a total of 4320 runs. Since each run is a
9-month integration, the CFS was run for an equivalent
of 3240 yr! Owing to limitations in computer time, only
15 days in the month were used as initial conditions.
These initial conditions were carefully selected to span
the evolution of both the atmosphere and ocean in a
continuous fashion.

The atmospheric initial conditions were from the
NCEP/Department of Energy Atmospheric Model In-
tercomparison Project (AMIP) R2 data (Kanamitsu et
al. 2002a), and the ocean initial conditions were from
the NCEP Global Ocean Data Assimilation (GODAS)
(D. Behringer et al. 2005, unpublished manuscript).
Each month was partitioned into three segments. The
first was centered on the pentad ocean initial condition
as the 11th of the month, that is, the five atmospheric
initial states of the 9th, 10th, 11th, 12th, and 13th of the
month used the same pentad ocean initial condition as
the 11th. The second set of five atmospheric initial
states of the 19th, 20th, 21st, 22d, and 23d of the month
used the same pentad ocean initial condition as the 21st
of the month. The last set of five atmospheric initial
states include the second-to-last day of the month, the

last day of the month, and the first, second, and third
days of the next month. This last set uses the same
pentad ocean initial condition of the first of the next
month. These 15 runs from the retrospective forecasts
form the ensemble that is used by operational forecast-
ers for calibration and skill assessment for the opera-
tional monthly seasonal forecast at NCEP. Note that no
perturbations of the initial conditions are applied for
making the ensemble forecast. The perturbations come
automatically by taking atmospheric states one day
apart, but this may not be optimal.

A hypothetical example is the official monthly/sea-
sonal forecast made by the Climate Prediction Center
(CPC) of NCEP on the third Thursday of February.
February is then considered to be the month of forecast
lead zero (not issued), March is the month of forecast
lead one (or lead 0.5 more precisely), and so on. Runs
originating from initial conditions after 3 February
from the retrospective forecasts are not considered for
calibration of the March, April, etc. forecasts. This is
done because in “operations” there is a 7-day lag in
obtaining the ocean initial conditions (see appendix B
for more on the design of operational CFS forecasts).
The 15 members in the ensemble thus include 9–13
January, 19–23 January, and 30 January–3 of February.
This method of calibration and subsequent skill assess-
ment is used throughout this paper in order to replicate
the operational procedures used at NCEP and to pro-
vide the most accurate assessment possible of the CFS
skill to the forecasting community.

It is important to note that the CFS model codes
were “frozen” in June 2003. The running of the entire
retrospective forecasts and operational implementation
of the CFS that took nearly a year were made with
these codes. No changes or tuning for results were
made to these codes during the execution of the fore-
casts. These forecasts truly represent the “history” of
the operational CFS.

4. CFS performance statistics

In this section we review the performance of CFS
retrospective forecasts, first in terms of skill as mea-
sured by the anomaly correlation (AC) against obser-
vations (section 4a), and then in terms of probability
forecasts (section 4b). The “observations” used for the
verification of the CFS forecasts require further expla-
nation. Ideally, if the model analysis is good enough to
be used as the initial condition, it should also be usable
for verification, as is frequently done in weather fore-
casting. Over the years, NWP forecasts and analyses
have improved hand-in-hand. However, we may not yet
have reached that level of sophistication with coupled
models.
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(i) All SST forecasts here are verified against opti-
mum interpolation SST (OISST) version 2 (Reyn-
olds et al. 2002), which is the water temperature at
the surface, while GODAS “SST” is the water
temperature at 5 m below the surface. While in the
tropical Pacific, SST forecast verifications against
either GODAS or OIv2 are very close; the differ-
ences in verification scores are large in midlati-
tudes.

(ii) For surface weather elements over the continental
United States, we use the so-called Climate Divi-
sion data (Gutman and Quayle 1996), a highly
quality controlled dataset maintained at the U.S.
National Climatic Data Center (NCDC). For tem-
perature over land outside the United States we
use the R2 fields (Kanamitsu et al. 2002a), while
for precipitation we use the CPC Merged Analysis
of Precipitation (CMAP) Xie–Arkin dataset (Xie
and Arkin 1997). The R2 temperature field may
not be very good, but it is unlikely that the skill of
the forecast is overestimated.

(iii) Verification of 500-hPa geopotential and some
major atmospheric indices, such as the North At-
lantic Oscillation (NAO) and the Pacific–North
American (PNA) pattern, is done against R2
fields.

(iv) The most dubious case of verification is for soil
moisture. Here we use the R2 fields and justify this
as follows: 1) The R2 is forced by observed pre-
cipitation, albeit with a delay of one pentad, and
should be more realistic than soil moisture pro-
duced by traditional data assimilation systems, like
the first reanalysis (Kalnay et al. 1996); and 2) the
R2 is consistent in model formulation with the CFS
forecasts. If an independent product, such as the
nonoperational global leaky bucket calculations
(Fan and van den Dool 2004), were to be used for
verification, one first needs to transpose one prod-
uct into the other, an activity fraught with diffi-
culty.

a. Verification of the ensemble mean

We refer to appendix A for details about definitions,
and the adjustments necessary in using the anomaly
correlation (AC) in the context of (i) systematic error
correction and (ii) cross validation (CV), which has
been adhered to in computing the results presented in
this paper. In this section we correct for the overall
mean error by subtracting the model climatology from
model forecasts. See details in appendix A.

We focus on, in order, the prediction of SST in the
Niño-3.4 area (5°S–5°N, 170°–120°W) of the tropical
Pacific, SST in midlatitudes, surface air temperature,

precipitation, 500-hPa geopotential, and soil moisture.
In all cases we verify either monthly or seasonal mean
values. In most cases, we verify the bias-corrected en-
semble mean averaged over the 15 ensemble members.
In some cases, we also compare to other methods: ei-
ther a previous model or some of the statistical tools
that are being used by CPC. When we quote scores for
1981–2003, this includes verifying data well into 2004
for the longer lead forecasts starting in 2003.

Figure 1 shows the skill (anomaly correlation) of the
Niño-3.4 SST forecasts over the period 1981–2003.
Niño-3.4 SST is probably the single most predictable
entity. We use here, and in many graphs below, a dis-
play of forecast lead in months (on the Y axis) versus
the target or verification month (on the X axis). This
makes sense when skill is more a function of target
season than of lead. Forecasts for December and Janu-
ary exceed 0.9 in correlation for leads out to 5 months,
that is, these forecasts were initiated during the previ-
ous summer. However, forecasts for the Northern
Hemisphere summer months, most notably for July, are
more difficult with correlations as low as 0.4 at leads of
7 months. The sudden drop in skill near April is known
as the spring barrier.

CPC has maintained an archive of Niño-3.4 SST pre-
dictions in real time since 1996. Figure 2 shows the over-
all scores as a function of forecast lead for seasonal
Niño-3.4 SST prediction by various methods from 1997

FIG. 1. Anomaly correlation (%) of CFS ensemble mean fore-
casts of the monthly mean Niño-3.4 SST over the period 1981–
2003 as a function of target month (horizontal) and lead (vertical;
in months). Niño-3.4 is defined as the spatial mean SST over
5°S–5°N, 170°–120°W. For example, the AC for a lead-3 forecast
for March (made from 15 initial conditions beginning 9 November
and ending 3 December) is about 0.85. Keep in mind that the
spatial averaging of SST increases the correlation relative to the
traditional verification at grid points in the domain.
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to the present. The correlations shown are evaluated
for all cases in the period. The CFS, the only retrospec-
tive method in this display, is shown by red bars. The
other methods are NCEP’s previous coupled model,
labeled CMP14, the canonical correlation analysis
(CCA) (Barnston and Ropelewski 1992), constructed
analog (CA) (Van den Dool 1994; Van den Dool and
Barnston 1994), the “Markov” method (Xue et al.
2000), and a consolidation (CONS) of all methods
available in real time (Unger et al. 1996). The CFS
results, if achieved in real time, would easily have been
competitive with all of the other methods and, in fact,
would have been a big improvement over the CMP14.
A consolidation method is supposed to be at least as
good as the best tool. The main reason CONS did worse
than the best single method is that CMP14 scored much
lower over 1997 onward than anticipated, based on its
1982–96 evaluation. This illustrates the importance of
an evaluation that will hold up on independent data.

Figure 3 is the same as Fig. 1 except that the en-
semble mean over 14 members is verified against the
one member left out. This procedure measures poten-
tial predictability under perfect model assumptions. Al-
though scores for Niño-3.4 SST are already very high in
Fig. 1, there is a suggestion of large improvements still
ahead, especially in summer.

Ever since Barnston et al. (1994), the standard has
been the performance of Nino-3.4 SST prediction at a

lead of 6 months. As an example, for initial conditions
in April, Fig. 4 shows, as a time series, the observations
and forecasts (by CFS, CMP14, and CA) for the fol-
lowing November. Relative to Fig. 1 we note that the
ensemble mean CFS not only has an overall high cor-
relation (0.8) but also maintains amplitude in the fore-
cast better than the other methods.

FIG. 3. As in Fig. 1 but for a “verification” of the ensemble
mean CFS (N � 1 members) verified against the remaining single
member. This is a predictability estimate under perfect model
assumptions. Note the much-reduced spring barrier.

FIG. 2. Anomaly correlation (%) by various methods of the seasonal mean Niño-3.4 SST as
a function of lead (horizontal; in months). The results are accumulated for all seasons in the
(target) period DJF 1997/98 to DJF 2003/04. Except for CFS, all forecasts were archived in
real time at CPC from 1996 onward. CMP14 is the previous coupled model, CCA is canonical
correlation analysis, CA is constructed analog, CONS is a consolidation (a weighted mean),
and MARKOV is an autoregressive method (see text for references).
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In Figs. 1–3 the variable to be verified was averaged
in space to be consistent with the Niño-3.4 “index.”
Below we report traditional skill estimates as per
anomaly correlations without any space averaging of
the physical quantity. Keep in mind that scores for the
Niño-3.4 area would drop by about 0.05 to 0.1 if the
space averaging is not applied.

The CFS is the first NCEP coupled model for the
near-global oceans. While the main skill continues to be
in the tropical Pacific, we can now begin to evaluate
where we stand, for instance, in the prediction of mid-
latitude SSTs. Figure 5 shows, at best, minimal skill in
SST forecasts for all target months at short leads in the
Northern Hemisphere, an area defined as all ocean grid
points north of 35°N (no spatial mean). At all leads, the

skill in the NH pales in comparison to Niño-3.4, part of
the problem being that GODAS and OIv2 have large
differences in this area, that is, the CFS has a very poor
initial condition to begin with in midlatitudes when
OIv2 is used for verification. Against GODAS analy-
ses, the CFS has substantial skill in midlatitudes (not
shown; see also discussion later concerning Fig. 19).
Figure 5 (bottom) shows the potential predictability of
midlatitude SST. Improvement is seen (and can be ex-
pected under perfect model assumptions) for many
leads, but fundamentally the midlatitudes appear less
predictable than the tropical Pacific.

How does CFS compare to models run outside
NCEP? Restricting ourselves to 1981–2001 and using
only four initial conditions in February, May, August,
and November, we can compare CFS to the seven Eu-
ropean DEMETER models (Palmer et al. 2004) to

FIG. 4. Time series of Niño-3.4 SST anomaly (K) over the pe-
riod 1981–2003. (top) Observations for November and (bottom)
6-month-lead forecasts from April initial conditions (verifying in
November) by CFS, CA, and CMP14. The AC over the period is
shown in the legend of each figure. Note that CFS has better
amplitude than CA and CMP14. The forecasts should be consid-
ered retrospective in the years before the respective methods be-
came operational, i.e., before 2003 for CFS, and before about 1997
for CA and CMP14.

FIG. 5. (top) As in Fig. 1 but for SST grid points in NH mid-
latitudes ( � 35°N). No spatial averaging of SST is done here.
(bottom) As in Fig. 3 but now potential predictability for SST in
the NH ( � 35°N).
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which we further add CPC’s constructed analog (Van
den Dool 1994). Figure 6 (left) shows the anomaly cor-
relation for the nine models in forecasting Niño-3.4 SST
from initial conditions in early February at lead 1 (for
March) out to lead 5 (July). We have shown the CFS
and CA, but marked the European models as A–G.
The anomalies are relative to observed 1971–2000 cli-
matology. The upper (left) display is for raw forecasts,
while the lower (left) display is for systematic error-
corrected forecasts (using cross-validation and leaving
3 years out). Forecasts from February initial conditions,
just before the spring barrier, are the hardest to predict,
and without bias correction some methods have a real
problem. Perhaps surprisingly, the systematic error cor-
rection improves the score of many of the poor per-
formers, indicating a linearly working system. For in-
stance, model A improves its score from 0.2 to 0.8 cor-
relation at lead 3. The CFS and CA have very little
systematic error and do not profit from this correction.
The right-hand panels in Figure 6 show the results of all
four initial conditions combined. The later starts (May,
August, and October) have much higher anomaly cor-
relation scores than February initial conditions, so the
annual mean scores look good and are much better
than February. Annual mean scores for persistence are
considerably lower than for any of the methods (after
systematic error correction), but for initial conditions in
November persistence is also very high.

The SST forecasts, except for some marine interests,
are not in and of themselves of great practical impor-
tance. The importance lies in the assumption that the
SST may have considerable impact on weather ele-
ments over land. We now discuss the CFS prediction of
weather elements over land, as well as 500-hPa geopo-
tential (Z500) and soil moisture as an aid in interpreting
the “practical skill” of the CFS. Figure 7 shows the skill
of monthly mean (ensemble mean) surface air tempera-
ture at 2 m above ground (T2m) and precipitation rate
(P) over the extratropical NH land north of 22.5°N.
Already at lead 1, these skills are extremely low, and
only in summer for T2m and winter for precipitation is
there a suggestion of nonzero correlation (for all NH
grid points combined). These numbers obviously im-
prove a little when 3-month means are used or specific
regions are considered (for the United States alone, see
Figs. 10–15 below). The reader may wonder about sig-
nificance of such thoroughly low correlations. The un-

certainty (sampling error) in a correlation (if small) is
1/� N � 2, where N is the effective number of cases. So
a 0.4 correlation is marginally significant for time series
over 23 years. However, in Fig. 7 we aggregate over
large spatial domains, such that N effectively is perhaps
50 or 100 times larger, more than enough to make even
0.05 statistically significant. This does not mean the re-
sult is practically significant, just that there is a begin-
ning.

Figure 8 shows similar displays of skill for monthly
mean 500-hPa geopotential and soil moisture in the up-
per 2-m soil. Skill for 500-hPa geopotential is quite low

←

FIG. 6. Anomaly correlation (%) of the monthly mean Niño-3.4 SST forecasts made by CFS, CA, and seven European DEMETER
models (A–G), as a function of lead (horizontal; in months). (left) Feb initial conditions; (right) all initial conditions (February, May,
August, and October). (top) ACs of “raw” forecasts; (bottom) correlations for systematic-error-corrected forecasts.

FIG. 7. Anomaly correlation (in %) of ensemble mean CFS
forecasts as a function of lead and target month for monthly mean
(top) 2-m temperature and (bottom) precipitation rate over land
in the NH (�22.5°N).
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in NH extratropics, and only worth mentioning in the
NH winter months. Figure 8 (bottom) shows very high
skill for soil wetness. While this skill relates mainly to
high persistence, it nevertheless conveys information
about the initial condition to the lower atmosphere,
which is known several months ahead of time. As a
measure of skill, numbers in Fig. 8 may be unrealisti-
cally high because independent verification is difficult
to obtain. It appears, nonetheless, that the nonzero
summer correlation in T2m is caused by soil wetness,
while the winter skill in P is consistent with the skill in
circulation (Z500). The words “coupled model” should
be thought of as including the coupling to the soil also.
Potential predictability estimates (not shown) confirm
the idea of skill for P in winter and T2m in summer,
although we cannot report anything above 0.35 (do-
main averaged) in correlation, thus suggesting a low
predictability ceiling.

It is common to report on skill in atmospheric tele-
connections patterns. Even when overall skill (for all
spatial and temporal scales) is low, the projection onto
observed patterns of the NAO and PNA may show
slightly better skill by virtue of the projection onto
large-scale low frequency patterns. Indeed one can am-
plify the scores reported in Fig. 8 (top) for winter
months by filtering the 500-hPa geopotential fields and
retaining only the NAO and PNA. Figure 9 shows the
time series of monthly NAO and PNA for January and
February, lead 1 ensemble mean forecasts, along with
the observations. We find correlations of around 0.4,
which is near significance. This appears to be consistent
with results in DEMETER (Palmer et al. 2004).

Figures 10 and 11 (bottom) show the spatial distri-
bution of the anomaly correlation of the ensemble
mean seasonal forecasts of T2m (Fig. 10) and P (Fig.
11) over the continental United States for June–August
(JJA) on the left and December–February (DJF) on
the right, respectively. These forecasts are made at
1-month lead; that is, the summer (JJA) forecasts are
made from initial conditions that range from 9 April to
3 May, while the winter (DJF) forecasts are made from
initial conditions that range from 9 October to 3 No-
vember, for all years 1981–2003. Local correlations less
than 0.3 are deemed insignificant in many CPC opera-
tional procedures. In JJA, the skill is restricted to the
Northwest for both P and T2m, while most of the coun-
try has no demonstrable skill. In DJF, the skill is better
and is situated mainly across the south for P and in the
middle of the country for T2m. The DJF picture of skill
would be consistent with ENSO composites, that is,
mainly from years like 1982/83 and 1997/98. Skill for P
in Florida in DJF is exceedingly high. Figures 10 and 11
also address the issue of ensemble size. From top to
bottom, they show the usage of 5, 10, and 15 members
for making the ensemble mean, respectively. Although
the pattern should stabilize more for 15 members, one
can observe that, leaving details aside, the 5-member
ensemble (top row) has a similar distribution of skill in
space. This is a demonstration that the CFS has reason-
ably stable skill.

Figures 12 and 13 are similar to Figs. 10 and 11 except
that we now compare the 15-member ensemble mean
(left column) to one of CPC’s control statistics, the
CCA (Barnston 1994), in the right column. The com-
parison is only coarse since CCA is available for a much
longer period (1948–2002). Figure 12 is for lead-1 sea-
sonal T2m and Fig. 13 is for seasonal P forecasts for the
four “official” seasons of March–May, June–August,
September–November, and December–February. We
now face these questions: Does the CFS have any skill

FIG. 8. As in Fig. 7 but for (top) 500-hPa geopotential and
(bottom) upper 2-m soil moisture in the NH. Soil moisture is over
land (�22.5°N) while 500-hPa geopotential is taken north of 35°N.
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over the United States? And, if so, does it (or CCA for
that matter) add any skill over and above what we
know already from other methods? The latter is a
subtle (difficult) issue when skill is low and especially
when there are many correlated methods. In Figs. 12
and 13 it is encouraging that CFS and CCA skill do not
always occur at the same geographical location; that is,
they appear complementary. Even when identical skill
occurs at the same spot there is still a possibility that the
skillful forecasts happen in different years due to dif-
ferent predictor information being exploited such that a
combination of CCA and CFS may score higher. If the
source of skill is the same (and it often is), it will be
hard to improve upon a single tool. This topic of con-
solidation (Van den Dool and Rukhovets 1994; Peng et
al. 2002) will be the subject of future studies at NCEP
and elsewhere (Doblas-Reyes et al. 2005). On the first
question (does CFS have skill?), figures like Figs. 12

and 13 should aid the CPC forecasters. In areas left
blank or faint yellow there is no skill in all likelihood. In
areas of correlation � 0.3 there is evidence of some skill
in proportion to the correlation.

The situations most relevant to society are “ex-
tremes,” so we close this section on ensemble mean
verification with a few comments about skill of the fore-
casts when extremes were observed (Saha 2004). We
define an extreme here as an anomaly larger than two
standard deviations. We then calculate the anomaly
correlation over this small sample of cases (observed
extremes of either sign). Figure 14 shows the skill as a
function of lead and target month when a monthly T2m
extreme was observed in one of the four quadrants of
the United States (defined by 95°W and 37.5°N). Figure
15 is the same, but now for P. There is some skill, with
correlations numerically higher than in Fig. 7, but
noisier because the sample and the area is smaller. Cor-

FIG. 9. An evaluation of skill in the CFS monthly forecast of NAO and PNA indices for (left) January and (right) February at lead
1. The forecast values (ensemble mean) are multiplied by a constant of 2.5 for the purpose of showing realistic magnitude in the
anomalies compared to observations.
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relation for extremes is just an amplified version of the
regular correlation. Skill in T2m extremes is mainly in
spring and fall, while skill in P resides mainly in winter,
the latter in rough agreement with full NH sample re-

sults in Fig. 7. This analysis is not complete. A more
complete study of extremes is needed, including analy-
sis and verification of cases where the model forecasts
are extreme.

FIG. 10. Spatial distribution of retrospective forecast skill (anomaly correlation in %) of the ensemble mean seasonal
forecasts of 2-m temperature over the continental United States for (left) JJA and (right) DJF. These forecasts are made
at 1-month lead, i.e., the summer (JJA) forecasts are made from initial conditions that range from 9 April to 3 May, while
the winter (DJF) forecasts are made from initial conditions that range from 9 October to 3 November, for all years
1981–2003. From top to bottom: the number of members in the CFS ensemble mean increases from 5(A) to 10(A � B)
to 15(A � B � C). Values less than 0.3 (deemed insignificant) are in faint yellow or white.
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b. Probabilistic verification

In section 4a, the skill of the CFS was assessed for the
ensemble mean forecast as a substitute for the tradi-
tional “single” forecast, which in general has reduced
rms errors compared to the errors of the individual
members (Leith 1974). In this section, we describe

some measures of the performance of the entire en-
semble CFS SST forecasts over the Nino-3.4 region. As
an introduction, Fig. 16 shows forecasts by all 15 mem-
bers in 1997 and 1998 from May initial conditions.
Clearly, not only is the ensemble mean close to the
observation (black line), but the cloud of solutions
practically rules out that the winter 1997/98 (1998/99)

FIG. 11. As in Fig. 10 but for precipitation.
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FIG. 12. (left) Spatial distribution of retrospective ensemble mean CFS forecast skill (AC in %) for lead-1 seasonal
mean 2-m temperature over the continental United States. The target seasons are, from top to bottom, MAM, JJA, SON,
and DJF. (right) As in left, but for CCA. Note that CCA is based on a longer period, 1948–2003. Correlations less than
0.3 are in faint yellow and white.
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FIG. 13. As in Fig. 12 but for precipitation.
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would be anything but a warm (cold) event. These are
just two cases, albeit very strong. The two measures
discussed below are to describe probabilistic perfor-
mance in general. The first is the reliability diagram,
which indicates how forecast probabilities correspond

to the observed relative frequency of the predicted
event. The second measure is the Brier skill score
(BSS), which provides a quantitative evaluation: the
mean square error of the probabilistic forecasts [see,
e.g., Wilks (1995) for a description of both measures].

FIG. 14. Anomaly correlation (in %) of ensemble mean CFS forecasts as a function of lead (vertical) and target month (horizontal)
for monthly mean 2-m temperature over four quadrants of the continental United States (using 37.5°N and 95°W to define quadrants;
see map at the top), evaluated only over those instances during 1981–2003 when an anomaly larger than two standard deviations
occurred in the observations (anywhere in the quadrant). The much-reduced sample size (relative to Fig. 7) causes noisier patterns.
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Probabilistic forecasts can be generated from the en-
semble of forecasts by computing the fraction of mem-
bers predicting a particular event among all the mem-
bers in the ensemble.

BSS is defined as

BSS � 1 �
B

Bc
,

where B is the Brier score, defined as

B �
1
N �

i�1

N

�pi � xi�
2,

and Bc is the Brier score of a reference, which in this
case is the observed climatological distribution. Here, pi

is the forecast probability of an “event,” xi is its occur-

rence (1 if it happens and 0 if it does not), and N is the
number of realizations of the forecast process.

Three events are analyzed: that the SST over Niño-
3.4 is in the upper, in the middle, and in the lower
tercile of the distribution of the observed climatology,
which we refer here to the warm, neutral, and cold
terciles, respectively. We first removed the mean sys-
tematic error in a “leave-two-years-out” cross-
validation manner: of the 23 years of data, 21 were used
to compute the mean systematic error and two were
held for analysis. Because the length of the retrospec-
tive forecast dataset is relatively short, a reduction in
the number of bins was necessary to accumulate a
larger sample for each of the bins and produce smooth
results for the reliability diagrams. Probability bins cho-
sen are 0%–25%, 25%–50%, 50%–75%, and 75%–

FIG. 15. As in Fig. 14 but for precipitation.
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100%. The forecast probability assigned to these new
bins is the mean forecast probability. All starting
months are pooled.

1) RELIABILITY DIAGRAMS

Reliability diagrams were plotted for each of the
forecast lead times. In Fig. 17 we show diagrams for
three lead months—1, 4, and 8—to describe the general
performance of the model. Histograms showing the
relative frequency of use of the forecast bins, also
known as “sharpness diagrams,” are given on the right.
A perfectly reliable forecast system would have its
probability forecasts coinciding with the observed rela-
tive frequency and, therefore, would display a 1:1 di-
agonal line for each event. At lead 1, the CFS exhibits
outstanding reliability to predict both cold and neutral
terciles. The warm terciles are good also but slightly

overpredicted for low probabilities. That is, warm ter-
ciles are forecast with higher probabilities than what
was observed. Overforecasting of the warm tercile oc-
curs from lead 0 through lead 5. Forecasts at leads 4 and
8 still have good reliability, particularly for both cold
and warm terciles. Probability forecasts closer to 0 or 1
are the most reliable, whereas those for intermediate
categories are more variable (in part because the
sample is small). The inset histograms show that the
lowest and the highest probability values are used much
more often for the cold and warm terciles for all lead
times. Although this is a virtue of the model, reflecting
high sharpness, there seems to be an overconfidence
tendency in probabilities close to 1. This is a common
problem when the ensemble spread is too narrow.

In general, the CFS ensemble has good reliability
even at long lead times. Such reliability can be further

FIG. 16. Forecast plumes of Niño-3.4 SST anomalies (K) from
15 initial conditions (from 9 April to 3 May) in (top) 1997 and
(bottom) 1998. All members are shown by red dotted lines, the
ensemble mean is a full red line, and the observations are shown
as a full black line.

FIG. 17. Reliability diagrams of CFS forecast probabilities that
Niño-3.4 SST predictions fall in the upper (red), the middle
(green), and lower (blue) terciles of the observed climatology for
(top) lead-1, (middle) lead-4, and (bottom) lead-8 months. The
histograms on the right indicate the frequency of forecasts with
probabilities in the ranges 0.0–0.25, 0.25–0.50, 0.50–0.75, and 0.75–
1.0. Red colors correspond to forecasts for the upper (warm),
green to the middle (neutral), and blue to the lower (cold) terciles.
The black line (perfect reliability) is for reference.
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improved through calibration procedures as has been
done in other ensemble prediction systems (e.g., Zhu et
al. 1996; Hamill and Colucci 1998; Raftery et al. 2003;
Doblas-Reyes et al. 2005).

2) THE BRIER SKILL SCORE

Figure 18 shows the BSS for the prediction of three
events mentioned above. The Brier score can be sepa-
rated into three components: B � UNC � REL –RES,
representing uncertainty, reliability, and resolution, re-
spectively (Murphy 1973, Wilks 1995). Here, UNC
[�X(1 � X), where X is the sample climatology of the
observations] depends only on the variability of the ob-
servations and REL should be small for well-calibrated
forecasts. RES should be large for a forecast system
that can differentiate between situations that will or will
not lead to the event in question. Figure 18 (red lines)
shows high skill scores to predict (warm) upper tercile
events for leads of up to 5 months, then decreasing
rapidly, but still far better than climatology, for longer
leads. Degraded skill after lead month 5 is mostly
caused by a drop in the resolution. The skill for the
middle tercile (green lines) shows a high score for the
first 1–2 months of lead time. Positive BSS are seen
even at lead time 5 but, in general, the skill is much
lower than the upper and lower terciles, similar to what
occurs in other forecast systems (Van den Dool and
Toth 1991). CFS probabilistic forecasts of the (cold)
lower tercile (blue lines) have as high a skill score as the
prediction of the warm tercile. Comparing these two we
see that the skill for cold tercile drops earlier, which

coincides with its lower resolution, than the warm ter-
cile for the 1–5-month lead. The REL term being small
indicates very high reliability for all terciles.

These results are useful diagnostics for model en-
semble performance. The ability of the CFS to produce
probabilistic forecasts of Niño-3.4 with high skill scores
for a few seasons in advance is evident.

5. CFS diagnostics

In this section we present assorted analyses of model
behavior and errors. The emphasis here is on physical
interpretation and a route to possible model improve-
ments.

a. Model climate drift

The model climate drift refers to the evolution with
forecast lead time of the deviation of model climatology
from observations. Here the climatology for a specific
season is defined as the average of the seasonal means
over the retrospective period (1982–2004). For the
model, the seasonal means are from the retrospective
forecasts for that season. For observations, the SST is
from the optimally interpolated, OISST version 2,
dataset (Reynolds et al. 2002); the precipitation is from
the CMAP Xie–Arkin dataset (Xie and Arkin 1997);
and the 200-hPa geopotential is from the Reanalysis-2
(Kanamitsu et al. 2002a).

Figure 19 exhibits the model climate drift in SST for
DJF and JJA seasons and for 0-month, 3-month, and
6-month lead retrospective forecasts, respectively. It is
evident that the bias for the DJF season in 0-month and
3-month leads (see Figs. 19b,c) is quite modest. In most
areas of the global oceans it is less than 0.5°C. Stronger
bias occurs only in the small areas of the eastern equa-
torial Pacific and equatorial Atlantic and along the
coasts (particularly the west coasts) of major continents
in middle and higher latitudes. For the 6-month lead
retrospective forecasts (see Fig. 19d), the bias gets
slightly stronger in the tropical Pacific and Indian
Oceans, indicating that the tropical oceans drift away
more as lead time increases. For the JJA season, the
SST bias in the Tropics is comparable to the DJF sea-
son, but in middle and higher latitudes, particularly in
the Northern Hemisphere, it is much stronger and ex-
ists already at lead 0 (suggesting a major difference
between GODAS and OIv2 right at the start). Warm
biases with magnitudes reaching or exceeding 2°C are
seen across the North Pacific and North Atlantic in
higher latitudes. As lead time increases from 0 month
to 6 month (see Figs. 19f–h), the weak cold biases in the
middle latitudes of the Pacific get stronger but, inter-

FIG. 18. BSS, full lines, reliability (dashed–dotted), and resolu-
tion (dashed) as a function of lead time for three events: SST in
Niño-3.4 is in the above tercile (red), in the middle tercile (green),
and lower tercile (blue curves).
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FIG. 19. Observed climatology and the CFS model climate drift for SST. The climatology is defined over the period of 1982–2004. The
climate drift is obtained by subtracting the observed climatology from the model forecast climatology. (left) The winter season (DJF)
and (right) the summer season (JJA). (top) The observed climatology. (middle), (bottom) The model climate drift for the 0-, 3-, and
6-month lead. Unit is °C.
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estingly, the cold biases in the equatorial Pacific be-
comes weaker. The warm biases along the west coasts
may come from the poor parameterization of the strati-
form cloud near the cold tongue regions and subtropi-
cal highs, a problem in many CGCMs.

Figure 20 shows the same model climate drift but
now for precipitation rate. Evidently the major biases
are in the Tropics, no matter what season or what fore-
cast lead. For the DJF season (Figs. 20b–d), the biases
are characterized by dryness in the equatorial oceans
and in the South Pacific convergence zone (SPCZ) area
and wetness along the flanks of the dry areas. The
biases get stronger as the lead time increases, similar
to the situation with SST. For the JJA season (Figs.
20f–h), the dryness happens mainly in the western
tropical Pacific Ocean and in the eastern Indian Ocean.
The wetness patterns are similar to the DJF season
except in the South Atlantic Ocean where the errors in
JJA are less.

Figure 21 shows the model climate drift in 200-hPa
eddy geopotential. As expected, the major features of
the bias are in the extratropics. For the DJF season
(Figs. 21b–d), the positive bias in the western and
northwestern Pacific and its downstream wave-train-
like patterns suggests that the geopotential bias in the
Northern Hemisphere is tropically forced (Peng et al.
2004), which is a stationary wave mode linked to tropi-
cal diabatic heating derived from the precipitation bias.
For the JJA season (Figs. 21f–h), the wave train fea-
tures are still discernable, although less obvious. In the
Atlantic sector, there is large underestimation of the
standing wave pattern.

b. SST bias

SST climatology has been a concern in climate simu-
lation and prediction because latent heat anomalies, a
major driving force of seasonal atmospheric circulation
anomalies, depend not only on the SST anomalies but
also on the time-mean condition of the ocean surface.
Here we focus on the forecast bias of SST in the tropi-
cal Pacific Ocean, the most important and predictable
factor affecting extratropical seasonal climate. Figure
22 shows the 2°S–2°N average of SST bias in just the
Pacific Ocean for January, April, July, and October day
19–23 initial conditions over the retrospective 23-yr pe-
riod from 1981 to 2003. Results from other initial days
of each month are similar. There exists a large cold bias
from 150°E to 110°W in target months from July to
January (mainly August to October) in the forecast
from January, April, and July initial conditions. A
weaker cold bias is seen in target months from January
to April in the forecast from July, October, and January
initial conditions. Forecasts from all initial months

show a warm bias close to the eastern boundary of the
equatorial Pacific in target months from May to Octo-
ber. The causes in model physics for these SST biases
are not clear. Some preliminary diagnostics indicate
that the cold bias in target months from July to January
in the forecast from January, April, and July initial con-
ditions is probably associated with the too-strong east-
erly momentum flux in the central eastern Pacific,
which results in cold temperature advection.

Figure 23 compares forecast time-mean surface mo-
mentum flux and precipitation in June from observa-
tional analysis (Fig. 23a) to that of the forecast from
April initial conditions (Fig. 23b). The differences be-
tween analysis and forecast are considered to be mainly
due to model physics in the atmospheric component of
the CFS because tropical SST bias in the June forecast
from April initial conditions is small. It is seen that the
easterly momentum flux errors in the forecast appear to
be associated with the ITCZ precipitation band, which
is too strong compared to the observational CMAP
analysis. Further diagnostics and additional experi-
ments are needed to find out which part of the model
physics is responsible for the SST biases.

c. Ocean fields

In this section, we analyze the most important prog-
nostic variables produced by the ocean component of
the CFS: the subsurface temperature (T), zonal velocity
(U), vertical velocity (W), and heat content (H). Our
analysis focuses on the equatorial Pacific Ocean, the
primary domain of action for the ENSO. Specifically,
we are interested in the fidelity of reproduction of the
structure of the seasonal thermocline and the zonal ve-
locity structure of the upper ocean in the equatorial
Pacific. While considerable information can be gleaned
from analyses of the individual members of the 15-
member ensemble, here we only plot and analyze en-
semble mean fields. For this analysis, we focus on the
boreal summer (JJA) and winter (DJF) climatological
means in the ocean initial conditions (GODAS) and
differences between the retrospective forecasts and
ocean initial conditions for leads 3 and 6. A detailed
comparison of the GODAS subsurface temperature
and current profiles with respect to observations is pre-
sented in Behringer and Xue (2004) for the equatorial
Pacific Ocean.

The climatological structure of the equatorial Pacific
temperature field for 0.5°S–0.5°N is plotted for the win-
ter (DJF) and summer (JJA) seasons for GODAS in
Fig. 24 (top). The plot shows the warm pool region
(	28°C) in the western Pacific extending to 170°W in
winter and to 160°W in summer. In winter, the 20°C
isotherm, which is usually considered to be a proxy for
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FIG. 20. As in Fig. 19 but for precipitation rate. Unit is mm day�1.
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FIG. 21. As in Fig. 19 but for 200-hPa geopotential with the zonal mean removed. Unit is meters.
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the depth of the thermocline in the equatorial Pacific
Ocean (McPhaden et al. 1998), shoals from approxi-
mately 160 m at its deepest point in the western Pacific
(140°E) to 60 m in the eastern Pacific (Nadiga et al.
2004). In the summer, the 20°C isotherm is deeper in
the western Pacific than in winter, but the situation is
reversed in the eastern Pacific with the shallowest
depths being less than 50 m at the eastern edge of the
basin in summer. In winter, the SSTs are everywhere
warmer than 24°C in the equatorial Pacific, but the cold
tongue region extends farther west than in summer. All
these well-known features are well represented in the
GODAS. In Fig. 24 (middle and bottom), the differ-
ences between the retrospective forecasts and GODAS
are plotted for winter (left) and summer (right) seasons
for the same meridional range: 0.5°S–0.5°N. As shown
in Fig. 24, the differences are small and typically less
than 1°C. The greatest differences can be seen just
above and below the seasonal thermocline (a dashed
pink line marks the 20°C isotherm in the panels), indi-
cating the effects of errors in vertical mixing in the
ocean model. In GODAS these errors in vertical mix-
ing are alleviated by data assimilation. Notice that the
retrospective forecasts are typically colder than GODAS
except just above and below the 20°C isotherm. While

the difference pattern grows in amplitude from lead 3
to lead 6 for both winter and summer seasons, the dif-
ference pattern is quite different for winter and sum-
mer. This marked difference between winter and sum-
mer difference patterns suggests that the difference pat-
terns do not result only from inbuilt trends/errors in the
ocean model, but are also due to season-dependent er-
rors in ocean–atmosphere coupling in the retrospective
forecasts. In the eastern Pacific, these forecasts are
anomalously cold compared to GODAS, and this is
because of too-strong vertical upwelling in that region.

Planetary and Kelvin waves in the equatorial Pacific
Ocean play an important role in setting the period and
duration of ENSO events (Schopf and Suarez 1988).
The zonal velocities of the planetary and Kelvin waves
are functions of the depth of the thermocline locally,
while the amplitudes of the mean zonal currents are
functions of the slope of the thermocline. This implicit
relationship between the zonal currents and computed
travel times of basin-crossing planetary and Kelvin
waves requires that the mean zonal velocity in the ret-
rospective forecasts be examined for any systematic bi-
ases when compared to observations. The climatologi-
cal zonal velocity in the equatorial Pacific is plotted in
Fig. 25 for winter (top left) and summer (top right)

FIG. 22. Climate drift (bias) of 2°S–2°N average SSTs in the Pacific for forecast from initial conditions of (a) January, (b) April, (c)
July, and (d) October. Contours are drawn at a 0.5-K interval. Negative values are shaded. The SST bias is relative to monthly OIv2
fields averaged over 1982–2004.
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seasons for GODAS for 0.5°S–0.5°N. The strong east-
ward velocities in the undercurrent are shown clearly in
both seasons. The wind-driven westward velocities in
the surface layer are stronger in winter than in summer,
while the eastward velocities in the undercurrent are
stronger in summer. The core of the undercurrent tilts
upward and eastward, with the largest velocities (ap-
proximately 1 m s�1) being reached in the core of the
undercurrent at around 100 m at 140°W. Zero zonal
velocities are found in regions between the North
Equatorial Current (NEC) and the undercurrent and
below the undercurrent. In the warm pool region,
strong westward currents are found in summer, possibly
indicating the effect of Rossby waves impinging on the
western edge of the Pacific basin. In the middle and
bottom panels, the differences between the retrospec-
tive forecasts and GODAS are plotted for leads 3 and

6 months for the same meridional range: 0.5°S–0.5°N.
As was found in the temperature differences, we find
that the difference patterns grow with lead time, and
these patterns are quite different for summer and win-
ter seasons. In winter, the largest differences are found
in the undercurrent region, and the forecast eastward
velocities are generally larger than GODAS. In the sur-
face layers of the eastern Pacific, the wind-driven west-
ward velocities are much larger than in GODAS, indi-
cating that the surface fluxes are in error there.

The climatological vertical velocities in the equato-
rial Pacific Ocean are plotted in Fig. 26 for the winter
(top left) and summer (top right) for GODAS for
0.5°S–0.5°N. The values shown in the figure are in mil-
limeters per hour. The most important feature shown in
the upper panels is the upwelling in the eastern Pacific.
The upwelling velocities are larger in winter than in

FIG. 23. Precipitation rate (color shadings) and surface momentum flux (vectors) for June
from (a) R2/CMAP and (b) CFS forecast from April initial condition. Contours are the
amplitude of surface momentum flux (0.1 N m�2). Precipitation rate is shaded at 1, 2, 4, 8, 16,
and 20 mm day�1.
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summer and reach a maximum of approximately 10 cm
h�1. The negative vertical velocities are largest all
through the water column below the warm pool, indi-
cating the effect of downwelling Rossby waves. In both
seasons, the eastward transport of mass results in
strongly positive horizontal velocity divergence in the
undercurrent region. This mass transport divergence
causes strong upwelling velocities above the ther-
mocline and strong downwelling velocities below the
thermocline in the eastern Pacific. The middle and bot-
tom panels show differences between GODAS and ret-

rospective forecasts for leads 3 and 6 months for winter
and summer seasons. Unlike the difference plots for
temperature and zonal velocity, the differences here
are similar for winter and summer, indicating that er-
rors in the divergence of surface winds and not errors in
oceanic mixing are the primary cause of these differ-
ences. The most striking and noticeable feature in the
middle and bottom panels is the anomalously large ver-
tical velocities in the entire water column in the eastern
Pacific. In the center of the ocean basin, anomalously
large negative velocities are found. The water that up-

FIG. 24. The climatology of GODAS subsurface temperature in a depth–longitude cross section along the equator in the Pacific and
mean difference between the forecasts and GODAS in °C: (left) for boreal winter (DJF) and (right) for boreal summer (JJA). (top)
The climatology of subsurface temperature from GODAS. Note that a different scale is used for the color bar in the top panel. (middle),
(bottom) The dashed pink line marks the 20°C isotherm.
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wells in the eastern part of the basin is forced westward
by the surface wind stress and sinks in the center of the
basin. In the initial months of the forecasts, the surface
layers of the eastern Pacific are colder than GODAS
(see Fig. 24) as a result of anomalously large vertical
upwelling. As a result of this cooling of surface layers,
the negative heat advection due to vertical upwelling is
reduced in the surface layers in later months, and the
temperatures in the forecasts tend toward equilibrium.

The heat content of the upper ocean is an important
diagnostic variable in the context of seasonal weather
prediction. The recharge–discharge oscillator theory
(Jin 1997) holds that anomalous buildup of heat content
is a prerequisite for the occurrence of El Niño, and the

equatorial Pacific Ocean is purged of excess heat con-
tent during the warm event. The zonally integrated
warm water volume above the 20°C isotherm has been
shown to correlate closely to the Niño-3.4 SST
(McPhaden 2004). In Fig. 27, the heat content of the
upper Pacific Ocean (integrated over the top 300 m) is
plotted for the boreal winter (top left) and summer (top
right) seasons. The plots show the well-known double-
gyre structure in the Pacific Ocean, with maximum val-
ues recorded in the center of the gyres. The ITCZ lo-
cated at approximately 10°N demarcates the northern
edge of the South Pacific gyre and the southern edge of
the North Pacific gyre, with approximately 5 degrees in
latitude separating the two gyres. It is clear from the

FIG. 25. As in Fig. 24 but for zonal velocity in cm s�1.
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plot that the warm pool region contains more thermal
energy in the boreal winter than in summer. The
differences between the retrospective forecasts and
GODAS are plotted in the middle and bottom panels
for leads 3 and 6 months, are typically less than 5% in
most regions of the Pacific Ocean, and are especially
small on the equator. The difference patterns are simi-
lar for winter and summer seasons, and the largest er-
rors are found in the ITCZ, with the heat content in the
forecasts being anomalously warm south of the ITCZ
and cold north of the ITCZ. The divergence of wind
stress is large in these areas, suggesting that errors in
the divergence of the Ekman heat flux may be the cause
of the heat content errors shown. In general, however,

Fig. 27 indicates that the forecasts are able to accurately
reproduce the upper-ocean heat content in the equato-
rial Pacific Ocean, even for leads of 6 months and be-
yond. The fidelity of the forecast upper-ocean heat con-
tent to the observed values is an important reason that
the retrospective forecast system is able to accurately
predict ENSO events, as is seen in Fig. 28. Here, the
heat content anomalies are computed and plotted for
GODAS and for forecast leads of one, five, and nine
months. Figure 28 clearly shows the three strongest
warm ENSO events in the past 23 years (1982–83, 1987–
89, and 1997–98). From the plots, it is clear that the heat
content anomaly was strongest for the 1982–83 and
1997–98 ENSOs in both GODAS and forecasts. The

FIG. 26. Same as in Fig. 24 but for vertical velocity in mm h�1.
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eastward propagation of the warm anomalies by down-
welling Kelvin waves during the 1982–83, 1987–88,
1991–92, 1997–98, and 2000–02 warm events is accu-
rately reproduced in GODAS and the forecasts. Also,
the 1983–84, 1988–89, and 1998–99 cold events are re-
produced accurately by the forecasts, and the lead-9-
month forecasts reproduce all the above events, albeit
with a little distortion. A careful analysis of the major
events indicates a progressive lagging behind GODAS,
with a maximum delay of approximately 1–2 months for
the lead-9 forecasts. A noticeable exception to this
faithful reproduction of major features is the warming
in the eastern Pacific in 1995, which is progressively

downgraded in intensity in the retrospective forecasts,
until it is no longer seen in the lead-9 forecasts.

d. Stratosphere

Although not an item of great practical interest, in
and of itself, the forecasts for the stratosphere are a
great challenge scientifically because modeling the
quasi-biennial oscillation (QBO) is very difficult. More-
over the QBO may have an impact on the troposphere.
The CFS has 25 sigma levels above 100 hPa, and it is to
be hoped that this unique feature will lead to improve-
ments in stratospheric predictions. Figure 29 shows the

FIG. 27. As in Fig. 24 but for a latitude–longitude representation of the upper-ocean heat content in 107 J m�2.
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skill in the CFS prediction of the QBO (defined as the
stratospheric zonal-mean zonal wind anomaly at the
equator) as a function of lead time from 0 to 8 months.
The verification data is taken from R2. The QBO phe-
nomenon disappears with an e-folding of close to one
year in the CFS, so one can still clearly see it at reduced
amplitude in the 8-month forecasts. This appears to be
better than in previous models. Especially near 50 hPa,
where there are many of the 64 levels in the vertical, the
forecasts of the zonal mean of the zonal wind in the
Tropics is considerably better than persistence (which is
zero after one-quarter period). The 64 levels were se-
lected to improve model prediction in the Tropics, and
one aspect of this improvement is the stratospheric
zonal wind.

6. Summary, conclusions, and discussion

In this paper, we describe the new operational NCEP
global coupled ocean–atmosphere model, called the
Climate Forecast System or CFS. The component mod-
els are the 2003 NCEP atmospheric global weather pre-
diction model, called the GFS, but at reduced resolu-
tion T62L64, and the GFDL MOM3 ocean model. The
coupling is once a day using daily mean fluxes. The CFS
became operational in August 2004. Apart from the
countless modernizations inherent in replacing the at-
mospheric and ocean models by newer versions, the
improvements relative to the previous coupled model
include specifically (i) near-global atmosphere–ocean
coupling (as opposed to tropical Pacific only), (ii) a

FIG. 28. Longitude–time plots of heat content anomalies along the equator in the Pacific from GODAS and CFS
retrospective predictions. The climatology was computed for the period 1982–2003. Unit is 107 J m�2.
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fully coupled system with no flux correction (as op-
posed to a “tier-2” system with multiple bias and flux
corrections), and (iii) a comprehensive set of fully
coupled retrospective forecasts covering the period
1981–2004, with 15 forecasts per calendar month, for
forecast leads out to nine months into the future.

Since the CFS model is used for operational seasonal
prediction at CPC, the 24-yr retrospective forecasts, an
effort that amounts to an integration of the system for
nearly 3300 years, is of paramount importance for the
proper calibration of subsequent real-time operational
forecasts.

The CFS has an acceptably low bias in tropical SST
prediction and a level of skill in forecasting Niño-3.4
SST comparable to statistical methods used operation-
ally at CPC, and is a large improvement over the pre-
vious operational coupled model at NCEP. Skill in pre-
dicting SST in the midlatitudes (not done before) is
much less than in the Tropics, and at longer leads there
is some skill only in winter. Skill for monthly and sea-
sonal mean temperature and precipitation over NH
land, and the United States in particular, is modest, but
still comparable to the statistical tools used operation-
ally at CPC and not unlike a similar model at ECMWF
(Van Oldenborgh et al. 2003). Skill in precipitation is
mainly in winter (ENSO related), while skill in tem-
perature is mainly in summer when soil moisture
anomalies (initialized by Reanalysis-2, which used ob-
served precipitation during the analysis procedure) ap-
pear helpful. Certainly the notion of “coupled” model
also refers to land–atmosphere interactions.

Model behavior is reported here mainly in terms of

biases or climate drift in global SST, precipitation, 200-
hPa geopotential, surface wind stress, and subsurface
oceanic fields. In the tropical Pacific the climate drift,
while small in general, is strongest in August–October,
even at very short lead. Some of the midlatitude atmo-
spheric biases appear to be forced by tropical precipi-
tation biases. Oceanic climate drift, relative to the glob-
al ocean data assimilation, from the surface to depths of
nearly 500 m is discussed for temperature and ocean
currents. In most cases, the atmospheric forcing of the
ocean appears to cause climate drift in the ocean. For
instance, too much upwelling in the east Pacific is
caused by overly strong wind stress.

Other CFS validation efforts at NCEP, not shown
but described here, show (i) much-improved tropical
atmosphere–ocean interactions, (ii) reasonable vari-
ability around the model climate, (iii) apparent skill in
forecasting vertical shear in the equatorial Atlantic, and
(iv) improved prediction of the quasi-biennial oscilla-
tion. Wang et al. (2005) have described the presence of
an active tropical atmosphere in the CFS when using 64
layers (as opposed to 28 levels) in the vertical, and this
choice of vertical levels was essential both for Niño-3.4
SST simulation and low SST biases in the Tropics. The
variability of many fields has been studied. The overall
standard deviation of monthly mean fields is reasonable
for SST, T2m, and Z500 and the EOFs for Z500 appear
correct, at least for the first six (rotated) modes. For
variability in precipitation and soil moisture, the results
are not as good. Although the bias in winds over the
equatorial Atlantic Ocean is considerable, the interan-
nual variation in vertical wind shear in the main devel-
opment region (MDR) for tropical hurricanes appears
promising (Chelliah and Saha 2004), and the CFS op-
erational forecasts may aid as a new tool in the making
of the operational NOAA hurricane forecast for sea-
sonal hurricane activity for the United States.

The CFS retrospective forecast data lends itself to
many studies that are not just related to seasonal fore-
casts, and we encourage the readers to use this data.
The availability of data, both the retrospective forecast
data and the real-time operational forecast data, is dis-
cussed in Appendix B, and links have been provided.

Seasonal forecasts at NCEP have been released to
the public since about 1972. Initially these forecasts
were made by old-fashioned subjective methods. Dur-
ing the 1980s and 1990s, several formal statistical tools
were added to the menu that paved the way for the use
of more objective methods in seasonal prediction. In
these methods, an estimate of a priori skill based on
sufficient cross-validation could be used to weigh one
tool versus another before combining them into the
official forecast. Adding numerical forecasts that are

FIG. 29. Anomaly correlation (%) of zonal mean zonal wind
anomaly at the equator as a function of pressure level (above 100
hPa) vs forecast lead time (in months).
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accompanied by appreciable a priori skill is a logical
extension of this procedure. These forecasts may, or
may not, have become much better, but we do have a
more representative measure of a priori skill, which is
vital for the proper utility of seasonal forecasts.

Acknowledgments. The authors would like to recog-
nize all the scientists and technical staff of the Global
Climate and Weather Modeling Branch of EMC for
their hard work and dedication to the development and
implementation of the GFS. We would also like to ex-
press our thanks to the scientists at GFDL for their
work in developing the MOM3 ocean model. We thank
Julia Zhu, Dave Michaud, Brent Gordon, and Steve
Gilbert from the NCEP Central Operations (NCO) for
the timely implementation of the CFS in August 2004.
George VandenBerghe and Carolyn Pasti from IBM

are recognized for their critical support in the smooth
running of the CFS retrospective forecasts and the op-
erational implementation of the CFS on the NCEP
IBM computers. We thank Curtis Marshall, EMC, for
his help in the editing of the manuscript and Åke Jo-
hansson and Augustin Vintzileos for constructive inter-
nal reviews. Finally, we thank the NOAA Office of
Global Programs for the funds to obtain extra comput-
ing resources, which enabled us to complete the retro-
spective forecasts in a timely fashion.

APPENDIX A

Anomaly Correlation, Systematic Error Correction,
and Cross Validation

The anomaly correlation is defined as

AC �
��X�for�s, t�X�obs�s, t��Nst


���X�for�s, t�X�for�s, t��Nst����X�obs�s, t�X�obs�s, t��Nst�
1�2 , �A1�

where, for a given lead and forecast target month/season,
the summation is both over time [generally 23 cases
(years)], space [e.g., the grid points north of 35°N; co-
sine weighting (not shown) is used in that case], and
potentially even a third summation over ensemble
members. Here Nst is the number of space–time points.
The primed quantities X�(X can be any variable, or
ensemble mean of a variable) are defined as X� � X �
Cobs, where Cobs is the observed climatology. In the
traditional definition of AC, developed for NWP, the
same observed climatology Cobs is removed from both
forecast Xfor and observation Xobs. Thus, the climatol-
ogy could refer to any set of (previous 30) years (like
1971–2000) over which the climatology is traditionally
calculated. In many modern studies it may seem natu-
ral, at first, to remove the model climatology Cmdl, if
available, from Xfor; that is, X�for � Xfor � Cmdl. This
approach can also be written as X�for � Xfor � C*obs �
(Cmdl � C*obs) by adding and subtracting the term C*obs,
which is an observed climatology computed over the
same set of years as the model climatology. The expres-
sion in parentheses is the systematic error correction, as
evaluated over common years (here 1981–2003 or
1982–2004 for longer lead forecasts starting beyond
May). One might say that subtracting the model clima-
tology from Xfor, instead of the observed climatology, is
akin to an implicit correction for the systematic error. If
we use common years (e.g., 1981–2003) for the ob-
served and model climatology in Eq. (A1), that is,
C*obs � Cobs, then the interpretation of Eq. (A1) is sim-

plified, and using X�for � Xfor � Cmdl and X�obs � Xobs �
C*obs in Eq. (A1) amounts to a verification of system-
atic-error-corrected forecasts. In general, however,
C*obs � Cobs and thus the systematic-error-corrected
X�for in Eq. (A1) should be kept as X�for � Xfor � Cobs �
(Cmdl � C*obs). Furthermore, because of the implied sys-
tematic error correction, one needs to do a proper cross
validation, that is, not use information about the year to
be verified in the determination of the systematic error
correction (which would amount to “cheating”). This
creates some complication in programming Eq. (A1).
The summation in time requires an “outer loop,” where
each (or preferably several) year is withheld in turn.
Thus, the computation of X�for(t) � Xfor(t) � Cobs �
(Cmdl � C*obs) and X�obs(t) � Xobs(t) � Cobs for specific
time t requires an adjusted Cmdl and C*obs (and possibly
Cobs) such that the year t is not part of the various
climatologies that are being computed. Cross-valida-
tion is important for all verification of retrospective
forecasts using anomaly correlation, rms error, and
other skill measures.

It has been noted by some that the anomaly correla-
tion is not sensitive to cross validation, which would
indicate that CV is unnecessary. However this oddity of
the anomaly correlation occurs only for (i) CV one year
out (perhaps a bad practice; 3 year out is minimum) when
moreover (ii) the observed climatology is based on the
same years for which one has forecasts. When using an
external climatology like 1971–2000, CV one year out
does change (read: lowers) the anomaly correlation.
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APPENDIX B

Operational Forecasts and Availability of
CFS Data

The initial operational implementation of CFS in-
volved implementation of three components: R2-based
daily atmospheric data assimilation, a daily global
ocean data assimilation, and a daily 9-month-long
coupled model integration. The retrospective forecasts
with the coupled model (discussed in the preceding sec-
tions) use R2 analysis–based atmospheric initial states
and R2 analysis–driven assimilated global ocean states.
This required NCEP to make R2 atmospheric analysis
operational because it is needed for both the ocean
analysis and as initial condition for the CFS forecasts.
This real-time operational analysis is called Climate
Data Assimilation System 2 (CDAS2).

The operational GODAS uses a 28-day data window
symmetrically centered on the analysis time. Thus the
analysis date is 14 days behind real time. So, if the
GODAS analysis were to be used as the initial condi-
tion, then the daily CFS forecasts would be 14 days
behind real time, which would be unacceptable. There-
fore, a new asymmetric GODAS that uses only 21 days
of ocean data and is valid at 7 days prior to real time
was developed and implemented. This asymmetric
GODAS uses the previous 28-day symmetric GODAS
analysis as its first guess.

Thus, operationally three analyses are performed
daily in real time: the atmospheric R2 analysis is per-
formed with analysis time that is 3 days before real
time, the full symmetric GODAS is performed with
analysis time that is 14 days before real time, and an
asymmetric GODAS is performed with analysis time
that is 7 days before real time. Using this asymmetric
GODAS analysis as the ocean initial state and R2
analysis valid at that time as the atmospheric state (at
0000 UTC), a daily CFS forecast is made out to 9–10
months lead time. An additional daily CFS forecast
with the same initial oceanic state and a slightly per-
turbed atmospheric state (by taking a weighted mean of
the states corresponding to the real-time date and a day
earlier at 0000 UTC) is also now operational. In all,
there is at least a 60-member ensemble of CFS forecasts
per month.

Monthly means of all variables and daily time series
of selected variables are being archived from these
forecasts. The retrospective forecasts may be used to
correct the systematic bias from the operational fore-
casts before they are used in a predictive environment.

The official CFS Web site (http://cfs.ncep.noaa.gov)
provides necessary details on how to access the opera-
tional CFS forecast and retrospective data.
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