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ABSTRACT

The performance of ridge regression methods for consolidation of multiple seasonal ensemble prediction
systems is analyzed. The methods are applied to predict SST in the tropical Pacific based on ensembles from
the Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction
(DEMETER) models, plus two of NCEP’s operational models. Strategies to increase the ratio of the
effective sample size of the training data to the number of coefficients to be fitted are proposed and tested.
These strategies include objective selection of a smaller subset of models, pooling of information from
neighboring grid points, and consolidating all ensemble members rather than each model’s ensemble
average. In all variations of the ridge regression consolidation methods tested, increased effective sample
size produces more stable weights and more skillful predictions on independent data. While the scores may
not increase significantly as the effective sampling size is increased, the benefit is seen in terms of consistent
improvements over the simple equal weight ensemble average. In the western tropical Pacific, most con-
solidation methods tested outperform the simple equal weight ensemble average; in other regions they have
similar skill as measured by both the anomaly correlation and the relative operating curve. The main
obstacles to progress are a short period of data and a lack of independent information among models.

1. Introduction

Forecasts arising from a combination of multiple
models of similar skill generally outperform forecasts
from individual models. This is true both for forecasts
produced by the same model but with perturbed initial
states and for forecasts produced by models that differ
in numerics or physics or both (Clemen and Murphy
1986), which may be run at different institutions. Ef-
forts to make the best single forecast out of a number of
forecast inputs, a consolidation forecast, have resulted
in different types of combination approaches. The best
forecast minimizes the average of an error metric (e.g.,
the root-mean-square error) over a series of past
events.

Numerous studies (e.g., Doblas-Reyes et al. 2000;

Kharin and Zwiers 2002, hereafter KZ02; Peng et al.
2002; Hagedorn et al. 2005) have shown that simple
(equal weights) multimodel averaging of ensemble
members (MMA) can produce forecasts consistently
more accurate and more probabilistically reliable than
forecasts from any single participating model. Other
more sophisticated consolidation methods have been
developed (Krishnamurti et al. 1999, 2000) to further
improve forecast skill; however, whether these methods
can outperform MMA is still a matter of debate, the
main obstacle being a lack of sufficiently long datasets
of retrospective forecasts (KZ02; DelSole 2007). Inde-
pendently on whether these methods can improve upon
MMA, given that more and more prediction systems
are becoming available to forecasters and other users,
an objective procedure is necessary to deal with the
information overload. For this, optimal weights should
be determined for all input models taking into consid-
eration their individual past performance and collinear-
ity among models.

Judging the success of a consolidation is difficult be-
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cause so many diverse issues play a role. To organize
the discussion we devote a paragraph each to the topics
of hindcasts, overfit, and collinearity.

a. Value of hindcasts

The value of a long, consistent retrospective forecast
(hindcast) database for each of the models can hardly
be overestimated. First, this information serves for the
removal of systematic errors (SE) and other types of
forecast calibration, even for a model in its own right
(Hamill et al. 2004, 2006). Since all dynamical models
drift toward their own climatology, assessing SE is es-
pecially crucial in long-range forecast systems (e.g.,
Stockdale 1997). Second, hindcasts help in the optimi-
zation of weights by giving a degree of credibility to a
particular model depending on its past performance.
The success of a consolidation method will depend on
its ability to learn from the often small sample of past
situations.

b. Overfit

The stunning lack of hindcast data vis-à-vis the num-
ber of coefficients that needs to be fitted in optimiza-
tion procedures is one of the major problems for con-
solidation. When the length of the training dataset is
too short compared to the number of input forecast
models, overfitting occurs and optimization procedures
fail to be successful with independent data. Several ap-
proaches to reduce or avoid overfitting have been pro-
posed. The simple “regression-improved ensemble
mean” method described in KZ02 reduces the number
of regression coefficients to just one by linearly regress-
ing only the MMA against the observations rather than
all individual models simultaneously. This simple ap-
proach was the most successful among the more sophis-
ticated consolidation methods KZ02 presented, a very
telling result. Other approaches to reduce overfitting
include accumulating statistics from neighboring grid
points or across a region and pooling leads and neigh-
boring start times. An extreme case of pooling is to use
information from all the grid points in the region of
analysis, thus producing space independent weights as
in Van den Dool and Rukhovets (1994) and Peng et al.
(2002)—this adds stability at the expense of any spatial
dependence in the weights. Robertson et al. (2004) av-
erage across subsamples to improve the Bayesian meth-
odology of Rajagopalan et al. (2002).

c. Collinearity

Consolidation of a large number of model forecasts
can also lead to problems when at least one of the

models is not entirely independent from the rest. That
is, forecasts from one of the input models can be speci-
fied to within a certain small error by a linear combi-
nation of forecasts from the other models. When the set
of forecasts are collinear the covariance matrix is ill
conditioned (or nearly so) and regression produces a
spurious and unstable solution, even with plentiful data.
Approaches to reduce the shortcomings in forecast per-
formance due to collinearity include truncating the sin-
gular value set of the covariance matrix of forecasts
(e.g., Derome et al. 2001; Yun et al. 2003) and “regu-
larization” methods, particularly ridging (Tikhonov
1963). The latter method has been applied to various
problems in climate (Meisner 1979; Crone at al. 1996;
Krakauer et al. 2004), medium-range forecast consoli-
dation (Van den Dool and Rukhovets 1994), and the
constructed analog technique (Van den Dool 1994; Van
den Dool et al. 2003) used for seasonal SST and soil
moisture prediction, respectively. This study extends
this approach to consolidate both dynamical and statis-
tical forecast models for the prediction of the tropical
Pacific SST.

The purpose of this study is to compare different
types of consolidation methods, particularly ridging
methods, with emphases on 1) a cross-validation pro-
cedure that is more stringent than the 1-year-out pro-
cedure, CV-1, but also reduces the degeneracy effect
(Barnston and Van den Dool 1993) that produces un-
representative skill estimates when only one year is
held out in a regression procedure; 2) a two-stage pro-
cedure to remove models with negative weights (it is
the authors’ belief that input models bring either some
or no skill to the consolidation, in the latter case the
no-skill model should not be included at all or weights
should be reconfigured); and 3) an increase of the ef-
fective sample size by gathering information from the
grid points neighboring the various regions of influ-
ence, as well as from individual ensemble members
rather than ensemble means only.

The article is organized as follows. Section 2 de-
scribes the data used in the study. Sections 3 and 4
outline the theoretic foundation of consolidation meth-
ods. Section 5 describes strategies to increase the effec-
tive sampling size. Section 6 describes the evaluation
methodology. Section 7 discusses the results for deter-
ministic skill assessment. Section 8 discusses the results
for the probabilistic assessment. Section 9 summarizes
the results.

2. DEMETER PLUS data

This study is based on monthly means of ensemble
forecasts from a suite of eight dynamical and one
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empirical seasonal prediction systems. Seven of the
dynamical prediction systems are coupled ocean–
atmosphere models from the Development of a Euro-
pean Multimodel Ensemble System for Seasonal-to-
Interannual Prediction (DEMETER) project (Palmer
et al. 2004) denoted D1, D2, . . . , D7, and the remaining
two—the dynamical climate forecast system (CFS; Saha
et al. 2006) and the empirical constructed analog (CA;
Van den Dool 1994; Van den Dool 2006, chapters 7.2
and 7.4)—are in-house models currently used for op-
erational short-term climate predictions at the National
Centers for Environmental Prediction (NCEP). Details
of these models are summarized in Table 1.

The more extensive datasets of CFS and CA were
reduced to make them consistent with the four starts a
year (February, May, August, and November) and
leads 0–5 months in the DEMETER models. The
DEMETER and CA forecasts initialized in 1980 are
not used here because the CFS starts only in 1981. The
DEMETER models start from the first of each month,
all at the same time. The ensemble members in the CFS
hindcast are not initialized at the same time but in three
groups of five days centered at days 11 and 21 of the
previous month and at the first of the lead 0 month (see
Saha et al. 2006 for details.) This ensemble generation
procedure results in having older members (those that
were initialized earlier) with generally larger errors
than in the more recent model runs. Thus, it is possible
that the CFS would require an optimization procedure
of its own (not pursued) to account for this effect.
Analysis of the errors in the central Pacific SST indi-
cates (Peña and Toth 2008) that this difference in skill
between CFS members is relevant in the 0–2-month
lead times. To ameliorate this problem only the 10
more recent CFS members (centered at days 21 and 1)
are considered here to calculate the ensemble mean
and assume that the 10 members are “equal.”

The period of analysis is 1981–2001, when all the

forecast outputs coincide. The monthly Reynolds opti-
mum interpolation SST v2 (OIv2; Reynolds et al. 2002)
is used as the verification field for the months Novem-
ber 1981 and on. The NCEP Global Ocean Data As-
similation System (GODAS; Behringer 2007) is used to
complete the time series in early 1981. The forecast and
observed fields are given on a 2.5° � 2.5° latitude–
longitude grid.

3. Unconstrained consolidation methods

A consolidation forecast is expressed here as a linear
combination of K participating predictions, � i, i � 1, . . ,
K, each multiplied by a correspondent coefficient or
weight �i. Thus, the consolidation of forecasts verifying
at time t is related to the verification (or target) o as

�T� � o � �, �1�

where �T� (�i) � (�1, �2, . . . , �K ) is the 1 � K row
vector containing the participating forecasts, � � (�1

�2 . . . �K)T is the K � 1 column vector containing the
weights, T denotes the transpose, and �, a random er-
ror, is the residual term. In this study, � and o are
anomalies with respect to an observed (external) cli-
mate. The obvious question is, what should � be?

To find �, a training period of N time points (e.g.,
number of years) is selected from the hindcast data.
Equation (1) is then generalized for this set by defining
a matrix whose columns contain the training time
points of the input forecast models,

Z � �� t, i�, t � 1, . . . , N, i � 1, . . . , K �2�

and column vectors o � (ot) � [o1 o2 . . . oN]T and � �
(�t) � [�1 �2 �N]T, which contain the corresponding veri-
fication and random error, respectively. Thus, consoli-
dation methods will involve optimizing � during the
training period:

TABLE 1. Some information on the DEMETER-PLUS models.

Acronym Full name Layout Period

D1, D2, . . . , D7 DEMETER Models* Ensemble members: 9 1980–2001
Leads: 0–5 months
Initial months: Feb, May, Aug, Nov

CFS NCEP Climate Forecast System Ensemble members: 15 1981–2006
Leads: 0–8 months
Initial months: Jan to Dec

CA CPC constructed analog Ensemble members: 12 1956–2006
Leads: 	3–12
Initial months: Jan to Dec

* Institutions developing these models: the European Centre for Medium-Range Weather Forecasts, Max Planck Institute, Météo-
France, Met Office, Instituto Nazionale de Geofisica e Vulcanology, Laboratoire d’Oceanographie Dynamique et de Climatologie,
and the European Centre for Research and Advanced Training in Scientific Computation.
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Z� � o � � �3�

and applying � to the testing period. This is repeated
for each lead and initial month available in the hind-
cast.

a. Multimodel average (MMA)

A simple approach to generate a multimodel consoli-
dation is by averaging with equal weights (�i � 1/K, i �
1, K). This approach generally outperforms individual
model skill according to deterministic (KZ02; Peng et
al. 2002; DelSole 2007) and probabilistic measures (Do-
blas-Reyes et al. 2000; Hagedorn et al. 2005). MMA is
used in this study as a benchmark for the more sophis-
ticated consolidation methods. One of the advantages
of MMA is that it obviously does not require training
data to optimize the weights; however, it still needs a
long enough hindcast dataset to identify and remove
SE, an aspect requiring cross validation.

b. Skill-based weights

In this category, weights are computed from past per-
formance (on a training dataset) of individual models.
A method that weights according to past skills of indi-
vidual models, referred to as COR, is the following:

�i �
1
f



t�1

N

�t, iot



t�1

N

�t, i
2

�
bi

fai, i
, �4�

where f � 
K
i�1(bi /ai,i) is a factor that makes 
i�i � 1,

� t, i is the ith column of Z, bi is the covariance between
model i and observations, and ai, i is the variance of
model i. Note that all �i are positive as long as each
method has skill (positive correlation). Moreover, for
this method any �i � 0 are set to zero. Equation (4) is
as if each model is regressed individually and indepen-
dently against the observations. The �i are regression
coefficients, but they are very closely related to the
anomaly correlations (AC) as: �i � AC � �o aii

	1/2f	1,
where �o is the standard deviation of observations.

The rationale to use the COR method is that it is the
objective method nearest to what forecasters at the Cli-
mate Prediction Center (CPC) do subjectively, which is
to combine the real-time forecasts by methods A, B,
and C with matching maps of estimates of a priori skill
(calculated over a 25 or 50 yr hindcast period) so as to
decide which methods should be trusted most. They
assign weights accordingly. The objective COR method
does not protect against “double counting,” that is,
imagine a perverse situation in which method A and B

always produce identically the same forecast (and thus
have the same a priori skill). COR would give A and B
the same weight, which is unfair relative to an indepen-
dent method C. A smart enough living forecaster may
have noticed this (he or she would ignore either A or
B). But an objective method needs to study the corre-
lation among the methods, which is a prominent feature
in the ridging approaches described in the following
section.

c. Unconstrained regression

The general problem of consolidation consists of
finding a vector of weights � that minimizes the sum of
squared errors (SSE) given by the following expression:

SSE � �Z� 	 o�T�Z� 	 o�. �5�

Then /�(SSE) � 0 leads to ZTZ� � ZTo; so the
weights are formally given by

a � A	1b, �6�

where A � ZTZ is the covariance matrix, b � ZTo and
the superscript 	1 denotes the inverse operation.
Equation (6) is the solution for the ordinary (uncon-
strained) linear regression (UR). Equation (6) reduces
to Eq. (4) if all off-diagonal elements in A are set equal
to zero. Thus, the COR method defined in the previous
subsection is a particular case of UR when the different
models are uncorrelated or treated as uncorrelated.

It has been recognized that UR is unsatisfactory in
many applications when collinearity exists in the data
or the training data is too short for K coefficients to be
fitted accurately (KZ02). UR may fit a sample dataset
very well but give bad results when applied to indepen-
dent data. In addition, the UR method sometimes pro-
duces (large) negative coefficients, implying that the
consolidation takes the opposite of what the corre-
sponding model forecast indicates. Several techniques
have been introduced to reduce collinearity by reducing
the degrees of freedom in the data. A common tech-
nique (Golub and Van Loan 1980) is to decompose A
into its principal components, retain the components
associated with the largest eigenvalues, and remove
those associated with eigenvalues close to zero, consid-
ered noise.

Although in a situation with collinearity negative
weights are mathematically possible and not necessarily
wrong in certain academic problems, the authors reject
this possibility for the following reasons: 1) The inputs
are forecasts with presumably positive skill (if not, they
should not participate). To forecast cold weather in
some area because model A predicts warm weather and
model A needs to be turned into its opposite does not
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sound credible to a user. 2) Many consolidation proce-
dures require that the sum of the weights is unity. This
becomes problematic if weights are allowed to be nega-
tive. 3) The construction of the probability density
function (PDF) is difficult to imagine with negative
weights.

4. Constrained consolidation methods

a. Ridge regression (RID)

When matrix A in (6) is ill conditioned or nearly
so—that is, the difference between the largest and
smallest singular values of A is too large—the weights
become very sensitive to small perturbations in Z. One
approach to reduce this problem is through regulariza-
tion procedures, one of which is ridging (Tikhonov
1963). Ridging is a multiple linear regression with an
additional penalty term to constrain the size of the
squared weights in the minimization of SSE (5):

J � �Z� 	 o�T�Z� 	 o� � ��T�. �7�

Minimization of J leads to

� � �A � �I�	1b, �8�

where I is the identity matrix, and �, the regularization
(or ridging) parameter, indicates the relative weight of
the penalty term. Similarities between the ridging and
Bayesian approaches for determining the weights have
been discussed by Hsiang (1976) and DelSole (2007). In
the Bayesian view, (8) represents the posterior mean
probability of �, based on a normal a priori parameter
distribution with mean zero and variance matrix (�2/�)I,
where �2I is the matrix variance of the regression re-
sidual, assumed to be normal with a mean zero.

In the approach adopted here, � is constrained to be
the minimum value that makes the coefficients �i stable
to perturbations in Z. Values of � are increased from
zero to (usually no more than) 0.50 at intervals of 0.05
until �i is judged to be stable and nonnegative on the
training data. This method is referred to as RID.

In contrast to the methods described in section 3,
collinearity among models is now taken into account,
but to the extent collinearity causes instability its effect
is reduced by increases in �. This can be seen by per-
forming a singular value decomposition of A and A � �I
and computing in each case the condition number. The
condition numbers are, respectively,

�A
�max�

�A
�min�

and
�A

�max� � �

�A
�min� � �

,

where �(max)
A , �(min)

A are the largest and smallest eigen-
values of A, respectively. Collinearity is identified when

the condition number is too large, usually when the
smallest eigenvalue is close to zero. Note that a positive
� reduces the problem.

b. Multimodel mean constraint

The function in (7) can be modified depending on
which characteristic of the solution one is trying to con-
strain. DelSole (2007) proposed a constraint that penal-
izes the amount the coefficients � depart from 1/K, the
multimodel average. In this case, the weights become

� � �A � �I�	1�b �
�

K
1�, �9�

where 1 is a column vector of size K with all elements
equal to one. This method is referred to as RIM. Note
that for large � all �i tend to 1/K, and for small � Eq. (9)
tends to Eq. (8).

c. Weighted mean constraint

It is very reasonable to constrain the weights for their
departures from the skill-based weights, as given in (4).
An ad hoc formula developed here for the � is

� � �A � �I�	1�b � ��COR�, �10�

where �COR
i � 1/f(bi /ai, i) as in (4) are the regression

coefficients from the COR method. This method is re-
ferred to as RIW.

For very large �, coefficients from RIW converge to
those from COR method

�i → �i
COR. �11�

In both RIM and RIW, 
K
i�1�i → 1 for large �.

In situations where the collinearity is too difficult to
deal with, COR may be the least damaging strategy,
and close to what is used, so far, in practice at CPC. The
rationale for the use RIW is that it emerges starting
with the COR solution. In that limit the off-diagonal
elements (the collinearity or redundancy) are com-
pletely ignored. When lowering � the collinearity is
taken into account increasingly, all the way to the point
where the solution becomes too sensitive. This should
not be interpreted as the diagonal elements being more
accurately known than the off-diagonal elements. Even
if (very high) collinearity is accurately calculated from
plentiful data the solution may be too sensitive. For
instance, in the limit of the perverse situation (two iden-
tical methods are entered) it is not possible to deter-
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mine weights using unconstrained regression, no matter
how much data are used.

d. Asymptotic behavior of weights and cutoff
values of the ridging parameter

To illustrate the concepts of the ridging methods de-
scribed so far, Fig. 1 is a plot of the nine regression
coefficients corresponding to each of the model’s
weights for a lead 1 SST forecast for initial month Feb-
ruary at a grid point in the western Pacific (12.5°S,
150°E), using all 21 yr. The figure shows by example
how the weights change as the ridging amount increases
from practically zero to 200. The zero ridging is equiva-
lent to the regular (unconstrained) regression, and from
the figure it is clear that in this case some of the models
have a negative weight and that there is a large differ-
ence in weights among models for small �. In the left
panel, regular ridging gradually reduces the amplitude
of all the coefficients. For very large ridging the coef-
ficients tend to zero, which means that the RID con-

solidation converges to climatology. On the other hand,
note that for RIM in the center panel the coefficients
approach 1/K, where K � 9 is the number of models;
whereas for RIW in the right panel the coefficients ap-
proach a skill-weighted mean given by (11). In the RIW
case a model with a negative weight would eventually
have to be removed. Note that, in terms of weights,
there is a large difference between zero ridging and a
tiny amount of ridging, and keep in mind that literally
zero ridging does not exist on a computer using “real”
numbers. Note that for modest � the RID, RIM, and
RIW solutions are not necessarily all that different. The
difference is more apparent in asymptotic behavior.

Most of the results in this study have � smaller than
0.5 since the regression coefficients reach stability in
this range. To illustrate this point, Fig. 2 shows the
sensitivity of �i to sampling for the same grid point in
Fig. 1. The sensitivity is measured by the standard de-
viation of each weight across the 21 samples generated
under the cross-validation procedure used in this study

FIG. 1. Useful weights for ensemble averages corresponding to the 9 models in the DEMETER�PLUS data as
a function of ridging amount (� in log10 scale) for (a) ridging, RID, (b) ridging with departure-from-equal-weight
penalty, RIM, and (c) ridging with departure-from-skill-based-weights penalty, RIW.
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(described in section 6) as a function of �. Here, the
weights are obtained using the RID method and are
stable whenever their standard deviations become
small. Thus, the figure indicates that the weights be-
come quickly less sensitive to sampling as � increases.
With 25% of ridging the standard deviation of each
weight is around 0.02 (or lower than for UR by a factor
of 4) for this particular point.

Table 2 summarizes the consolidation methods
tested. Although KZ02 have already shown that UR
will fail on datasets as short as 20–30 yr, results based
on this method are included for the sake of complete-
ness and to make the point that skill can be very dif-
ferent with dependent and independent data.

5. Increasing the effective sampling size

a. Selection-combination (double pass) strategies

With less than 21 yr of hindcasts in cross-validation
mode, it is necessary to find a way to increase the ratio
of the training data points to the number of weights to
be found. A common approach to deal with overfitting
is to remove or explicitly set to zero the weights of some
“bad” or highly redundant models. Reducing the num-
ber of coefficients improves the estimates of the covari-
ance matrix and potentially increases prediction accu-
racy (Robertson et al. 2004). An approach for model
removal is used here by performing ridge regression
twice. First, to detect bad or redundant models (their
weights will be negative after the first pass). Then, carry

out ridging again only for the models whose weights are
positive. Another approach is to set to zero the weights
of the models whose AC is negative before entering
them into the optimization procedure. Such approach is
used for the COR and RIW methods to ensure the
removal of negative weights.

b. Mixing data from neighboring grid points

Van den Dool and Rukhovets (1994) and Peng et al.
(2002) increased the sampling size by using information
from all grid points in the domain of analysis. In this
case the weights do not change geographically and so
do not allow for flexibility in cases where the ranking by
model skill changes from one region to another (assum-
ing there are enough data to make that determination).
They report that in this case weights become more
stable. The effective sample size can also be increased
by mixing neighboring leads of the forecasts, or mixing
forecasts issued close to the initial month. This last ap-
proach is not applicable to the data in this study since
the initial forecast months are separated by three
months, a serious limitation of DEMETER.

c. Mixing information from individual members

Another strategy to stabilize the weights, as per
sample size increases, is by using the forecasts of single
ensemble members. The difference among single mem-
bers of the same model is the initial conditions, which
can be small departures superimposed on the initial
condition of reference, as in the DEMETER models
and some of the CA members, or can be initial condi-
tions corresponding to previous days or weeks, as in the
CFS (and some CA members). The models used in this
study have at least nine ensemble members each (Table
1). It is a reasonable practice to use only the ensemble
mean of each model to carry out consolidation. If one
were to consider a consolidation of all the individual
members, it would imply finding solutions to 81 or more
unknown coefficients. The strategy adopted here con-
sists of regressing individual ensemble members onto
the same observations and constraining the weights to
be the same within each model; therefore, there will be,
as before, nine unknowns to be determined but with 9
times the original sample size. Suppose that M is the
minimum number of available ensemble members, then
Z is augmented as

Z � �M�ti, �12�

where the number of rows of Z is M times larger than in
(2). This requires duplicating M times the verification

FIG. 2. Std dev of each of the useful weights (�i, i � 1, . . . , 9)
across the 21 samples generated by the cross-validation procedure
used in this study for different values (%) of the ridging param-
eter � using the RID method.
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vector o. Figure 3, in comparison to Fig. 1, shows the
effect of this procedure on the weights. Most weights
become smaller in magnitude for small �—for very
large � Figs. 1 and 3 converge again by construc-
tion. Taking all ensemble members into account (rather
than just ensemble means) can be looked upon as
either an increase in the sample size or ridging in a
natural way. In theory, for � � 0, there should be
no difference, whether one uses the ensemble mean
or all members (with equal weight within each model),
at least in terms of the resulting lhs of Eq. (1). The
difference between the two figures when � � 0 solely
reflects the larger variance of individual members
compared to the variance of the ensemble mean—the
larger weights in Fig. 1 compensate for the smaller vari-
ance.

6. Evaluation methodology

a. Cross-validation (CV) procedure

Cross validation is necessary to establish the skill
level to be expected with independent data. However,
CV has problems of its own. To avoid both artificial
skill and degeneracy, the consolidation has been evalu-
ated using a 3-years-out cross-validation scheme desig-
nated as CV-3R. Of the 3 yr, one is the test element and
two are chosen at random (hence R) without repetition.
Barnston and Van den Dool (1993) describe the diffi-
culties in obtaining a representation of real skill for

regression methods when using a cross validation in
which a very small portion of the sample is excluded
from the development part. Leaving out the three suc-
cessive values still has significant problems, especially
when trends are present.

The training dataset is used both to compute SE and
to carry out optimization for the weights. Clearly, the
cross validation will more strongly affect the sophisti-
cated consolidation methods than MMA, since the con-
solidation methods have both weights and a SE to be
cross validated while MMA has only the latter.

b. Systematic error correction and anomaly
expression

The assessment is carried out on anomaly fields after
an estimate of SE is removed for each model individu-
ally. SE is computed as the time average, denoted by an
overbar, of the forecast minus observation, SE � � 	 o,
for each initial month and lead in the training period.
SE correction is applied with the sign reversed to the
test forecast, and anomalies are formed by subtracting
oclim, the observed time average over the full data pe-
riod. Here, oclim remains the same (regardless which
years are withheld) and is considered “external,” as if it
were an observed climatology entirely outside the
1981–2001 period, hence the notation CV-3RE. This
practice also helps to mitigate a degeneracy in skill es-
timates due to problems with the observed climatologi-
cal mean (Van den Dool 1987).

TABLE 2. Summary of consolidation techniques and corresponding weights.

Acronym Method Weight

MMA Multimodel ensemble average � � K	1 1, where � � (�1, �2, . . . , �K), K � number of participating models
and 1 is a column vector of size K and all elements equal to 1

COR Correlation

�i �
1
f



t�1

N

�t, i ot



t�1

N

�t, i
2

�
bi

fai, i
, where f � 


i�1

K bi

ai, i
, �ti is the training time series forecast

of ith model, bi is the covariance function between model i and observations,
and ai,i is the variance of model i

UR Unconstrained regression � � A	1b, where A � ZTZ, b � ZTo and Z � (� t i), t � 1, . . . , N, i � 1, . . . , K
RID Ridging

� � �A � �l�−1b, � is such that 

i�1

K

�i
2 is small and �i � 	0.01, i � 1, . . . , K

RI2 Double-pass ridging First pass is regular RID; then set to zero any �i � 0, i � 1, . . . , K; then carry
out a second RID

RIM Ridging with MMA constraint
� � �A��I�−1�b �

�

K
1�

RIW Ridging with weighted mean
constraint � � �A � �l�	1�b � ��COR�, where �i

COR �
1
f� bi

aii
� are the COR regression

coefficients
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c. Evaluation measures

The AC between forecasts and analysis is used as a
metric to measure deterministic forecast performance.
AC is computed both at each grid point, to provide a
regional assessment, and for the entire domain of
analysis, usually called pattern anomaly correlation. In
addition, the area below the relative operating charac-
teristic curve (ROC; Mason and Graham 1999) is used
to assess the ability to anticipate correctly the occur-
rence or nonoccurrence that SST anomalies will fall in
the upper, middle, and lower terciles defined by the
observed SST during the training period. The approach
to construct the 3-category probability density function
for the ROC application will be described in section 8.

7. Deterministic skill assessment of tropical Pacific
SST

a. Pattern correlation

The performance of SE corrected forecasts of
monthly mean SST in the deep tropical Pacific (12.5°S–

12.5°N, 140°E–82.5°W) is given in Fig. 4. The height of
the bars designates the average over all leads and initial
months of the pattern anomaly correlation of each of
the 9 models (D1 to CA) and for each of the consoli-
dation methods (MMA to UR) described in sections 3
and 4. In Fig. 4 weights are computed gridpoint-wise
using only the ensemble means of each participating
model, as is commonly done. For each pair of bars, the
one on the left corresponds to correlations using the full
data, whereas the one on the right corresponds to cor-
relations in a cross-validation mode, CV-3RE. Figure 4
shows that the AC of individual models goes down sev-
eral points after the CV-3RE procedure. This is be-
cause the estimate of the SE based on 18 yr has non-
negligible error bars.1

It is clear that for the dependent case (all 21 yr, no
cross validation), all of the sophisticated consolidation

1 Reduction in skill in CA is not real. By construction CA has
no SE (in the mean) so subjecting it to a SE procedure results in
taking a random difference over 18 yr and applying it with the
opposite sign to the test element. This lowers the skill estimate.

FIG. 3. Same as Fig. 1 but using all ensemble members, rather than the ensemble means of each model, to
optimize the weights.
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methods outperform MMA but this may just reflect the
overfitting problem of some of the methods. In particu-
lar, UR method shows a large artificial skill for the
dependent case. UR yields much lower correlation in
the cross-validation mode, even worse than most indi-
vidual input models. To a lesser extent, the other con-
solidation methods also produce artificial skill in the
dependent case, but the ridging method can be credited
for limiting the damage. Nevertheless, as has been es-
tablished earlier (e.g., KZ02; Peng et al. 2002), the fig-
ure shows the difficulty for sophisticated consolidation
methods to outperform the simple MMA when the
hindcasts are not long enough or models do not bring
enough independent information to the consolidation,
or both.

Next is the assessment of the performance of consoli-
dation methods after increasing the effective sample
size. In Fig. 4 the full sample size was only 21 (at each
point in space). To maximize the limited information
available in the hindcasts several strategies have been
described in the introduction. Here, the impact of both
spatial pooling of information and use of individual en-
semble members is explored. Figure 5, left panel, shows
the average of the anomaly correlation for all leads and
initial months for the domain in the tropical Pacific for
the following 4 strategies/situations using the ensemble
average of participating models:

1) Grid point by grid point (consistent with results in
Fig. 4);

2) Box 3 � 3 that includes the point of analysis plus the
8 closest grid points;

3) Box 9 � 9 with the 80 closest neighboring grid
points;

4) All the grid points in the domain.

Strategies 1–4 are marked in Fig. 5 along the abscissa.
Note that the verification domain and procedure is al-
ways the same. These same 4 strategies are repeated in
the right panel of Fig. 5 but now using all nine ensemble
members of each model. The solid horizontal line is the
AC average of the MMA methods used as a reference.

Except for the COR methods, as the information
from the closest neighboring grid points is added (sec-
ond entry in left panel), the skill improves and it be-
comes more apparent that sophisticated methods out-
perform MMA, although not by huge margins in this
SST application. However, including information from
grid points farther away from the point of analysis
(third entry in left panel) is no longer an improvement.
For the case where all grid points are included (case
number 4) and thereby the weights are space indepen-
dent (fourth entry in left panel), all consolidation meth-
ods are generally higher than in entry 1. When the en-
semble members of each model are used in the optimi-
zation procedure, almost all the methods outperform
MMA by a noticeable margin.

A striking feature in both panels of Fig. 5 is that the
COR method gets its highest score when the weights
are optimized using the analyzed grid point; using

FIG. 4. Anomaly pattern correlation of systematic error corrected monthly SST over the
tropical Pacific domain, averaged for all leads and initial months based on the 21 yr of data in
the hindcasts (empty bars) and after 3 yr random cross validation (dark bars). The consoli-
dation is done gridpoint-wise, which can be improved upon by increasing effective sample size
(see Fig. 5).
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neighboring grid points deteriorate its skill. COR im-
proves when using all ensemble members. The ridge
regression methods, on the other hand are only mar-
ginally better than MMA when they use only the en-
semble average and data at each grid point to optimize
the weights (first entry in left panel). As it will be dis-
cussed further in section 9, the choice of � in the ridging
methods were not optimized to have the best skill but
rather to have stable solutions for the weights. It is
found that for this particular application �s around 75%
have skills larger than COR.

b. Consistency

A second aspect assessed in the performance of con-
solidation methods is how frequent these methods out-
perform MMA. Previous studies (e.g., Hagedorn et al.

2005) have shown that MMA forecasts consistently out-
perform those from individual ensemble models. The
impact of increasing the sample size on consistency is
analyzed here using pattern correlation scores over the
study domain. Table 3 shows the percentage of cases in
which consolidation methods outperform MMA for
each of the 6 leads (0–5) and initial months (4 initial
months). In the first row, the sampling strategy “en-
semble mean: 1 � 1” is the traditional case in which the
weights are optimized using the ensemble means and
individual grid points. In this case, the ridging methods
outperform MMA around 50% of the cases. The sec-
ond row shows the percentage of cases for the sampling
strategy where the weights are optimized by pooling
information from all ensemble members and the closest
neighboring grid points (consistent with case 2; right

FIG. 5. Average anomaly pattern correlation for the consolidation methods for all leads and
initial months. Along the abscissa are the four different effective sampling size strategies.
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panel of Fig. 5). Here RIM and RIW outperform MMA
in more than 90% of the cases. An even further in-
crease is obtained by pooling more information from
beyond the study domain (third row). Thus, consistent
improvement with respect to the MMA appears to in-
crease when the effective sampling size is large. The
table suggests that while the scores may not increase
sensationally when increasing the effective sampling
size, the benefit is seen in terms of consistent improve-
ments due to having more stable weights (Fig. 3).

c. Gridpoint-wise anomaly correlation

Figure 6 shows the temporal anomaly correlation for
all initial months averaged over all leads. The upper
panel shows the AC based on MMA consolidation
while the lower shows the difference of AC between
RID and MMA. In the central equatorial Pacific, the
MMA shows correlation values above 0.9 and above 0.7
in most of the tropical Pacific. This is consistent with

previous studies (e.g., Stephenson et al. 2005; Hagedorn
et al. 2005; Saha et al. 2006), indicating that after SE
correction, most current seasonal prediction systems
tend to be highly skillful in predicting the evolution of
the SST in the central equatorial Pacific. In the lower
panel, it is apparent that the improvements of the RID
method over MMA are mostly confined to the western
Pacific. This result is consistent with Stephenson et al.
(2005) who showed a Bayesian approach that outper-
forms the MMA for seasonal predictions of SST in the
equatorial Pacific. Their results show that a major con-
tribution from this gain in skill is the increased reliabil-
ity of calibrated probability forecasts.

An alternative way in understanding why sophisti-
cated consolidation methods improve in the western
Pacific over MMA is that there is apparently a large
discrepancy in skill among input models. This allows
weighted average methods to screen out models that do
not perform well enough. In contrast, in the central and
eastern Pacific where all the models perform well after
bias correction, there is less chance that the consolida-
tion methods can discriminate between some of the
models. An illustration of this is given in Fig. 7, where
the AC across the equatorial Pacific is plotted as a func-
tion of longitude for the ensemble mean of participat-
ing models (upper panels) for leads 0–3, and their cor-
responding consolidations based on MMA and RID
(lower panels). In the western Pacific, the ridging
method is able to screen out the less skillful methods

FIG. 6. Grid point by grid point anomaly correlation average over all leads and initial months available of (top)
MMA and (bottom) the difference RID 	 MMA; contour intervals (CIs) 0.2 and 0.05, respectively. Weights were
optimized using information from all grid points in the domain and 9 ensemble member of each model.

TABLE 3. Frequency of cases (%) in which ridging consolidation
methods outperform MMA for three sampling strategies.

Sampling strategy RID RI2 RIM RIW

Ensemble mean: 1 � 1 50.0 41.7 54.2 54.2
All members: 3 � 3 83.3 75.0 91.7 91.7
All members: All grid points* 91.7 83.3 91.7 91.7

* For a domain 30°S–30°N in the tropical Pacific.
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and outdo MMA, especially as the lead increases,
whereas in central and eastern Pacific the skill is simi-
lar.

8. Probabilistic skill assessment

a. Probability density function

In this section, the procedure to construct a probabil-
ity density function from optimal weights is described.
A common approach to extract probability information
from ensemble forecasts is by counting the fraction of
ensemble members that falls into predefined catego-
ries. Thus, for a given lead time, initial month, and
category m, the probability can be expressed as Pm �
Km /K, where Km is the number of ensemble members
that are predicted to fall in category m and K is the total
number of ensemble members. This is a straightforward
procedure when ensemble members have equal

weights. A number of other approaches, even for equal
weights, are available in the literature, such as the ker-
nel Gaussian (D. Unger 2007, personal communication)
which constructs a Gaussian PDF centered at each
member forecast with a width proportional to both the
historical mean square error and current spread. The
Bayesian method (Rajagopalan et al. 2002; Stephenson
et al. 2005; Krzysztofowicz and Evans 2008; Luo et al.
2007) and Bayesian model average (Raftery et al. 2005)
provide an a posteriori PDF directly.

A challenge arises when the weights of ensemble
members are not equal, as is the case for weights de-
rived from several consolidation methods discussed in
this paper. As shown in previous sections, optimal
weights from sophisticated consolidation methods re-
flect how well a model performed in a given training
period. In other words, a large weight assigned to a
particular model indicates a higher likelihood that its

FIG. 7. (top) Anomaly correlation of ensemble means of each participating model along the equator in the Pacific. (bottom)
Anomaly correlation of MMA (continuous curve) and RID (dashed curve).
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forecast will verify. One way to quantitatively convey
this likelihood is by increasing the relative frequency of
that particular forecast with respect to the others. Units
of the relative frequency, referred to as “stacks,” can be
defined so as to ensure that in a given ensemble fore-
cast the sum of all relative frequencies is equal to unity.
This way, the model’s optimized weights determine the
number of “stacks” given to its corresponding forecast.
This study applies this approach to assess the probabi-
listic performance of RID and MMA.

The tercile categories are defined by the observed
climatology and the limits are determined assuming a
Gaussian distribution for the observations. The cat-
egory limits are thus computed as 0.4308 times the ob-
served standard deviation for each grid point. The same
procedure as in the deterministic evaluation was fol-
lowed, namely, that the forecasts are cross validated
(CV-3R), but here the weights of each consolidation
method are normalized. The problem is simplified by
using each of these categories as a binary event, which
means, for example, that the “above normal” is actually
“above normal” versus “non–above normal.”

An illustration of the approach described is given in
Fig. 8. The figure displays a particular multimodel en-
semble (81 members) forecast as a set of small vertical
bars overlying the observed climatology depicted by a
Gaussian distribution, along with the category limits.
The value of each forecast is given by its position in the
abscissa axis. The thick tall vertical line is the verifying
observation. The numbers indicate the fraction of
members that fall in each category. This is the prob-
ability that the forecast will verify on each tercile ac-
cording to the issued ensemble forecast. The probabil-
ity of the three categories adds up to one. In the upper
panel, assuming equal weights (the MMA method, for
example), there is 67/81 chance that the observation
will verify in the upper tercile. In the bottom panel, the
height of the small bars is determined by the weights
obtained under the RID method for the full data. Since
the approach uses the weights to determine the fre-
quency (height of the bars) of forecasts only, the posi-
tion of the small bars in the bottom panel aligns with
those in the upper panel. In this case, the models with
higher weights (taller bars) fall in the upper tercile giv-
ing a probability of 76.3/81 � 0.942.

b. ROC curves

The ability of consolidation methods to anticipate
correctly the occurrence or nonoccurrence that SST
anomalies will verify within tercile categories is as-
sessed based on ROC. Figure 9 shows the “area below
curve” (ABC) gridpoint-wise. The ABC ranges from 0
to 1, with values above 0.5 indicating that the model is

more skillful than climatology and values equal to 1
indicating perfect skill. The figure shows the average of
all months and leads 3–5 only, to indicate the more
distinct features among the two methods (MMA and
RID). For leads 0–2 (not shown) the ABC is closer to
1, but the difference between MMA and RID is negli-
gible. The left panel of Fig. 9 shows that MMA is highly
skillful in predicting whether the observation will fall in
the upper or lower terciles, particularly in the central
Pacific. Skill is lower for the middle class, as reported
before by Van den Dool and Toth (1991) and Kharin
and Zwiers (2003). In the right panels, positive values
indicate the regions where RID are better than MMA.
For the upper and lower terciles the improvement is
limited to the western Pacific consistent with Fig. 6.
There is a tendency for RID to outperform MMA in
larger regions in the lower tercile than in the other
tercile classes. The performance, averaged over the full
study domain is, however, very similar for both RID
and MMA. This conclusion differs from Fig. 5, which
shows all RID variations to be consistently better (al-
though not by much) than MMA by deterministic mea-
sures. An additional Brier score (BS) evaluation indi-
cates RID has slightly lower BS in the western Pacific,
mainly because of slightly improved reliability.

9. Discussion and conclusions

This study assesses the performance of seven consoli-
dation methods of multimodel ensemble forecast sys-
tems to predict monthly SST in the deep tropical Pa-
cific. The consolidation methods tested vary on degree
of sophistication from a simple multimodel average
method, MMA, which is used here as benchmark, to
ridging regression approaches that take into account
past performance and collinearity among models. The
evaluation was made in a stringent cross-validation
mode, the CV-3RE.

For the sophisticated consolidation methods, the
length of the training period should be large enough for
the optimization procedure to correctly estimate the
covariance matrix A, from which the regression coeffi-
cients are computed. When the number of participating
models is large and the hindcasts are short, the process
leads to overfitting. Earlier consolidation attempts in
meteorology appear to be working on a grid point by
grid point basis and with ensemble averages. This
works well with dependent data or under insufficient
cross validation but more stringent cross-validation
procedures, such as the one introduced here, show that
with a short sampling the sophisticated consolidation
approaches are only marginally better than the simple
multimodel ensemble average. Furthermore, when the
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number of input models is large, even if there is suffi-
cient data for training, collinearity could produce an
ill-conditioned covariance matrix preventing the in-
verse to be known with sufficient accuracy.

In view of these problems, this study assesses the
benefits of increasing the effective sampling size for
consolidation methods that deal with collinearity
among models, in particular the use of the ridging re-
gression to determine optimal weights. While there are
many variations of the ridging methodology, only three
(RID, RIM, and RIW) were analyzed in more detail.
Skills of these methods were compared with those from
the ensemble mean forecast of individual models, the
multimodel average method, the skill-weighted meth-
ods and the unconstrained regression.

Three approaches to increase the sampling size rela-
tive to the number of coefficients to be fitted were
tested: reducing the set of input models, mixing infor-

mation from neighboring grid points, and using infor-
mation from individual ensemble members. To reduce
the set of input models in the first approach, a double-
pass consolidation technique was used. After the first
pass, models with negative weight were assigned zero
weight before performing the second pass. This was not
always a successful approach to select and remove bad
models because in some cases, the reduced set still pro-
duced negative weighs after the second pass, but now
for other models. Another, more effective procedure
was to remove upfront, models with negative AC. The
latter approach was used for the COR and RIW meth-
ods. Mixing information from both neighboring grid
points, and individual ensemble members had a large
positive impact on the stability of the weights and pro-
duced some skill improvements on all the sophisticated
consolidation methods. For the ridging regression
methods, it was found that the benefit in skill by mixing

FIG. 8. Illustration of the 3-category PDF construction based on an 81-member multimodel ensemble forecast for
a particular grid point, lead, and initial month, along with its corresponding verifying observation (thick tall line)
and climatology (Gaussian curve). (top) The probability (fraction number of cases) on each category when the
weights are equal, like MMA. (bottom) The probability for the same case but when the weights are optimized using
the full data and RID method. Scales on the y axis are for the Gaussian distribution. Values of 0.1 in the height
of the small bars correspond to a count of 1 out of 81 cases.
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grid points reached a maximum when the closest neigh-
boring grid points were included. Overall, the COR
method outperformed the rest of the consolidation
methods when no mixing of gridpoint information was
used. The ridging methods performed similarly and
reached a maximum in skill when the effective sampling
size was increased with information of the closest
neighbor grid point. Using individual ensemble mem-
bers, rather than the ensemble mean, to optimize the
weights benefited the overall skill.

The results in this study corroborate that for the
tropical Pacific SST, the skill of MMA is, on average,
higher than that for any particular model ensemble av-
erage. The results also corroborate that, given a short
sampling size, other sophisticated consolidation meth-
ods fail to show a large improvement over the MMA.
However, the study indicates that increasing the effec-
tive sampling size does produce more stable weights
and more skillful (and much more consistently so) pre-
dictions of SST. It is found that sophisticated consoli-
dation methods tend to outperform MMA largely in the
western equatorial Pacific and only marginally so in the
rest of the ocean basin, which is consistent with results
using the Bayesian approach (Stephenson et al. 2005).

The ridging method has been presented here largely
in terms of obtaining a stable solution, see especially
Fig. 2. Obviously an unstable solution is not good be-
cause it will not hold up in independent data. A specific
choice of � to optimize skill was not sought. The skill
optimizing approach was tried by DelSole (2007), who
sought to find � (at each grid point) to optimize skill but

failed to improve skill that way when it was tested un-
der two layers of cross validation. Nevertheless, the
reader must wonder what happens to skill when � is
varied (even if the reason for the variation is stability or
asymptotic behavior, or both). Figure 10 shows the do-

FIG. 9. ABC scores for equal weights, (left) MMA, and (right) difference RID minus MMA for the three categories: (top) upper,
(middle) middle, and (bottom) lower tercile. Scores denote average of all initial months available and leads 3–5. CIs are 0.2 for the left
panels and 0.02 without the zero contours and with spatial smoothing for right panels.

FIG. 10. Anomaly correlation average for all leads and initial
months available for RIW and COR (horizontal line) methods as
a function of ridging amount (�). The values are after CV-3R
cross validation for the case when weights are optimized using the
ensemble mean of each model and without mixing of grid points
(corresponding to Fig. 4 and the first entry in left panel of Fig. 5).
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main aggregated AC performance of the RIW method
(under 3CV-RE) for all leads and starting times com-
bined as a function of �. For very large � one obtains
the same skill as the COR method, while for negligibly
small � one gets the skill of UR. Based on this graph
one gets the impression that skill has a rather flat maxi-
mum in the wide range � � 0.6–2.0, that is, ridging
60%–200%. The quoted � values indicate surprisingly
strong ridging and, in general, much more than is
needed for stability alone. It thus appears that the col-
linearity cannot be exploited in full, at least in the prob-
lem at hand. Still, optimized RIW is better than COR,
so even for a 200% ridging some of the collinearity is
exploited beneficially.

An approach to form a 3-class PDF from the opti-
mized weights was used in which the weights determine
the “stacks” associated with each model leaving the
forecast values unchanged (i.e., no regression applied).
The ROC was used to measure the ability of the meth-
ods to anticipate the occurrence or nonoccurrence that
the target observation will fall in each tercile category.
Results indicate that RID outperform MMA in the
western Pacific, consistent with the deterministic evalu-
ation of AC. Analysis of the Brier score (not shown)
indicates that RID marginally improves over MMA in
the same region. Such improvement is attributed to the
more reliable forecasts of RID compared to MMA (not
shown). The methods have the lowest skill to predict
the middle tercile, in agreement with Van den Dool and
Toth (1991). A more efficient treatment may be needed
to adjust the PDF generated in association with the
ridge regression methods. However, accurate correc-
tions of the SE of the standard deviation and other
higher moments of the PDF will be hard to obtain given
the shortness of the hindcasts.

Judging the success of a consolidation is difficult be-
cause so many diverse issues get mixed in (this also
makes claims in the literature hard to accept as univer-
sally applicable). One of them is the cross-validation
procedure, which requires a study on its own. Given the
shortness of the hindcast data in some models, esti-
mates of the SE had large variations depending on
which years are left out, and this hurts the performance
of some of the models. The verification metric, and
implicitly the control forecast, used has an influence on
what is considered “success.” A final difficulty in judg-
ing success is the application itself. If consolidation
method A is better than method B, one should not rule
out that this finding is application dependent. The pre-
diction of SST has features of appreciable skill and high
collinearity, but application to, say, European 2-m tem-
perature prediction (which has lower skill, and less col-
linearity) may lead to different conclusions about the

advantages of a certain variation of ridge regression or
any other consolidation method.
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