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ABSTRACT

Forecasts for extremes in short-term climate (monthly means) are examined to understand the current

prediction capability and potential predictability. This study focuses on 2-m surface temperature and pre-

cipitation extremes overNorth and SouthAmerica, and sea surface temperature extremes in the Niño-3.4 and

Atlantic hurricane main development regions, using the Climate Forecast System (CFS) global climate

model, for the period of 1982–2010. The primary skill measures employed are the anomaly correlation (AC)

and root-mean-square error (RMSE). The success rate of forecasts is also assessed using contingency tables.

The AC, a signal-to-noise skill measure, is routinely higher for extremes in short-term climate than those

when all forecasts are considered. While the RMSE for extremes also rises, especially when skill is inherently

low, it is found that the signal rises faster than the noise. Permutation tests confirm that this is not simply an

effect of reduced sample size. Both 2-m temperature and precipitation forecasts have higher anomaly cor-

relations in the area of South America than North America; credible skill in precipitation is very low over

South America and absent over North America, even for extremes. Anomaly correlations for SST are very

high in the Niño-3.4 region, especially for extremes, and moderate to high in the Atlantic hurricane main

development region. Prediction skill for forecast extremes is similar to skill for observed extremes. Assess-

ment of the potential predictability under perfect-model assumptions shows that predictability and prediction

skill have very similar space–time dependence. While prediction skill is higher in CFS version 2 than in CFS

version 1, the potential predictability is not.

1. Introduction

This study seeks an answer to the question ‘‘How well

can we currently predict short-term climate extremes?’’

Here, ‘‘short-term climate’’ means forecasts of monthly

or seasonal means at long leads—that is, not weather

extremes in a 5-day forecast, and not long-term climate

change. Short-term climate extremes (STCEs) have im-

portant implications for energy use, agriculture, and flood

or drought preparation. In this study, we investigate our

current ability to predict STCEs at lead times of one to

eight months over the Americas, with the goal of under-

standing the strengths and weaknesses of current models,

and possibly more fundamental limitations to the ability

to predict. We will distinguish present-day prediction

skill (what we can do now) from ‘‘predictability’’ (what

we can do ultimately). To our knowledge, the notion of

predictability under perfect model assumptions has not

yet been applied to extremes.

Extreme climate events are a subject of increasing

attention. Population density and infrastructure devel-

opment in sensitive areas have led to great human and

economic losses from STCEs, and positive trends in the

frequency of these extremes have been detected in some

areas of the globe (Easterling et al. 2000a,b, and refer-

ences therein.) Short-term climate extremes in some

regions have been linked to climatemodes such as the El

Niño–Southern Oscillation (Rasmusson and Carpenter

1982; Wolter et al. 1999), the North Atlantic oscillation

(Hurrell 1995), the Pacific–North Atlantic oscillation

(Wallace and Gutzler 1981), or the Madden–Julian os-

cillation (Madden and Julian 1972).
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Most assessments of the skill of long-lead climate pre-

diction have focused on all monthly or seasonal means

(rather than extremes), using both real-time and retro-

spective forecasts (e.g., Chen et al. 2010; Kumar et al.

2010; Wang et al. 2010). These studies of temperature,

precipitation, and SST forecasts have found that skill is

not very sensitive to lead time (Barnston 1994; Livezey

and Timofeyeva 2008); that is, the skill does not drop off

sharply as lead times increase. Instead, skill depends

much more on the target month or season.

One recent skill assessment has focused on the long-

lead prediction of climate extremes. Barnston andMason

(2011) examined the International Research Institute’s

(IRI’s) real-time prediction of seasonal temperature and

precipitation extremes. Their forecasts for these ex-

tremes, defined as the 15% tails of the climatological

distribution, are issued for a 3-month season at a one-

half month lead. They found that forecasts for both

temperature and precipitation extremes had some skill,

with above-normal precipitation being overforecast and

above-normal temperature being underforecast.

We have examined the prediction skill and predict-

ability of near-surface STCEs in the region of the Amer-

icas, in the form of monthly anomalies in 2-m surface

temperature, precipitation rate, and adjacent ocean sea

surface temperature (SST). These fields are of wide im-

portance to many users, and even forecasts with low

levels of skill are deemed useful. We use nearly 30 years

of retrospective forecasts from two versions of the Na-

tionalOceanic andAtmosphericAdministration (NOAA)

Climate Forecast System (CFS), a ‘‘state of the art’’

coupled ocean–land–atmospheremodel. As of 30March

2011, CFS version 1 (CFSv1) has been replaced by CFS

version 2 (CFSv2) as the operational model.

This paper does not focus on exactly how rare an

event is, or which distribution it obeys (i.e., we do not

make a fit to the generalized extreme value distribu-

tion.) The approach here is far more pragmatic, com-

paring forecast skill for values in a category defined as

‘‘extreme’’ (observed at some grid point during the

hindcast period) to forecast skill in general.

The prediction skill for extremes is interesting not

only because of its obvious societal relevance but also

because it addresses a fundamental issue. To understand

this issue, one needs to distinguish two scenarios. In prac-

tice,when an extremewith impacts has already occurred,

the public and the media ask ‘‘Was this predicted?’’ This

review of performance is valuable, and hopefully di-

agnostic studies of what forecasts were successful and why

others failed will contribute to model improvement in the

future. However, we would also like to have the ‘‘users’’

look forward—to pay attention ahead of time when an

extreme is predicted. In view of this we investigate two

separate scenarios: the skill of forecasts given that (at

a later time) an extreme was observed, and the skill of

a forecast when an extreme is predicted to occur.

One may wonder why the skill of models would be

different when predicting extremes versus states near

the mean; the laws of physics are no less valid in extreme

situations. However, two reasons can be thought of that

would make predicting extremes more difficult for

models. First, extremes may stretch the validity of some

of the parameterization used in models. Second, an ex-

treme is a superposition (by Fourier transform) of all

scales so as to produce, by constructive interference, an

extreme in a possibly small area. As skill is notoriously

scale dependent (Savijarvi 1995), it seems that it would

be a tall order to get extremes perfectly right, because it

would require all scales to be predicted correctly.

The data andmethods used in this study are presented

in section 2, including a description of the model, the

notation, and the 2-m temperature, precipitation rate,

and sea surface temperature verification fields. Section 3

contains some discussion of the definition of ‘‘extreme.’’

Results of forecast skill assessments are in section 4,

and section 5 includes our study of the predictability of

STCEs. Section 6 contains a summary and discussion.

2. Data and methods

a. Model forecasts and observations

1) MODEL REFORECASTS

Twenty-nine years of global retrospective forecasts

were available for both the Climate Forecast System

version 1 (Saha et al. 2006) and version 2 (S. Saha et al.

2012, unpublishedmanuscript). CFSv1 reforecasts cover

1981–2009, and CFSv2 covers 1982–2010. The retrospec-

tive forecasts, regridded to 1.08 longitude 3 1.08 latitude,
were obtained from the Environmental Modeling Cen-

ter (EMC), NOAA–National Weather Service (NWS)–

National Centers for Environmental Prediction (NCEP).

We use monthly mean data exclusively, and initial con-

ditions from all 12 months of the year were available.

The CFSv1 ensemble is made up of 15 members, each

one a full 9-month integration starting from atmospheric

initial conditions spanning three pentads in each month:

the 9th to 13th, the 19th to 23rd, and the second-to-last

day of the previous month through the third day of the

current month (Saha et al. 2006). In this setup, the first

meaningful forecast is for the next month (at lead 1

month). The atmospheric initial conditions for the CFSv1

reforecasts are from the NCEP–Department of Energy

(DOE) global reanalysis 2 (Kanamitsu et al. 2002). CFSv1

uses the 2003 NCEP Global Forecast System (GFS) at-

mospheric model, with a resolution of T62/210 km. The
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oceanic component is the Geophysical Fluid Dynamics

Laboratory (GFDL) Modular Ocean Model, version 3

(MOM3), which extends from 748S to 648N, with a zonal

resolution of 18, and a meridional resolution of 0.338
between 108S and 108N, increasing gradually to 18 be-
yond 308S and 308N. Ocean initial conditions are from

the Global Ocean Data Assimilation (GODAS). The

land surface model is the two-level Oregon State Uni-

versity model. For more details on the CFSv1, see Saha

et al. (2006), and references therein.

CFSv2 contains 24 members (28 for the November

initial conditions), each a full 9-month integration

(S. Saha et al. 2012, unpublished manuscript). The

reforecasts are initiated every fifth day, for all four cycles

of each day (0000, 0600, 1200, 1800 UTC). The initial

conditions for atmosphere, ocean, and land were gen-

erated by a coupled reanalysis named CFSR (Saha et al.

2010). The GFS resolution was increased to T126–

100 km, and the ocean model was upgraded to MOM4,

which is fully global. The horizontal resolution of the

ocean model between 108S and 108N is 0.258, and 0.58
elsewhere. The land surface model used by CFSv2 is

the four-level Noah land model (Ek et al. 2003; Mitchell

et al. 2004). Formore details on theCFSv2, see Saha et al.

(2010) and S. Saha et al. (2012, unpublished manuscript).

2) OBSERVATIONS

The 9-month lead forecasts initialized in 2010 stretch

into 2011, and so scores for 2010 include verifying data

through much of 2011. The verification field for 2-m

temperature (T2m) is the station observation-based

Global Historical ClimatologyNetwork version 2 and the

Climate Anomaly Monitoring System (GHCN1CAMS;

Fan and van den Dool 2008). This global land monthly

mean surface air temperature dataset is a combination of

two large individual datasets of station observations,

and tests have found that most common temporal–spatial

features are captured (Fan and van den Dool 2008).

GHCN1CAMS has a native resolution of 0.58 latitude 3
0.58 longitude andwas regridded to 1.08 3 1.08 for this study.
The precipitation rate was examined using the Cli-

mate Prediction Center (CPC) global daily UnifiedRain-

Gauge Database (URD) gauge analysis for verification.

This global land-only dataset uses quality-controlled in-

put from over 30 000 stations in the Global Telecom-

munication System (GTS) and many other national and

international collections (P. Xie et al. 2010, unpublished

manuscript). TheURD is also available on a 0.58 latitude/
longitude grid and was regridded to 1.08 3 1.08 for this
study.Monthlymeans were prepared from the daily data.

The sea surface temperature verification data (often

called OI-2) is that of Reynolds et al. (2002) and uses

both satellite data and in situ records from ships and

buoys. It is an optimum interpolation analysis, produced

at NOAA. The native resolution of the Reynolds et al.

(2002) SST is 18 latitude 3 18 longitude.

b. Notation

The monthly mean data we use throughout can be

represented by X(s, j, m, t), where s is a spatial index,

j stands for the year (1982–2010), m is the target month

(1–12), and t is the forecast lead in months (0–8). The

quantity X is either the forecast F or the observationO,

and both F and O may refer to temperature, precip-

itation rate, or sea surface temperature. For the obser-

vations, the notation O(s, j, m) suffices.

Anomalies, denoted by the prime (9), are formed by

O9(s, j,m)5O(s, j,m)2CO(s,m) , (1a)

where CO(s, m) is the observed climatology calculated

over many years (often 1982–2010, but not necessarily).

Likewise, we form forecast anomalies by

F9(s, j,m, t)5F(s, j,m, t)2CO(s,m) , (1b)

where we note, with emphasis, that the same CO(s,m) is

subtracted in (1a) and (1b). Obviously, F(s, j,m, t) could

have a systematic error, and an attempt to correct this

error can be interpreted as an adjustment to Eq. (1b);

this will be discussed below in section 2c.

ENSEMBLE FORECAST NOTATION

Forecasts actually come as an ensemble of forecasts, so

adding onemore argument is necessary to be complete for

the forecast notation: F(s, j, m, n, t), where n is the en-

semble number, n5 1 . . .N, whereN5 24 (for CFSv2) in

most months. All the expressions given above would ap-

ply to either the verification of a single forecast, or the

ensemble mean, defined as Fens(s, j, m, t) 5 �nF(s, j, m,

n, t)/N. The availability of ensemble members also gives

us room to experiment with the definition of ‘‘extreme’’

from a model standpoint. For instance, we could label

cases extremewhen abs(F9ens) is above a certain threshold,
or perhaps when k ensemble members are larger than

some threshold. This will be explored further in section 3.

c. Systematic error correction

Long lead forecasts based on dynamical models are

often plagued by systematic errors (SEs), and given low

to moderate intrinsic skill we need to do a SE correction

(SEC) to bring out the skillful part of the forecast.

Identifying and correcting systematic bias in the models

often leads to an improvement in forecast skill (Smith

and Livezey 1999). The generic definition of the SE is

the difference in the expected value of the forecasts and
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verifying observations; this is estimated as themean over

as many cases (years) as possible. In view of Eq. (1b), it

would be good to bias correct F; that is,

F9(s, j, m, t)5F(s, j, m, t)2 fF(s, j, m, t)g
2 fO(s, j, m)g1CO(s, m) , (2)

where fXg is themean overmany years and the fF2Og
term is our estimate of the SE. It is easy to see that (2) or

(1b) reduces toF9(s, j,m, t)5 F(s, j,m, t)2 fF(s, j,m, t)g
if the years involved in calculating CO(s,m) and fO(s, j,

m)g are identically the same, for example when 1982–

2010 is used for both. However, this shortcut, while

commonly done, is not a good practice for many reasons.

For instance, whenwe do a cross validation (CV) leaving

three years out, the SEC [i.e., fF(s, j, m, t)g 2 fO(s, j,

m)g] is evaluated over all years except three (Barnston

and van den Dool 1993). Therefore, the external clima-

tology, CO(s,m), needs to be shown explicitly in Eq. (2).

With regard to CV, we have decided that three years

need to be left out at a minimum. The procedure is re-

ferred to as CV3RE, meaning three years are left out,

the test year and two more years chosen at random (the

R), and the E refers to an ‘‘external’’ climatology. Ide-

allyCO(s,m) is taken from observations entirely outside

the dataset under analysis (here 1982–2010). But we do

not often have that luxury, and even if we had observa-

tional data for, say, 1850–1980, we would have to worry

about climate change becoming a factor. The next best

thing is to keep CO(s, m) fixed and not change it in re-

sponse to certain years being left out under a CV. More

background and justification for CV3RE can be found

online (at http://www.nws.noaa.gov/ost/climate/STIP/

FY09CTBSeminars/vandendool_051109.htm).

d. Verification measures

There are many methods of assessing forecast skill. In

this study, we mainly rely on the anomaly correlation

(AC) and root-mean-square error (RMSE) to assess the

skill of forecasts in general, to assess the skill of STCE

only (a subset of all forecasts), and to calculate predict-

ability. We also examine the forecast ‘‘hits and misses’’

using contingency tables, detailed in section 4.

The AC is a measure of the association between the

anomalies of (usually) gridpoint forecast and observed

values (Wilks 1995; van den Dool 2007) and is given by

AC(m, t)5

�
s
�
j
F9(s, j,m, t)O9(s, j,m)

(
�
s
�
j
[F9(s, j,m, t)]2�

s
�
j
[O9(s, j,m)]2

)1/2
,

(3a)

where the double summation is over years (j 5 1982–

2010) and space (e.g., all land grid points over North

America if 2-m temperature or precipitation is consid-

ered). A weight, not shown, may be carried to account

for the area represented by each grid point. The ex-

pression in the numerator is a covariance between F and

O, while the denominator carries two standard de-

viations. The correlation coefficient is denoted by AC, a

number between21 and11, where11 refers to a perfect

forecast and 0 to random forecasts. Negative values for

ACmayoccurwhen there is little or no skill, and a sample

small enough for nonnegligible sampling variability. The

summation over space can be suppressed to yield a spatial

distribution of the AC [i.e., AC(s, m, t)], given by

AC(s,m, t)5

�
j
F9(s, j, m, t)O9(s, j, m)

(
�
j
[F9(s, j, m, t)]2�

j
[O9(s, j, m)]2

)1/2
.

(3b)

A second verification measure is the root-mean-square

error, defined as

RMSE(m, t)5

(
�
s
�
j

ws[F(s, j, m, t)2O(s, j, m)]2

W

)1/2

,

(3c)

where W 5 �s�jws.

Any findings of skill for predicting extremes will de-

pend strongly on how skill is defined, and here the pre-

diction of extremes may benefit from what we usually

call skill. For instance, the anomaly correlation is a prime

example of a signal-to-noise measure, while RMSE is

a measure of the noise only. Conclusions based on root-

mean-square error may thus be different from those

based on the anomaly correlation, which thrives on high

signals, especially those of extremes. Hence, we examine

both the AC and RMSE measures.

e. Predictability

While Eqs. (3a)–(3c) evaluate prediction skill of

a model against observations (normal procedure) there

is also the notion of ‘‘predictability.’’ There are various

methods of defining predictability; one common defini-

tion is evaluated as one model forecast versus another

(Lorenz 1982; NRC 2010). This requires an ensemble,

and we will evaluate predictability as the AC achieved

by an ensemble mean over N 2 1 members, and using

the one member left out as the substitute observation.

In this context one makes the so-called perfect model
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assumption (i.e., we know for sure that the forecast and

proxy-observation are taken from the same world and

there are no systematic errors to be corrected for). The

expression is as follows:

ACp(m, t)5

�
s
�
j
Fens9 (s, j, m, t)F9(s, j, m, n, t)

(
�
s
�
j
[Fens9 (s, j, m, t)]2�

s
�
j
[F9(s, j, m, n, t)]2

)1/2
, (4)

with the proviso that Fens is calculated from N 2 1

members, and F9(s, j,m, n, t) is the one member (the nth

member) left out. (One can repeat this calculation N

times, depending on which member is left out, expecting

the same answer in each case, except for sampling er-

ror.) The anomalies are formed relative to our best es-

timate of climatology in the model world [i.e.,�j�nF(s,

j, m, n, t)/(JN), where J is the number of years]. In the

above we assume all members to be ‘‘equal.’’ To control

for small variations in predictability, the calculations in

this study are performed for each of the Nmember, and

the results for all the ensemble members were averaged

together.

3. The definition of ‘‘extreme’’

There are many ways of defining an extreme, in-

cluding values of a variable that fall above or below

a local threshold, the tails of various frequency distri-

butions, or other characteristics, and this definition may

affect the outcome of a study. For example, Sheridan

and Dolney (2003) examined heat waves in Ohio using

four different criteria for identifying a heat event, and

found that the increase in mortality levels varied some-

what depending on the criteria. The variety of definitions

has complicated studies of trends in extremes (Nicholls

1995; Easterling et al. 2000b). Also, statistical definitions

of ‘‘extreme’’ carry no guarantee that a local extreme

has a significant effect on residents, agriculture, or re-

sources. However, especially for a study of a large geo-

graphical area, we must use some criteria that can be

universally applied. For the purposes of this study, we

have defined a climate extreme as a departure from the

monthly mean above/below a specified multiple of the

local standard deviation of the variable. Specifically, we

use standardized anomalies, where the anomalies gen-

erated using Eq. (1) are divided by the gridpoint stan-

dard deviation, and define ‘‘extreme’’ as a standardized

anomaly usually as above/below 61.645. This is ap-

proximately equivalent to the 5th and 95th percentile

threshold, and, in a record of 29 years, results in around

2–4 extreme cases per grid point. In some figures we use

a continuous sliding scale so the reader can decide what

is extreme. We will examine the results of skill analysis

for some variations on this criterion in section 6.While it

is unlikely that every identified extreme for each grid

point is an event of great impact, we do trust that all

large impact events are included. Our method ensures a

dataset large enough for a meaningful statistical analysis.

Observed extreme versus predicted extreme

Not all forecasts for extremes come true, and not all

observed extremes were forecast. This perspective leads

one to consider whether the skill for the situation of

verifying a forecast against an observation taken at a

later time should be any different from the skill of ver-

ifying an observation against a forecast made earlier.

The expressions we use for assessing error, the RMSE

and AC, are ‘‘symmetric’’ in terms of the forecast F and

the verifying observation O. For instance, see the ex-

pression we use for RMSE, Eq. (3c) above. Fundamen-

tally, there is no difference between these two situations;

this is the symmetry. As long as all cases are included,

theRMSE in (3c) is the same for both settings. (This also

holds for the anomaly correlation.) When we verify only

over a few cases, this symmetry could possibly be bro-

ken, since, for the same time and grid point, F could be

an extreme and O not (and vice versa). Consider two

different scenarios for limiting the input to the AC and

RMSE calculations: on the one hand, those cases con-

ditioned on an observed extreme having occurred, and,

on the other, those cases conditioned on the forecast

being an extreme. For such subsets Eqs. (3a)–(3c) may

not yield the same answer. An additional asymmetry

arises when the criterion for ‘‘extreme’’ is based on an

ensemble of F realizations (not a single forecast), while

observations occur only once.

4. Prediction of monthly temperature,
precipitation, and sea surface temperature

The performance of the model is assessed in a few

different ways. For each variable, three scenarios were

assessed: 1) the prediction skill of the models over the

entire 29-yr record; 2) when an extreme event occurred

in the observed record (i.e., an extreme occurred, was it

516 JOURNAL OF CL IMATE VOLUME 26



predicted ?); and 3) verification of a predicted extreme

(i.e., the model predicted an extreme, did one occur ?).

For brevity, we will refer to these respectively as ‘‘all

cases,’’ ‘‘observed extremes,’’ and ‘‘predicted extremes’’

in the following discussion.

We have defined a climate extreme to be, for each grid

point, an anomaly in the monthly mean above–below

a threshold (see section 3 above). To study the effects of

the choice of threshold, the AC and RMSE were ex-

amined for several reduced samples. For example, if

a climate extreme is designated to be an anomaly above/

below61.645 standard deviation, all anomalies that are

less than the threshold are excluded from the calculation.

Hence, the sample size is reduced with each larger

threshold. Since we are assessing the model performance

for both observed extremes and predicted extremes, the

skill is tested for two separate scenarios: 1) the time series

of observation–forecast gridpoint pairs is restricted to

those where the observed value passes the criteria for an

extreme, and 2) it is restricted to those where themodel-

predicted value passes the criteria.

In the following figures, area-aggregated anomaly

correlations are shown. The steps to arrive at this value

for each initial month are as follow: first, the anomalies

for the observations are generated as in Eq. (1a), and

standardized by the local gridpoint standard deviation.

Bias-corrected anomalies for the model ensemble mean

(EM) are generated using Eq. (2), both with and without

cross validation, and standardized by the EM gridpoint

standard deviation. Then the AC is calculated as in

Eq. (3a) for the set of observed–forecast gridpoint pairs

(either the entire set or one of the extremes scenarios),

including the double summation over the 29 years and

the designated spatial domain; the final step is the mul-

tiplication and division of the three summation terms.

This leaves us with nine ACs, one for each lead. The

RMSE is arrived at following a similar method. This

FIG. 1. (a) Two-meter temperature anomaly correlation (AC)

and (c) root-mean-square error (RMSE, in units of standard de-

viation) for CFSv2 predictions over South America. Each value is

the aggregate of the leads 1–3 months AC or RMSE over all initial

conditions in all years. Horizontal axis indicates the multiple of the

standard deviation that was used to filter the data sample. (b) On

a logarithmic scale, the number of gridpoint pairs involved in the

calculation, decreasing to the right by orders of magnitude. Purple

and green lines show the AC–RMSE values for extremes identified

in the model ensemble mean and the observations, respectively.

Dashed lines show the values for cross validation when three years

are excluded (CV3RE, see text for discussion.) The gray lines in (a)

depict the mean (solid) and 62 standard deviations (dashed) from

themean of theAC calculated for 1000 permutations of a randomly

selected, cross-validated sample with the number of gridpoint pairs

shown in (b).

FIG. 2. As in Fig. 1, but for North America.
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process is repeated for each of the 12 initial months.

The uncertainty (sampling error) in a correlation (for

small correlation) is 1/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Neff 2 2

p
, where Neff is the ef-

fective number of cases. For example, a 0.4 correlation

is locally marginally significant for a single point time

series over 29 years. Aggregating over large spatial do-

mains leads to larger Neff, and increased statistical sig-

nificance for the same 0.4 value (Saha et al. 2006).

The anomaly correlation scores for leads 1–3 com-

bined allow for assessment of all three scenarios (all ca-

ses, observed extremes, and predicted extremes). Leads

1–3 are chosen for the average because it is assumed that

the model will have the highest performance during the

early leads. Lead 0 is omitted because the CFS lead 0 is

initialized with the atmospheric conditions, leading to

high scores due to short-termweather forecasting, which

is not the topic of this paper. Leads 1–3 forecasts from all

initial months over all years are included in the average.

‘‘South America’’ is the area average for all land in the

South American continent area-averaged south of 158N.

‘‘North America’’ is area-averaged north of 158N; Green-

land is not included.

To understand how the definition of ‘‘extreme’’ af-

fects the AC, we assess the AC when the sample is

limited by many different thresholds (i.e., an increasing

multiple of the local standard deviation). Figures 1 and 2

show the area-averaged AC and RMSE for leads 1–3,

for 2-m temperature over South and North America,

respectively. Purple lines show the results for predicted

extremes, and green lines the results when the sample is

filtered to observed extremes. We used the following

multiples of the standard deviation in this analysis: 0 (all

cases), 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5,

2.75, and 3.0. The analysis was performed both without

cross validation (solid lines) and with (dashed lines).

Extremes of either sign are combined in this figure.

One general conclusion that will be drawn from these

figures is that ACs for the extremes scenarios, both for

observed and predicted extremes, are uniformly higher

than for the all-cases scenario. One may wonder if this

increase in ACwhen the sample is limited to extremes is

possibly a response to the reduction in sample size. To

assess this, for each threshold we examined the AC for

1000 randomly selected, cross-validated subsamples that

FIG. 3. CFSv2 2-m temperature anomaly correlations over South America, expressed as a function of

the target month (horizontal) and lead (vertical) for (a) all cases. (b) When the model predicts an ex-

treme, defined as 61.645 local standard deviation. (c) All cases with CV3RE applied. (d) Predicted

extremes with CV3RE applied.
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were the same size as the extreme subsample. The upper

and lower bounds of the envelope defined by the mean

62 standard deviations are shown as gray dotted lines;

the mean of the 1000 permutations is shown by the solid

gray line. Therefore, there is no question that, by theAC

measure, extremes are better predicted than all cases

over both Americas.

a. Prediction skill: 2-m temperature

In South America (Fig. 1a), 2-m temperature ACs for

both observed extremes (green) and predicted extremes

(purple) in the non-cross-validated set increase from

around 0.29 to approximately 0.5 for large extremes.

ACs for the sample after CV3RE has been applied

(dashed lines) increase from slightly higher than 0.2 to

around 0.35. Skill appears to fall off for standardized

anomalies greater than 2.5, when the sample becomes

very small, with ,1% of data left. The results of the

permutation tests on randomly selected, cross-validated

samples (gray solid and dashed lines) show that the AC

does not grow simply with ‘‘just any’’ reduced sample

size, but in fact remains close to the value for all cases.

The RMSE in units of standard deviation (Fig. 1c) in-

creases slowly with the reduced sample size (shown in

Fig. 1b on a log scale), and cross validation results in only

slightly higher RMSE. Significantly, the slope of the

RMSE lines in Fig. 1c is less than 458; the importance of

this is discussed below.

Over North America (Fig. 2a), skill when the model

predicts an extreme is higher than skill when an extreme

occurred in the observed record, when ‘‘extreme’’ is

defined as a standardized anomaly greater than 1 (1.25

when cross validation is applied). The gap in ACs is

larger in the CV3RE set. When the forecast is above

a threshold of 2.5 standard deviations (sd), the sample is

too small for significant results. As with South America,

the RMSE in North America (Fig. 2c) increases slowly

with the threshold, from RMSE 5 1.25sd at 0 threshold

to RMSE5 (1.75 to 2.0)sd at the largest thresholds, just

before the reduced sample size becomes an issue. When

extremes are defined as a standardized anomaly above

about 1.5, the RMSE in the observed extremes sample

increases faster than in the predicted extremes sample.

ACs, in general, are lower in North America than over

South America, and the RMSE is higher. Still, the be-

haviors in Figs. 1 and 2 have much in common.

It may seem peculiar that both AC and RMSE go up

with increasing threshold. Both are related to skill, but

AC goes up despite the RMSE going up. The explana-

tion for this is as follows: one can approximate AC (as

FIG. 4. As in Fig. 3, but for North America.
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long as it is not too large) as the signal-to-noise ratio

(van denDool and Toth 1991; Compo and Sardeshmukh

2004), where RMSE is noise and the signal is at least the

threshold. As one can see from Figs. 1c and 2c, RMSE

increases more slowly than the threshold (the slope of

the line is less than unity), and so the AC increases de-

spite the RMSE increase.

Figures 3 and 4 depict the anomaly correlation as

a function of the lead (vertical axis) and target month

(horizontal axis); forecast skill is often more strongly

related to the target month than to the initial month

(Barnston 1994). This type of display allows us to under-

stand what months the models are best at forecasting,

and to study the forecast skill at longer leads. Here, ex-

tremes are defined as a standardized anomaly greater–

less than61.645; this is approximately the 5th percentile

anomalies (i.e., 10% of all cases). The anomaly correla-

tions when the samples are restricted to model-predicted

extremes are similar enough to those when only ob-

served extremes are considered; hence, for simplicity,

only the predicted extremes cases are shown. In South

America (Fig. 3), the highest skill in 2-m temperature is

during forecasts of January–April, for both the all-cases

(Figs. 3a,c) scenario and for the predicted extremes

(Figs. 3b,d). However, ACs over 0.2 are present for

most forecast months for CFSv2, even out to the 8-month

lead. September forecasts have the lowest skill. ACs for

the cross-validated set (Figs. 3c,d) are generally about

0.1 point lower than for the non-CV3RE set. When

judged by the AC, extremes are much better predicted

than anomalies in general.

Skill over North America for all cases (Figs. 4a,c) is

lower at longer leads, especially when CV3RE is ap-

plied, when low anomaly correlations are found for most

target months at leads of greater than about 2 months.

This is because, with a sample of 29 years, a correlation

of 0.2may not be distinguishable from 0.However, April

and May do have somewhat higher scores. When pre-

dicted extremes are considered (Figs. 4b,d), the results

become noisier, butACs above 0.3 are found for leads of

5–6 months for most target months in the non-CV3RE

set (Fig. 4b). These are lower in when cross validation is

applied (Fig. 4d), with low scores after around 3-month

leads, except for target months in the boreal spring,

when scores are higher.

The outcome of dichotomous forecasts, such as a fore-

cast for an extreme event (the event either occurs or does

not occur), can be summed up using a contingency table

(Wilks 1995). Four outcomes are possible: an event is

forecast and occurs (‘‘hit’’), an event is forecast and does

not occur (‘‘false alarm’’), an event occurs that was not

forecast (‘‘miss’’), and a ‘‘correct negative.’’ For this

analysis extremes are defined in both the observations

and forecasts using a threshold of 61.645 times the

standard deviation. From here, the analysis is straight-

forward. Hits, misses, false alarms, and correct negatives

are counted, for two dichotomous forecasts treated

separately: positive extreme and negative extreme.

The number of hits, divided by the total number of

observed extremes (hits 1 misses), is the hit rate (HR);

an HR of 1 would mean every forecast verified. Con-

versely, the number of false alarms, divided by the total

number of observed nonextremes (false alarms 1 cor-

rect negatives) is the false alarm rate (FAR). If we

are using the threshold of 1.645 standard deviations,

meaning approximately 5% of forecasts are positive

extremes, we can expect, in the absence of any skill,

a baseline hit rate of about 0.05 for positive extremes.

For the same reasons, the FAR would also be about

0.05. Bias in the distributions could affect these esti-

mates somewhat.

A third measure, the bias ratio (B), tells if extremes

are forecast more often than they occur (B . 1) or less

(B , 1). These three measures together represent

the information contained in a contingency table

(Stephenson 2000). Table 1a shows the HR, FAR, and

B values for the 2-m temperature in CFSv2 over the

Americas, averaged over leads 1–3 and all initial

months. The results are presented here without cross

validation; as in the anomaly correlations, cross valida-

tion reduces the HRs for 2-m temperature and pre-

cipitation and has little effect on SST HRs. The 2-m

temperature hit rates are higher for warm extremes

than for cold over both South and North America.

The bias ratio indicates that warm extremes are

forecast slightly more often than they occur, while

cold extremes are slightly underforecast.

TABLE 1. Hit rate (HR), false alarm rate (FAR), and bias ratio

for 2-m temperature, precipitation rate, and SST. Results are

shown for forecasts for positive and negative extremes from

CFSv2.

1 extreme 2 extreme

Tmp2m HR FAR BIAS HR FAR BIAS

South America 0.18 0.05 1.06 0.13 0.04 0.9

North America 0.21 0.05 1.14 0.18 0.04 0.87

1 extreme 2 extreme

P rate HR FAR BIAS HR FAR BIAS

South America 0.1 0.06 0.88 0.1 0.04 1.69

North America 0.08 0.05 0.79 0.06 0.05 2.8

1 extreme 2 extreme

SST HR FAR BIAS HR FAR BIAS

Niño-3.4 0.44 0.02 0.84 0.44 0.03 1.21

MDR 0.42 0.03 1.01 0.18 0.03 1.03
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b. Prediction skill: Precipitation

Precipitation is notoriously difficult to predict given

its sporadic, highly localized nature, even in monthly

means. While anomaly correlations are expected to be

lower for precipitation than for temperature, important

regional and temporal patterns can still be detected, one

hopes. Figures 5 and 6 (counterparts to Figs. 1 and 2 for

temperature) show the area-averaged lead 1–3 anomaly

correlations for precipitation rate over South and North

America. We find that the rule of higher anomaly cor-

relations when only extremes are examined (both fore-

cast and observed) still holds, withACs rising from around

0.13 to nearly 0.3 (Fig. 5) as the threshold increases.

When cross validation is applied, ACs are at or below 0,

so credible skill appears absent for precipitation, even

for high thresholds. Over NorthAmerica (Fig. 6) theAC

is quite low, even in the non-cross-validated set, with

ACs below 0.2 for extremes. RMSEs for both South

(Fig. 5c) and North America (Fig. 6c) show higher error

in the observed extremes subsample, but the slope of the

increase in RMSE is still less than 458. However, skill

cannot be amplified by increasing the signal-to-noise

ratio if there is no skill to begin with.

When we examine the skill of precipitation rate fore-

casts by target month in South America (Fig. 7), for the

most part very limited skill is found. The all-cases sce-

nario in the non-CV set (Fig. 7a) has ACs above 0.1 for

most target months out to lead 2. Somewhat better

scores are found in the non-CV set when only extremes

are considered (Fig. 7b). Specifically, scores above 0.3

are found out to lead 2 in some target months in the first

half of the year. In the cross-validated set (Fig. 7d), ACs

after lead 1 fall off to below 0.1. Scores in North America

(Fig. 8) are, unsurprisingly, lower yet, with little skill

beyond lead 0. The qualified exception is extreme pre-

cipitation in the Northern Hemisphere winter (Fig. 8b),

where somewhat higher ACs are found out to 2- or

3-month leads.

Precipitation rate has a predictably low hit rate for

both wet and dry extremes (see Table 1), with the lowest

HR over North America. Dry extremes are forecast

substantially more often than they occur (B . 1), es-

pecially over North America, and positive extremes are

underforecast. Distributions of monthly total precipita-

tion are usually positively skewed, and so the definition

of extreme as a61.645 standard deviation may be cause

for concern when examining this field. We tested the

effect of this definition, which could result in too few dry

FIG. 5. As in Fig. 1, but for precipitation. ACswhen cross validation

is applied are near or below 0.
FIG. 6. As in Fig. 5, but for North America.
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extremes. First, before determining extremes we per-

formed a power transform on the precipitation values,

raising them to 1/4 power, reducing the skewness of the

distributions. A second test was to use the highest/lowest

two of the 29 monthly values for each grid point. Both of

these tests did result in more dry extremes going into the

averages but did not substantially affect the anomaly

correlations shown in Figs. 5, 6, 7, and 8.

c. Prediction skill: Sea surface temperature

Forecasts for sea surface temperature in the Niño-3.4

region (Fig. 9) start out with high ACs (around 0.78) for

the all-cases scenario and increase as the sample is re-

stricted to higher extremes, to greater than 0.9. Little

difference is found between the results when the sample

is filtered using predicted extremes or using observed

extremes, and only very slightly lower scores are found

when cross validation is applied. This is unsurprising, as

cross validation has the greatest effect when scores are

low (and possibly insignificant) to start with (van den

Dool 2007). The bounds of the 1000 randomly selected

subsamples (gray dotted lines) show that for smaller all-

cases scenarios, the anomaly correlation, if anything,

decreases. The Niño-3.4 region, bounded by 58N–58S,
1908–2408E, has fewer grid points (Fig. 9b) than the

North or South American regions, and when the thresh-

old for defining an extreme rises above 2.5, there are

very few remaining grid points. The aggregated RMSE

(Fig. 9c) for the grid points in this region is essentially

flat, at approximately 0.7 for both predicted and ob-

served extremes and for the non-CV and CV3RE sets.

This is different from the behavior for precipitation rate

and 2-m temperature (Figs. 1 and 5), where RMSE

slowly increased. The argument that AC approximates

the signal-to-noise ratio thus works even better to ex-

plain the AC rise under constant RMSE, as the thresh-

old increases.

Another area of interest for short-term climate in the

Americas is the Atlantic main development region

(MDR), approximately 108 and 208N, 2758–3408E, where
the majority of Atlantic hurricanes have their genesis

(Goldenberg and Shapiro 1996). Anomaly correlations

in this region (Fig. 10a) are above 0.6 for the all-cases

scenario, and rise to approximately 0.85 as the extremes-

defining threshold is increased. The skill for the predicted

and observed extremes is not substantially different,

and cross validation with CV3RE results in only slightly

lower ACs. The RMSE (Fig. 10c) shows a steady small

increase, smaller than for T2m or precipitation but

larger than the Niño-3.4 region, until a threshold of 2.25

FIG. 7. As in Fig. 3, but for precipitation in South America.
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standard deviations, at which point it begins to rise

faster.

The skill of all-cases prediction of SST in the Niño-3.4

region (Fig. 11a) is high for most target months out to

8-month leads. The weakest scores are for the boreal

spring, especially May, and for September, at 5-month

and longer leads. Cross validation (Fig. 11c) leads to

slightly lower scores at longer leads, and has almost no

effect at shorter (less than 4month) leads. The prediction

of extremes (Figs. 11b,d) has very high scores, with the

only ACs below 0.7 occurring at 7- to 8-month lead fore-

casts for July and August.

Anomaly correlations for prediction of SST in the

MDR area are above 0.6 out to 2–3 month leads for all

target months for the overall case, and high out to long

leads for extremes (Fig. 12). Anomaly correlations are

not greatly diminished by cross validation. The highest

long-lead scores are for the boreal summer and autumn,

and ACs for the prediction of extremes are above 0.7 for

these target months, out to 8-month leads. SSTs in this

region are important for hurricane forecasting, so high

forecasting skill during this season is welcome, espe-

cially for extremes.

With reference to Table 1, SST extremes in theNiño-3.4

region have hit rates around 0.44, both for warm and cold

extremes. The bias ratio indicates that warmSST extremes

in this region are underforecast, while cold SST extremes

are somewhat overforecast. Warm SST extremes in the

Atlantic hurricane MDR have reasonably high HRs, but

cold extremes are often missed in the forecast. CFSv2

forecasts approximately the right number of both warm

and cold extremes (B ; 1).

5. Predictability

As an assessment of (potential) predictability under

perfect model assumptions, theN2 1member ensemble

mean was verified against the one remaining member.

Thus, we are testing how effectively the model predicts

itself, and therefore the limit of predictability, if the

model is a replica of reality. No cross validation is nec-

essary here, since the operating assumption is that the

single member is from the same world as the ensemble

mean. Here we employ both the CFSv1 and CFSv2;

predictability ideally should not depend on the model

and should be similar when assessed using either model.

Figures 13–15 show the results of our predictability ex-

periments in the lead-target format employed in earlier

figures. Since the outcome of the predictability experi-

ment varies slightly depending on which ensemble

FIG. 8. As in Fig. 7, but for precipitation in North America.
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member is used as the ‘‘verifying’’ values, predictability

was calculated using each of the N members, and the

results for all the ensemble members were averaged

together.

Potential predictability was assessed for both the all-

forecasts scenario and for extremes. For the extremes

experiment, the anomaly correlation was calculated for

all gridpoint pairs in the forecast where the single mem-

ber (the one excluded from the ensemble mean) was in

the extreme range [i.e., with a standardized anomaly

greater (less) than 1.645 (21.645)]. Results when the

sample was filtered to gridpoint pairs with an extreme in

the ensemble were also examined (not shown) and found

to be similar to the former scenario.

The potential predictability of 2-m temperature in

North America (Fig. 13, top) is highest in the boreal

spring and summer. This is the case for both versions of

CFS, although ACp scores are slightly higher in CFSv2.

Predictability of extremes is substantially higher than

for all forecasts, and again, CFSv2 ACps are slightly

higher. An ACp value greater than 0.5 is found out to

long leads during the boreal spring and summer. Com-

paring the predictability results to prediction skill (as

seen in Fig. 4), we find the forecast skill is lower than its

potential but is better for target months with higher

predictability.

Potential predictability of 2-m temperature in South

America (Fig. 13, bottom) shows a stronger dependence

on season in CFSv2 than in CFSv1. The lowest ACp

scores in CFSv1 are at longer leads for target months of

October–December. CFSv2 scores drop off starting in

July, and are generally around 0.1 points lower than

CFSv1 during the second half of the year. This result

suggests the possibility that as models get better, and

more complex, the predictability decreases. However,

the predictability in the more complex model is likely

a closer approximation of the true physical potential

predictability. Again, as with North America, potential

predictability is higher for extremes. CFSv2 shows the

same strong seasonal dependence, with target months of

January through April showing a higher potential than

subsequent months. Interestingly, when we refer to the

actual forecast skill for 2-m temperature in SouthAmerica

(Fig. 3) we find that while scores do drop after April,

anomaly correlations for October, November, and

December target months are somewhat higher.

The precipitation rate in North America (Fig. 14, top)

has generally very low potential for prediction. Only for

FIG. 9. As in Fig. 1, but for SST in the Niño-3.4 region, 58S–58N,

1908–2408E.
FIG. 10. As in Fig. 5, but for SST in the main development region

(MDR), 108–208N, 2758–3408E.
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the boreal winter and spring target months do ACps rise

above 0.1; CFSv1 and CFSv2 reveal consistent results. It

seems even under the best of circumstances (‘‘perfect

model’’) the potential prediction skill for precipitation

is very low. The potential predictability of extreme

monthly mean precipitation is somewhat better during

the winter target months in North America, however.

South American precipitation (Fig. 14, bottom) shows

two bumps in potential predictability: for target months

of January–March and July–October. Referring to the

anomaly correlations for the forecast–observation pairs

(Fig. 7), we find that while ACs during January–March

are slightly higher than during the rest of the year, scores

for July–October are the lowest of all target months,

both for all cases and for extremes. Perhaps there is

potential for improvement in the forecasts for precip-

itation rate during the austral winter.

Sea surface temperature potential predictability in the

Niño-3.4 region (Fig. 15, top) is very high in general. In

fact, ACps for extremes are above 0.9 at all leads and

target months in CFSv1. However, CFSv2 shows ACps

that are quite a bit lower than CFSv1 for June–August at

the longer leads, both for all cases and for extremes. In

view of Wu et al. (2009) this overstated predictability

may be due the flawed tendency of CFSv1 to hang on to

winter SST anomalies through the spring and summer.

The high forecast–observation anomaly correlations of

CFSv2 (Fig. 11) are approaching the potential pre-

dictability scores.

In the MDR region (Fig. 15, bottom), potential pre-

dictability scores are similar between CFS versions, with

CFSv2 slightly higher at longer leads, especially for

target months of March–May. Extremes in this region

have high ACps out to long leads. The anomaly corre-

lations found for the forecast skill (Fig. 12) do not show

the highest scores during the periods of highest potential

predictability.

6. Summary and discussion

In this study, we examined the model forecast skill

of short-term climate extremes in 2-m temperature,

precipitation, and sea surface temperature, using the

CFS, in the region of the Americas. Twenty-nine years,

1982–2010, of the CFS version 2 monthly mean fore-

casts were available, for all 12 initial months, and we

focused on extremes in the monthly mean. Metrics for

skill include the anomaly correlation (AC) and root-

mean-square error (RMSE). Since we have, for every

grid point and time, two data points—one forecast and

FIG. 11. As in Fig. 7, but for SST in the Niño-3.4 region.
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one observation—two different scenarios present them-

selves when we consider how to determine which cases to

analyze. That is, we can include a case in the ‘‘extreme’’

subsample if the observation is extreme, or if the fore-

cast is extreme. This allows us to study both howwell the

model captured extremes that occurred, and how well

a forecast of an extreme ‘‘came true.’’ The hit rate, false

alarm rate, and bias in the forecasts were also studied

through use of contingency tables.

Our investigation found that anomaly correlations for

the short-term climate extremes subset are routinely

higher than anomaly correlations for all forecasts, for

both the ‘‘extremeobserved’’ and the ‘‘extremepredicted’’

scenarios. This is not an artifact of the reduced sample

size (using the 61.645 standard deviation threshold re-

sults in a subsample of about 10%). Further explanation

of these higher scores is found in the RMSE, which can

be considered the noise in a signal-to-noise ratio (of

which the AC is one measure). While the RMSE does

grow as the threshold defining an extreme is increased, it

grows more slowly than the threshold, meaning that the

signal grows despite increased noise. ACs for extremes

are higher for all fields (T2m, precipitation, and SST).

Scores for SST in theNiño-3.4 region are high for the all-

cases scenario, and increase to nearly 1.00 for extremes;

RMSE in this region is essentially the same for both all

cases and extremes. It thus appears that the increase of

RMSE with threshold is a function of inherent skill. For

high skill, RMSE is constant with threshold, while with

decreasing skill RMSE rises faster and faster as a func-

tion of threshold. Skill measures for the observed ex-

treme and predicted extreme scenarios were generally

very similar. While the higher skill for model-predicted

extremes in North American 2-m temperature bears

further investigation when more models are available

for the analysis, the difference is likely small.

Cross validation can lead to lower anomaly correla-

tions; ACs that are already low are reduced the most.

The moderate (T2m) to low (precipitation) ACs are sub-

stantially lowered when analyzed under cross validation

using CV3RE. In the case of precipitation, ACs under

cross validation are near 0. Sea surface temperature ACs,

which are relatively high, are only minimally affected by

CV3RE, especially at short leads in the Niño-3.4 region.

Potential predictability of T2m under perfect-model

assumptions finds the highest predictability for both

North and South America is during the first half of the

calendar year. Potential predictability in South America

is higher than North America for both T2m and pre-

cipitation; precipitation ACps are very low in North

FIG. 12. As in Fig. 7, but for SST in the MDR region.

526 JOURNAL OF CL IMATE VOLUME 26



FIG. 13. Predictability, in the form of the anomaly correlation ACp [see Eq. (4)], between a single member of the

ensemble and the mean of the remaining members of the ensemble, as a function of target month, for 2-m

temperature, for (top) North American and (bottom) South American regions, for (a),(e) CFsv1 all cases, (b),(f)

CFSv2 extremes, (c),(g) CFSv2 all cases, and (d),(h) CFSv2 extremes. The ACp values have been multiplied

by 100.
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America overall. SST predictability is high in the Niño-3.4

region, and fairly high in the Atlantic hurricane main

development region, with ACps above 0.5 at long leads

for much of the hurricane season. Potential predictability

of T2m, precipitation, and SST is generally slightly lower

in CFSv2 than in CFSv1 (i.e., the estimate is model de-

pendent, despite the perfect model assumption). One

possible contributor to this effect is that as the model

FIG. 14. As in Fig. 13, but for precipitation rate.
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FIG. 15. Predictability, in the form of the anomaly correlation ACp [see Eq. (4)], between a single member of the

ensemble and the mean of the remaining members of the ensemble, as a function of target month (horizontal) and

lead (vertical), for SST, for (top) Niño-3.4 region and (bottom) Atlantic hurricane MDR, for (a),(e) CFsv1 all cases,

(b),(f) CFSv2 extremes, (c),(g) CFSv2 all cases, and (d),(h) CFSv2 extremes. The ACp values have been multiplied

by 100.
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becomes more complex (and more accurate), predict-

ability decreases as the model has a harder time pre-

dicting itself. Target months with higher potential

predictability also have higher forecast skill, but forecast

skill in general is lower than its potential.

Monthly means are generally a harder target to hit

than 3-month seasonal means, with a lower signal-to-

noise ratio in the former (Barnston 1994; Kumar et al.

2010). The higher forecast skill for 3-month means is

probably due to the stronger predictive value of lower-

frequency signals (Barnston 1994). This study focuses on

extremes in themonthlymean, forecasts for which are of

considerable practical importance to users. Tests for the

skill of forecasts of extreme anomalies in the 3-month

mean (not shown) show generally higher, less noisy

anomaly correlation patterns, with similar areas of higher

and lower scores.

As noted in section 3, there are many ways of defining

an extreme. To test our definition, we examined ACs

under several different extreme criteria. The first is the

one discussed above: monthly mean standardized anom-

alies above/below 61.645. A second technique involves

taking the highest two and lowest two monthly anoma-

lies for each grid point for the 27-yr dataset. This was

applied for both the extreme observed and the extreme

predicted scenarios. Finally, since the model comprises

24 ensemble members (28 in November), we assessed

the results when extremes were defined by a number

of the ensemble members with standardized anomalies

of the same sign above–below 61.645. For example, if

five ensemble members are above 1.645, the ensemble

mean is deemed to forecast a positive extreme. The re-

sults of these two latter analyses (not shown) found that

while the sample size did vary with the definition, the

area-averaged anomaly correlations within each field

and location varied only slightly, with ACs by all defi-

nitions within 0.05 of each other. A fourth technique is

the sliding definition as in Fig. 1, leaving the determi-

nation up to the reader.
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