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ABSTRACT

Forecast skill and potential predictability of 2-m temperature, precipitation rate, and sea surface temper-

ature are assessed using 29 yr of hindcast data from models included in phase 1 of the North American

Multimodel Ensemble (NMME) project. Forecast skill is examined using the anomaly correlation (AC); skill

of the bias-corrected ensemble means (EMs) of the individual models and of the NMME 7-model EM are

verified against the observed value. Forecast skill is also assessed using the root-mean-square error. The

models’ representation of the size of forecast anomalies is also studied. Predictability was considered from

two angles: homogeneous, where one model is verified against a single member from its own ensemble, and

heterogeneous, where amodel’s EM is compared to a singlemember from anothermodel. This study provides

insight both into the physical predictability of the three fields and into theNMMEand its contributingmodels.

Most of the models in the NMME have fairly realistic spread, as represented by the interannual variability.

The NMME 7-model forecast skill, verified against observations, is equal to or higher than the individual

models’ forecast ACs. Two-meter temperature (T2m) skill matches the highest single-model skill, while

precipitation rate and sea surface temperature NMME EM skill is higher than for any single model. Ho-

mogeneous predictability is higher than reported skill in all fields, suggesting there may be room for some

improvement in model prediction, although there are many regional and seasonal variations. The estimate of

potential predictability is not overly sensitive to the choice of model. In general, models with higher homo-

geneous predictability show higher forecast skill.

1. Introduction

In the process of making weather or climate forecasts

and verifying them against observations, we cannot escape

the question: ‘‘Howmuchbetter couldwedo?’’ This is true

when forecasts are in general very good—for example,

extratropical Northern Hemisphere 500-hPa height 2 days

out—but evenmore so when we are verifyingmodest-skill

seasonal forecasts, perhaps of 2-m temperature over land.

Is the low skill of a seasonal prediction 6 months out

a problem we can overcome or is it always going to be this

way, with only marginal improvements to be expected?

This line of thinking leads to the notion of potential pre-

dictability, which roughlymeans the forecast skill level we

would achieve if no impediments (e.g., a lack of com-

puting power and/or observations) existed. Thus, pre-

dictability is a theoretical notion, a property of the fluid

itself that exists regardless of the human endeavor.

Coming up with a definition that escapes our own

lack of understanding may not be easy—it sounds

contradictory—but in the late 1960s the first numerical

weather prediction (NWP) model experiments were

conducted to track the divergence of forecasts due to

a small uncertainty in the initial condition (Lorenz 1969,

1982). This is referred to as studying the predictability of

the first kind. The essence is that one model run is taken

to be the forecast, and another run by the same model,

starting from slightly different initial conditions, is

the ‘‘verification.’’ This is called the perfect model as-

sumption, because both the forecast and the proxy ob-

servation come from the same world, which is not the

case when verifying against a real observation. The an-

swer one gets still depends on the realism of the model

being used. However, if the model is realistic, one can

measure predictability this way.

The definition of predictability of the first kind is more

or less accepted. It has been qualified by the disclaimer

‘‘of the first kind’’ because of a different kind of pre-

dictability forced into the interior of the fluid by anomalous

boundary conditions. The latter has been called pre-

dictability of the second kind, to distinguish it from
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predictability that is only limited by the growth of ini-

tially small errors. A strict definition of predictability of

the second kind has been difficult to agree on. Consid-

ering the anomalous boundary condition as external to

the systemmay have been a necessity early on, and it led

to such things as Atmospheric Model Intercomparison

Project (AMIP) runs (Gates 1992), where an atmo-

spheric model was run N times for any number of years

with prescribed observed global SST. In this case, we are

acting as though we know the boundary condition per-

fectly ahead of time. This is too optimistic, likely yield-

ing an overestimate of predictability of the second kind.

This is even more so for runs with prescribed soil

moisture anomalies, because soil moisture can change

very quickly when forced by precipitation events. As

well, the same AMIP runs may also be too pessimistic:

with sea surface temperature (SST) anomalies forcing

the atmosphere, but not the other way around, the

achievable physical realism is reduced. The latter has

now been overcome (albeit imperfectly) by fully coupled

models. In a fully coupled model, the erstwhile boundary

conditions (SST over the ocean and soil moisture over

land) have become part of the initial condition. Thus, we

are at liberty to apply the original intent and definition of

predictability of the first kind to the seasonal forecast

problem, a primary focus of this paper.

Recently, the North American Multimodel Ensem-

ble (NMME) has been launched in the United States

(Kirtman et al. 2014), with real-time experimental-

operational forecasts out of National Oceanic and At-

mospheric Administration (NOAA)/National Centers

for Environmental Prediction (NCEP) starting in

August 2011. Each of the participating models comes

with an approximately 30-yr hindcast (intended for

systematic error correction of the mean and calibration

of probabilities in subsequent real-time forecasts), used

in this study to gauge prediction skill as well as pre-

dictability. This allows us to compare each model’s

predictability estimate over the exact same years and

hence to address several questions: Does predictability

still depend heavily on the model (e.g., Rodwell and

Doblas-Reyes 2006)? If not, the perfect model as-

sumption may be more acceptable. Do forecast skill and

predictability (over the same period, using the same

metric) have a strong relationship? Since NMME

has many models, one can distinguish homogeneous

from heterogeneous predictability: that is, to verify

a model’s EM forecast against a single member of the

same model (homogeneous) or a single member of an-

other model (heterogeneous). In the past, expressions like

identical and fraternal twin experiments have been used.

Some assessment of the models’ representation of

reality is made herein, by comparing the interannual

variability of each model to the observations. Examining

the interannual variability of each model versus observa-

tions addresses the question of systems being over- or

underdispersive. Metrics for assessing dispersion have

varied: Johnson and Bowler (2009) noted a tendency for

the community designing seasonal prediction systems to

judge over- or underdispersion by the interannual vari-

ance, while shorter-range ensemble weather prediction

hasmost often been judged by comparing the spread of the

members of an ensemble to the root-mean-square error of

the forecast (i.e., an actual skill attribute). They go on to

showhow these two approaches are in fact related.Wewill

comment regularly on both ways of judging whether the

NMME models are under or over dispersive. The details

are given in the appendix. An additional study of the

models’ realism is performed through the comparison of

month-to-month persistence in models and observations.

The main focus in this paper is to study prediction skill

and predictability, from various angles, using each of the

models in the NMME. In the course of doing so, each

model’s own systematic error in themean is removed. The

topic ofmean error is not further addressed in this paper; it

is perhaps a subject for future studies. On the other hand,

we do not correct for systematic errors in the standard

deviation (SD), because the spread around the ensemble

mean and the magnitude of the interannual variance are

precisely the focus of investigation when discussing pre-

dictability. As this paper is research oriented, probability

scores and how the forecast is presented to the user in real

time are not addressed herein. The reader should also note

that, while we are using NMMEmodels, for the most part

we calculate results for each model separately and then

compare the outcomes among models, and the NMME as

a multimodel system is not the focus.

Three variables were saved for NMME phase 1, on

a global 1.08 latitude by 1.08 longitude grid: monthly

means of 2-m temperature (T2m), precipitation rate

(prate), and SST.Wewill apply the calculations outlined

in section 2 to the three fields in each model, focusing on

the Northern Hemisphere, with additional focus on the

Niño-3.4 region for SST. The leads of these forecasts are
at least 1 month: that is, we are focusing on short-term
climate prediction, beyond the 1–2-week range of

weather prediction. Results are presented in section 3,

and a summary and discussion are in section 4.

2. Data and methods

a. The North American Multimodel Ensemble
project

The NMME is a forecasting system consisting of cou-

pled models from U.S. and Canadian modeling centers
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(Kirtman et al. 2014). The multimodel ensemble ap-

proach has been shown to produce better prediction

quality on average than any single model ensemble,

motivating the NMME undertaking (Palmer et al. 2004;

Hagedorn et al. 2005; Doblas-Reyes et al. 2005; Smith

et al. 2013). The environmental variables included in the

first 2 yr of phase 1 (August 2011–July 2013) are T2m,

SST, and prate; real-time and archived forecast graphics

from August 2011 to the present are available online (at

http://www.cpc.ncep.noaa.gov/products/NMME). Other

environmental variables were added in year 2, including

soil moisture, maximum and minimum surface tempera-

ture, and 200-hPa geopotential height. Hindcast and

forecast data are archived at the International Research

Institute forClimate and Society (IRI) (accessible at http://

iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/).

Table 1 lists the models included in NMME phase 1

(including their expanded names). The first column in-

cludes the center where each model was produced, and

the name of the model. All model outputs have 1.08
latitude by 1.08 longitude horizontal resolution and

forecast leads of at least 0–7 months. Each model was

run retrospectively, and 29 yr of hindcasts (1982–2010)

were available for all models except CFSv1 (28 yr: 1982–

2009), for all 12 initial months. Year-1 models included in

the real-time forecasts were CFSv1, CFSv2, ECHAM4-a,

ECHAM4-f, GFDLCM2.1, CCSM3, andGEOS5. Year-2

real-time NMME forecasts comprise CFSv2, CanCM3,

CanCM4, GFDL CM2.1, CCSM3, and GEOS5. GFDL

CM2.1 underwent some modifications between years 1

and 2; hindcasts from the year-1 version are used in this

study. The models have various ensemble sizes, ranging

from 6 members to 24. Further details about the in-

dividual models can be found in their reference papers,

listed in Table 1.

Some ambiguity is found in the literature regarding

the definition of forecast lead. In this study, by ‘‘1-month

lead,’’ we mean a forecast made from initial conditions

at the beginning of onemonth for the next. For example,

the 1-month-lead forecast from June initial conditions

(IC) is the forecast for July. (The forecast for June itself

would be the ‘‘lead zero’’ forecast.) Following this, the

seasonal lead-1 forecast is for the first complete 3-month

period following the initial month: in the June IC ex-

ample, the lead-1 seasonal forecast is for the July–

September period.

b. Verification fields

The observation verification field for T2m is the

station observation-based Global Historical Climatol-

ogy Network 1 Climate Anomaly Monitoring System

(GHCN1CAMS; Fan andVandenDool 2008), amonthly

mean surface air temperature dataset. GHCN1CAMS

combines two large individual datasets of station ob-

servations. GHCN1CAMS has a native resolution of

0.58 latitude3 0.58 longitude andwas regridded to 1.08 3
1.08 for NMMEpurposes. As the 7-month-lead forecasts

initialized in 2010 stretch into 2011, so the observation

TABLE 1. All models included in the North American Multimodel Ensemble project, phase 1.

Model Model expansion Organization Hindcast period Ensemble size Lead times Reference

CFSv1 Climate Forecast

System, version 1

NCEP 1981–2009 15 0–8 months Saha et al.

2006

CFSv2 Climate Forecast

System, version 2

NCEP 1982–2010 24 (28) 0–9 months Saha et al.

2014

GFDL CM2.1 Geophysical Fluid

Dynamics Laboratory

(GFDL) Climate Model,

version 2.1

GFDL 1982–2010 10 0–11 months Zhang et al.

2007

ECHAM4-a — IRI 1982–2010 12 0–7 months DeWitt 2005

ECHAM4-f — IRI 1982–2010 12 0–7 months DeWitt 2005

CanCM3 Third Generation

Canadian Coupled

Global Climate Model

Canadian

Meteorological

Centre (CMC)

1981–2010 10 0–11 months Merryfield

et al. 2013

CanCM4 Fourth Generation

Canadian Coupled

Global Climate Model

CMC 1981–2010 10 0–11 months Merryfield

et al. 2013

CCSM3 Community Climate

System Model,

version 3

National Center for

Atmospheric

Research (NCAR)

1982–2010 6 0–11 months Kirtman and

Min 2009

GEOS5 Goddard Earth

Observing System

Model, version 5

National Aeronautics

and Space

Administration

(NASA)

1981–2010 10 0–9 months Vernieres

et al. 2012
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period used in this study for all verification fields runs

from January 1982 to May 2011.

The Climate Prediction Center (CPC) global daily

Unified Raingauge Database (URD) gauge analysis pro-

vides the verification field for precipitation rate. This

global land-only dataset uses quality-controlled input from

over 30 000 stations in the Global Telecommunication

System (GTS) and many other national and international

collections (P. Xie et al. 2010, personal communication).

The URD is also available on a 0.58 latitude–longitude
grid and was regridded to 1.08 3 1.08 for this study. The
daily data were averaged into monthly means.

The sea surface temperature prediction was verified

using the optimum interpolation version 2 (OI) analysis

of Reynolds et al. (2002). This analysis, produced at

NOAA, uses both satellite data and in situ records from

ships and buoys. The native resolution of the Reynolds

et al. (2002) SST is 18 latitude 3 18 longitude.

c. Predictability and forecast skill

This study assesses forecast skill, homogeneous pre-

dictability, and heterogeneous predictability for the 29yr

of hindcasts for all models, primarily using the anomaly

correlation (AC). The AC is a measure of the association

between the anomalies of (usually) gridpoint forecast and

verification values (Wilks 1995; Van den Dool 2007). By

‘‘forecast skill,’’ we generally mean an assessment of how

well each model’s ensemble mean (EM) forecasts the

observed value; however, verification attributes for single

members of each model are included as well.

Two approaches are taken to considering predictability.

Homogeneous predictability assesses one model’s EM,

based onN2 1 members, against the one member that is

left out (the proxy observation). Heterogeneous pre-

dictability refers to one model’s EM (based on all

N members) versus one member of another model. Het-

erogeneous predictability is obviously part of NMME

with its many models, and the heterogeneous situation

resembles verification against observations in that the

model is obviously not perfect, and a systematic error

correction could be done.

The fields used in this study are monthly means and can

be represented by O(s, j, m) and F(s, j, m, t) for the ob-

servation and forecast fields, respectively. Here, s is a spa-

tial (grid point) index, j indicates the year (1982–2010,

except for CFSv1, 1982–2009), andm is the target month.

The argument t, the forecast lead, is only a consideration

for the model forecasts. Here, we primarily focus on the

lead-1 season. The lead-1 seasonal forecast from January is

February–April (FMA) and so on. In this study, the zero

lead is not considered since it is mainly weather prediction.

The NMME models produce ensemble forecasts, and

we can express the forecast as F(s, j, m, n, t), where n

indicates the ensemble member number, n 5 1, . . . , N,

where N is the total number of ensemble members per

model. The EM for each model is constructed as

Fens(s, j,m, t)5SnF(s, j,m,n, t)/N . (1a)

An additional quantity, the NMME ensemble mean, is

formed by averaging together the EMs of all the K

models,

FNMME(s, j,m, t)5SkFens,k(s, j,m, t)/K , (1b)

where k is the model number, k 5 1, . . . , K.

For NMME phase 1 real-time forecasts at CPC, the

model’s EMs are equally weighted in the NMME EM,

a practice that is used in this study on the hindcasts.

Anomalies are formed by subtracting climatological

means: that is, for the observations,

O0(s, j,m)5O(s, j,m)2Co(s,m) , (2a)

where Co(s, m) is the observed local climatology at grid

point s, in this case calculated over the period 1982–2010.

Long-lead dynamical model forecasts often include

a systematic bias, and it is desirable to correct for this

bias (Smith and Livezey 1999). For this study, we pres-

ent results that do not include cross validation (e.g.,

Becker et al. 2013; see note in section 4) and so employ

a shortcut in calculating the anomalies for both the EM

forecast Fens and single member forecasts Fn, using the

climatology of the model,

F 0
ens(s, j,m, t)5Fens(s, j,m, t)2 fFens(s,m, t)g (2b)

and

F 0
n(s, j,m,n, t)5Fn(s, j,m,n, t)2 fFn(s,m, n, t)g (2c)

where f�g is the mean over the 1982–2010 available

forecast period.1 Equations (2b) and (2c) effectively

remove the mean biases model by model. The biases

themselves are not studied explicitly in this paper.

The anomaly correlation can be written as

AC(m, t)

5

�
s
�
j

wsX
0(s, j,m, t)Y 0(s, j,m, t)

W"
�
s
�
j

wsX
0(s, j,m, t)

W

#2"
�
s
�
j

wsY
0(s, j,m, t)

W

#2 ,

(3)

1 There is a subtle and debatable point as to whether fFens(s,m, t)g
or fFn(s, m, n, t)g should be subtracted in Eq. (2c).
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where X0(s, j, m, t) is a prediction, and Y0(s, j, m, t) is

a verification field (Wilks 1995; Van den Dool 2007).

The double summation in Eq. (3) is over all years ( j5 29;

28 if CFSv1 is either X or Y) and space. A weight ws is

included to account for the area represented by each grid

point; W is the sum of ws over all grid points and time

steps. The numerator is a covariance, and the two terms in

the denominator are standard deviations; the double

summation is performed on these three terms, and then

the multiplication and division is carried out. In the case

of assessing forecast skill, X is a model EM and Y is an

observation. In the case of homogeneous predictability

(AChom), X is the EM of one model’s N 2 1 ensemble

members and Y is the remaining member. In the case of

heterogeneous predictability (AChet),X is the EMof one

model (all members) and Y is a single member from an-

other model. The anomaly correlation coefficient AC is

a number between 21 and 11, where 11 refers to

a perfect forecast and 0 refers to random forecasts.

The root-mean-square error (RMSE) is

RMSE(m, t)5

 
�
s
�
j

ws[X(s, j,m, t)2Y(s, j,m)]2

W

!1/2

,

(4)

with latitude weighting where appropriate. In this case,

bias-corrected forecasts are used:X andY are from Eqs.

(2b) or (2c) and (2a), respectively. Similar to the de-

scriptions of homogeneous and heterogeneous pre-

dictability as per AC in Eq. (3), the X and Y in Eq. (4)

can be drawn from a single model, different models,

single members, the ensemble mean, or the observed

values. The appendix lays out in some detail the eight

RMS differences one can contemplate, five of which are

calculated (boldface entries in Table A1).

The ensemble spread, defined as the SD of the fore-

casts of the members of an individual model, is an im-

portant indicator of a model’s representation of reality. If

the forecast X is the EM of one model’s N2 1 members

and Y is the remaining member [i.e., ensemble mean

homogeneous RMSE (EM_RMSEhom)], the ensemble

spread is related to the EM_RMSEhom such that

Spread5EM_RMSEhom . (5)

Spread can also be expressed approximately as a func-

tion of the SD of the EM and the SD of an individual

member,

Singmem_SD25EM_SD21 Spread2 . (6)

Wewill also judge dispersion by comparing Singmem_SD

to Obs_SD. Johnson and Bowler (2009) discussed both

possibilities. The reader is referred to the appendix for

more details, nomenclature, and notation.

It is expected that AChom will be higher than the AC:

that is, we expect that predictability is greater than

our current skill.2 By a different measure but following

the same logic, we expect the RMS difference between

theN2 1 EMand a singlemember will be lower than the

RMSE against observations: that is, RMSEhom,RMSE,

both with EM or Singmem as prefix.

For six of the seven NMMEmodels, 29 yr of hindcasts

are available; CFSv1 has 28 yr (1982–2009). When

a multimodel ensemble (MME) average was used in this

study, it comprised the followingmodels: CFSv1, CFSv2,

CanCM3, CanCM4, GFDL CM2.1, CCSM3, and

GEOS5. As CFSv1 hindcasts are not available for 2010,

the last year of theMME is composed of six models [i.e.,

K5 6 in Eq. (1b)]. All heterogeneous predictability and

forecast skill experiments that use CFSv1 are performed

over the period of 1982–2009.

3. Results

A number of area-aggregated anomaly correlations

are presented herein in tabular format. In Figs. 1 and 4,

the areas for 2-m temperature and precipitation rate are

land-only Northern Hemisphere, all grid points between

238 and 758N. Figure 7 (shown later) for sea surface

temperature, aggregates scores over Northern Hemi-

sphere ocean, between 238 and 758N. Figure 9a (shown

later) presents sea surface temperature in the Niño-3.4
region (Barnston et al. 1997): that is, the aggregated

results for all grid points in the box 58S–58N, 1708–1208W.

Figure 9b contains results for the Niño-3.4 index: that is,
the area-average SST is taken before the AC calculation
and the spatial-average step in the AC is ignored.
The table in Fig. 1 includes homogeneous potential

predictability (AChom; on the diagonal yellow high-

light); heterogeneous potential predictability (AChet);

forecast skill (AC), RMSE, and SD of the EM; and

forecast skill, RMSE, and SD of a single member. The

SD of the observations is the eighth value in the bottom

row. Each individual number is the value for ‘‘season 1’’

(e.g., the forecast from January initial conditions for

February–April average, etc.), averaged over all 12 ini-

tial conditions, area aggregated over the areas specified

above. One further result (a single number) is included:

the forecast skill of the NMME 7-model EM, labeled

‘‘NMME.’’

2Because of sampling, one may encounter AChom , AC at

certain locations. However, for models that pass sanity checks re-

garding overall variance and temporal persistence this should not

happen very often. See Kumar (2009) for more discussion.
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To arrive at a single AC for each cell in the tables, the

following steps were taken. First, the prediction and

verification fields were chosen. In the case of AChom,

prediction is EMN21 (N 5 number of ensemble mem-

bers) and verification is the remaining member. In the

case of AChet, prediction is EMN of one model, verifi-

cation is a single member of another model. In the case

of forecast skill, the prediction is either the EM or

a single member of the model and verification is the

observation. In the case of the forecast skill of the

NMME EM, the prediction is the average of the seven

EMs. Second, the monthly means at leads 1–3 were av-

eraged to form season 1 and anomalies were formed as

in Eqs. (2a)–(2c). Third, the anomaly correlation was

generated using Eq. (3), including the double summa-

tion over the common years and designated spatial do-

main (with latitude weights) and the multiplication and

division of the three summations. This was done for each

of the 12 initial months, and those 12 resulting season-1

values were averaged together. The RMSE was arrived

at via a similar method [see Eq. (4)]. SD averages are the

aggregate over the spatial domain of the gridpoint SD

for each EM or a single member of the model and are

naturally tilted toward higher variance areas.

Examining the results for 2-m temperature over the

Northern Hemisphere in detail (Fig. 1), we first focus on

the size of the anomalies produced by the models. The

‘‘single member’’ SD, bottom row of all models (i.e.,

from individual model runs), agrees very well with the

observations; all are in the region of 1.268–1.548C, versus
the observed 1.388C. This is encouraging, and different

from earlier impressions [mainly from Development of

a EuropeanMultimodel Ensemble System for Seasonal-

to-Interannual Prediction (DEMETER); Palmer et al.

2004] that models are underdispersive. The SD of the

model EM (far right column) ranges from about 0.598 to
0.848C, which is appropriately smaller than the SD of

either the individual ensemble members or the obser-

vations. This decrease in SD follows from damping of

the noise, leaving mainly the signal in the EM. This re-

lationship can be expressed as

sEM 5si

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
1 r

N2 1

N

r
, (7)

whereN is the number of ensemblemembers and r is the

correlation between the ensemble members of a single

model (M. Peña 2013, personal communication). Cal-
culations using the EM SD, single-member SD, and the
intramodel member correlation (not shown) confirm this
rate of noise damping.
T2m prediction skill for the model EMs, measured

here by the AC (Fig. 1, blue column), varies from 0.0 to

0.29. These are modest numbers but, aside from the 0.00

AC for one model, highly significant, because they are

based on a huge sample: the uncertainty in a correlation

(for a small correlation) is 1/sqrt(Neff 2 2), whereNeff is

the effective number of cases (Van den Dool and

Chervin 1986; Van den Dool 2007). Aggregating over

large spatial domains and all seasons leads to larger Neff

and therefore greater statistical significance (Saha et al.

2006). For 12 seasons, 30 yr, and large domains (20–50

FIG. 1. Area-aggregated results for 2-m temperature, land-only Northern Hemisphere, 238–758N, averaged over

the 12 lead-1 seasons. The seven rows and columns in black are results for predictability. The orange highlighted

diagonal shows the homogeneous potential predictability anomaly correlation (AC). The black, off-diagonal ele-

ments show the heterogeneous potential predictability AC. As the EM is the prediction and the single member is the

verification, each row reads horizontally. For example, the row labeled ‘‘cmc1 EM’’ shows AChet for the CanCM3’s

EM prediction of a single member of CFsv1, CFSv2, AChom for itself, AChet for CanCM4, AChet for GFDL CM2.1,

and so on. Blue column: forecast skill (AC) of the model EMs verified against observations and, in the 8th row, of the

7-model NMME. Green column: RMSE of the model EMs. Black column: SD of the model EMs. Blue row: skill

(AC) of a single model member, verified against observations. Green row: RMSE of single model members. Black

row: SD of the single model member and (8th column) of the observations. All anomaly correlations presented in the

tables have been multiplied by 100 for visibility.
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spatial degrees of freedom) Neff would be well over

1000, so 10.05 would be significantly different from

0 for SST and T2m. For precipitation a 0.03 correlation

would be enough for statistical significance because that

field has evenmore degrees of freedom. However, this is

not to say that a 0.03 or 0.05 correlation is practically

useful.

Prediction skill of 2-m temperature is low (zero) at

present for the National Center for Atmospheric Re-

search (NCAR) CCSM3, in part because this model has

only ocean initialization: that is, the atmosphere and

land initial state is random. The other models attempt to

have a realistic atmosphere and, except GFDL CM2.1,

also a land initial state, in addition to a realistic initial

ocean. Forecast skill for the single ensemble members is,

unsurprisingly, substantially lower than EM skill, ranging

from 0.0 to 0.16. The models with highest EM skill also

have the highest single-member skill. The range ofRMSE

results for the EMs (green column) is small (1.32–1.62),

where lower AC is clearly related to higher RMSE.

The overall prediction skill AC for the NMME

7-model average is 0.29. As this AC is an area average, if

we are curious about what areas show higher skill, we

can examine this AC for the NMMEmultimodel average

with the spatial and multiseasonal aggregation/averaging

in Eq. (3) suppressed for the canonical lead-1 seasons

(Fig. 2). To be informative about NMME, the area

shown in Fig. 2 is global. This example, for December–

February (DJF), March–May (MAM), June–August

(JJA), and September–November (SON), shows a range

of AC from under 0.1 to greater than 0.7. Northern Asia

features consistently low AC through the four seasons,

while southern and western Asia, as well as some areas

of western North America, are generally above 0.3. ACs

in the NH during DJF are the lowest overall for the four

seasons shown. This supports the recent findings of Feng

et al. (2013) that winter mean surface temperature over

NorthAmerica is not significantly predictable, but this is

a big change from earlier work that suggested winter

T2m was in fact more predictable than other seasons

(Madden and Shea 1978). This point may not be settled,

since Arribas et al. (2011) do report skill for North

American winter with a modern model.

Returning to Fig. 1, the T2m homogeneous pre-

dictability AChom (orange highlighted diagonal) ranges

from 0.19 to 0.39. This is higher than the reported skill

FIG. 2. Forecast skill measured by the anomaly correlation forNMME7-model EMprediction of 2-m temperature.

Four seasons are shown: lead-1 DJF, MAM, JJA, and SON. ACs are multiplied by 100. Note that the domain is near

global: the NMME score of AC 5 0.29 quoted in Fig. 1 corresponds to the extratropical Northern Hemisphere

portion of the above maps.
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(#0.29), which suggests that our forecasts might even-

tually improve, but not by huge margins. The hetero-

geneous predictability AChet (Fig. 1, black off-diagonal

element) ranges from 0.0 to 0.28, almost exactly the

range of skill already achieved. Heterogeneous pre-

dictability and the actual skill suffer equally from

a mismatch in climate between model and verification:

only homogeneous predictability estimates are based

with justification on a perfect model assumption. In

summary, all models predict themselves better than they

predict other models (or reality).

To study the relationship between homogeneous

predictability and forecast skill in greater detail, the 2-m

temperature AChom and forecast skill for each model

and each season are shown in Fig. 3. Only lead-1 sea-

sonal forecasts are shown, as defined above. Area ag-

gregates are shown for southeastern Asia (58N–508N,

708E–1458E) and extratropical North America (north of

238N; Greenland not included). In a few cases, the

forecast skill is higher than theAChom, but in general the

predictability is the greater: that is, most points fall be-

low the 1:1 line, as we would expect. (The sample size

Neff is reduced when considering individual models and

seasons, over smaller geographical areas, leading to

higher uncertainty in the results.) Over Asia (left), most

models show both higher AChom and higher skill during

the spring, summer, and early fall, although there are

several exceptions to this, and spring seasons in partic-

ular are widely scattered. Forecast skill and pre-

dictability tend to increase together. North America

(right) has the highest predictability and forecast skill

during spring and summer, when soil moisture anoma-

lies in one month can lead surface temperature anom-

alies of the opposite sign during subsequent months

(Huang and Van den Dool 1993), and the lowest pre-

dictability and forecast skill during autumn and winter.

Regarding heterogeneous predictability (black off-

diagonal elements in Fig. 1), we note that the 7 3 7

matrix is largely symmetric. This means that ‘‘to pre-

dict’’ and ‘‘to be predicted’’ is similar: that is, if model A

(EM) can predict model B (single member), then the

reverse is also true. Curiously, CCSM3 is exceptional in

a way: it has a hard time predicting T2m anomalies in the

other models or being predicted by the other models.

While orthogonal behavior may in general be desirable,

since CCSM3 also poorly verifies against the observa-

tions, its orthogonality has no discernible benefit so far.

The models with the highest skill against observations,

GFDL CM2.1, GEOS5, CanCM4, and CFSv2, correlate

the most to each other, and all are within the AChet

range of 0.23–0.28. The CFSv1 and CFSv2 have a shared

pedigree, but these two NCEP models do not predict

each other very well: nor do the two models from En-

vironment Canada, CanCM3 and CanCM4.

Beyond examining the models’ interannual variabil-

ity, another factor we can test is the persistence of

anomalies in the models and how it compares to reality.

Potential predictability could appear artificially high if

the models are too persistent. We examined persistence

in the model forecasts in all three fields, in the form of

the AC of the lead-1 month forecast with the 2-month-

lead forecast (not shown). When compared to the

FIG. 3. The 2-m temperature homogeneous predictability AC (x axis) vs forecast skill AC (y axis). Colors indicate

season: boreal winter seasons (November–January, DJF, and January–March) are blue, spring seasons (FMA,

MAM, and April–June) are green, summer seasons [May–July (MJJ), JJA, and July–September (JAS)] are red, and

autumn seasons (August–October, SON, and October–December) are orange. The shades of each color vary from

lighter (first 3-month period; e.g., MJJ) to darker (third 3-month period; e.g., JAS). Each individual season has seven

points, one for each model. The linear fit is depicted by the red line. (left) Southeastern Asia (58–508N, 708–1458E)
and (right) extratropical North America (north of 238N; Greenland not included).
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persistence in the observed fields, the models were

found to be very similar to reality in all three fields.

Having discussed the table in Fig. 1 in great detail, we

can summarize the results in the remaining tables in

Figs. 4, 7, and 9 (Figs. 7 and 9 shown later) more quickly.

Season-1 precipitation rate (Fig. 4) shows a range in EM

prediction from AC 5 0.04 to AC 5 0.12. Six of the

models are within 0.09–0.12, with the CCSM3 5 0.04.

While it is unsurprising that skill for precipitation is

lower than for T2m, the NMME 7-model-average AC of

0.16 is an improvement over the individual models

and more clearly so than for T2m. The global map view

(Fig. 5) shows large areas withAC, 0.1, with exceptions

being some areas of western North America throughout

the four seasons and the southern tier of North America

in DJF, a pattern resembling an ENSO composite. The

SDs of single model runs (Fig. 4, bottom) are all slightly

higher than the observed SD of 0.37, indicating a small

tendency toward overly dispersive forecasts.

The homogeneous potential predictability for prate

(Fig. 4, yellow diagonal element) suggests there is still

room for improvement in precipitation forecasting, with

AChom for most models ranging from 0.16 to 0.25

(CCSM3 again is the outlier, at 0.12). While these are

FIG. 4. As in Fig. 1, but for precipitation rate over Northern Hemisphere land. RMSE is in millimeters per day.

FIG. 5. As in Fig. 2, but for precipitation rate. The NMME skill of AC 5 0.16 quoted in Fig. 4 refers to the

extratropical NH portion of the above maps.

1 AUGUST 2014 BECKER ET AL . 5899



not particularly impressive numbers, they do represent

a doubling of the EM AC skill for most models. Het-

erogeneous potential predictability for precipitation,

like for T2m, shows that the models predict each other

about as well as they predict anomalies in nature.

The relationship between precipitation AChom and

forecast skill for prate, shown in Fig. 6, features a readily

apparent seasonality in both Asia (Fig. 6, left) and North

America (right). Forecast skill is highest during winter

(blue) and spring (green) seasons, and these seasons tend to

have higher potential predictability. The scores are overall

very low, however: note the axes range from 0.0 to 0.35.

Turning to extratropical SST and jumping upward in

both potential and realized skill, the range of ACs for

the area-aggregate Northern Hemisphere extratropics

(238–758N) is 0.29–0.46 for six of the seven individual

models; the NMME skill is higher, at 0.5 (Fig. 7). NH

extratropical forecasting skill is highest in the eastern

Pacific, particularly during DJF and MAM, and areas of

the northern Atlantic (Fig. 8). The GEOS5 and CFSv2

models have somewhat higher SDs than the observed

(0.71 and 0.75, respectively, compared to 0.62 for the

observation), while the other models are close to the

observation. With the exception of CFSv1, potential

predictability is fairly high (0.68–0.82) and substantially

higher than the forecast skill, providing some hope for

improved extratropical SST prediction. The AChom

from CCSM3, highest of the seven models at 0.81, is

astoundingly higher than the CCSM3 EM skill of 0.15.

Heterogeneous predictability for three of the models

with the highest skill, CFSv2, GFDL CM2.1, and GEOS5,

within the range 0.32–0.47, is similar to the achieved range.

The two CMC models are an exception when predicting

each other, resulting in AChet of 0.62–0.64.

Prediction skill for sea surface temperature in the

Niño-3.4 region (58S–58N, 1708–1208W) is known to be

especially high, particularly at such a relatively short

lead of one season. ACs in this region, as for the other

physical variables presented in this study, were calculated

on the grid points in the region, not on the area-average

Niño-3.4 index. This study confirms the expected high
skill, with ACs for forecast skill of 0.80–0.88 and even

the single ensemble member ACs all greater than 0.75

(Fig. 9a). However, the AChom ranging from 0.93 to

0.98 suggests even yet some room for improvement in

forecasting in this area. The AChet scores, like in the

FIG. 6. As in Fig. 3, but for precipitation rate.

FIG. 7. As in Fig. 1, but for sea surface temperature aggregate scores over Northern Hemisphere ocean, between 238
and 758N.
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other fields we have seen, are similar to those of the

already-achieved forecast AC. SDs of all the models

but the CanCM3 are higher than the observed 0.898C in

the Niño-3.4 region. Figure 9b shows the same but now

for the Niño-3.4 index. By taking a spatial mean of SST
first, models are forgiven for placement errors within the
region, and all AC numbers go up and most RMSE and
SD go down. However, the conclusions do not change.
GEOS5’s prediction of SST in the Niño-3.4 region

may be an example of an area where a model is possibly
underdispersive (Fig. 9a). GEOS5 has a 0.98 correlation

between the ensemble mean and the members (AChom),

which means that the members cluster closely around

the ensemble mean, more so than, for example, CFSv2,

which features a 0.93 correlation between members and

ensemble mean. The GEOS5 EM_SD is 1.17, and the

single member SD is 1.22. As per Eq. (6), this results in

Spread5 0.35. That may be a bit low, compared to 0.56,

the RMSE for GEOS5’s ensemble mean. For CFSv2, we

note a Spread of 0.43, which is also somewhat low but

not to the same degree as GEOS5.

Three subregions were considered in Fig. 10: SST in

the extratropical Pacific, 238– 758N, the northern At-

lantic (458–758N), and the Niño-3.4 region. The Niño-3.4
region (Fig. 10, bottom), as expected, has both high

AChom and forecast skill (note the axes range from 0.70

to 1.0 in this panel), and higher forecast skill is found in

seasons with higher predictability. Boreal winter

AChom–AC pairs are distinctly higher, and summer is

lowest. On the other hand, although the North Atlantic

(top right) has higher potential predictability during the

winter and lower during the summer, the realized fore-

cast skill does not reflect this. In this region, AChom in

general (;0.5–0.8) is substantially higher than the skill

(less than ;0.6), suggesting we may hope for future

improvements in forecasting SST for this area, which is

a potentially important predictor for the North Atlantic

Oscillation and European climate. The Pacific (top left)

has higher AChom and forecast skill during the spring,

but other AChom–AC pairs are more widely spread.

4. Summary and discussion

The National Multimodel Ensemble (NMME) fore-

cast project presents a great opportunity to study the

potential predictability of 2-m surface temperature,

precipitation rate, and sea surface temperature, using

the 29 yr of hindcasts available. In this study, we assess

the potential predictability ‘‘of the first kind’’: that is, we

make use of the perfect model assumption to assess the

FIG. 8. As in Fig. 2, but for sea surface temperature. The NMME skill of AC 5 0.50 quoted in Fig. 7 refers to the

extratropical NH portion of the above maps.
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predictability limited only by small errors in the initial

conditions, which in a coupled model include SST and

land surface. Since the NMME comprises several in-

dependent models, we can study predictability as both

homogeneous—how well a single model predicts itself—

andheterogeneous: howwell onemodel predicts another.

The forecast skill (how well each model, both its EM and

individual members, and the multimodel ensemble verify

against observations) is also analyzed, as is the variability

in the forecasts as their representation of reality.

Homogeneous predictability is higher than reported

skill in all fields, suggesting there may be room for some

improvement in model prediction. In many cases, the

margins are not especially great; for example, if we choose

the highest potential for T2m forecasting, AC 5 0.39 as

reported by GEOS5, while the NMME reported skill of

2-m temperature forecasting is 0.29. Northern Hemi-

sphere precipitation shows the potential for a doubling of

its modest forecast skill. Sea surface temperature in the

NorthernHemisphere extratropics, with skill generally on

the order of AC 5 0.5, has homogeneous predictability

ACs up to 0.82. Even in the Niño-3.4 region, where SST
forecast skill is already very high, theremay be some room
for improvement, if we accept this type of analysis.
Heterogeneous predictability is generally lower than

homogeneous predictability, and very close to actual

forecast skill. The heterogeneous estimates from various

models are rather similar in this regard. This similarity

among models does not imply in any way that models

make the same errors (for a discussion on that aspect in

the context of atmospheric blocking, see Scaife et al.

2010). The lower heterogeneous predictability gives one

pause before applying predictability estimates of the

first kind to the NMME as one big system, which would

be dominated by heterogeneous predictability. While

NMME usually has higher prediction skill than most or

all individual models, NMME clearly does not have

higher predictability by the method used here.

In general, models with higher homogeneous pre-

dictability show higher forecast skill. However, both

potential predictability and realized forecast skill vary

depending on geographical region and season. In North

America, the skill of precipitation forecasts, especially

during winter, is close to its potential. Sea surface tem-

perature in the North Atlantic has higher predictability

during the winter but does not show increased fore-

casting skill during the winter.

The estimate of predictability of the first kind is only

mildly dependent on the model we use. This appears

different from Rodwell and Doblas-Reyes (2006), who

reported that ‘‘potential predictability estimates are

sensitive to the coupled model used’’ (p. 6025). Perhaps

models have improved since 2006: our results support

the perfect model assumption underlying the first-kind

estimate in general, unless all models have the same

errors (e.g., missing physics.)

FIG. 9. As in Fig. 1, but for sea surface temperature in (a) the Niño-3.4 region (aggregated results for all grid points in
the area 58S–58N, 1708–1208W) and (b) the Niño-3.4 index (area-averaged SST).
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NMME 7-model forecast skill, verified against ob-

servations, is equal to or higher than the individual

models’ forecast ACs for all the environmental fields

examined. In the case of precipitation, while all scores

are admittedly low, the NMME EM is a clear improve-

ment over the individual models. Sea surface tempera-

ture forecast skill from the NMME is also higher than the

best individual model.

It does not appear that the present set of models suf-

fers greatly from underdispersion, especially not for

T2m and prate. Some of themodels’ prediction of SST in

the Niño-3.4 region show SD less than that of observa-
tions, and a spread less than the RMSE of the ensemble
mean, including GEOS5. So is GEOS5’s system under-

dispersive or does it show high potential predictability?

Ultimately, we need to strive for spread and RMSE

being equal, but this should be achieved by lowering

RMSE the normal way (i.e., by improving any or all

models individually), not so much by increasing spread

by artificial means, even if the latter helps us in making

probability scores look better (although not everyone

may agree with this).

There remains the question as to whether we are jus-

tified to calculate predictability by assuming a perfect

model and following the logic of predictability of the first

kind.A common objection is that the answermay depend

too much on the model. We have shown here with seven

models that the answer is not drastically different for

different models. In addition, two ‘‘sanity checks’’ were

applied upfront to all models. The first is about having

enough overall interannual variance, and we feel all

models pass this test for the variables studied. The second

is about having the correct persistence of anomalies. For

example, it was noted byWu et al. (2009) that the CFSv1

persists the sign of the anomaly in the Niño-3.4 index in
winter too much across the spring barrier, when nature
often changes sign, leading to an overestimate of pre-
dictability for that part of the year. This problem is much
reduced in CFSv2 (Saha et al. 2014). Month-to-month

persistence was calculated for the three variables for all

models and compared to that in the observations. Per-

sistence in the models was found to be close to that in the

observed fields. It is not clear how many more sanity

checks are required before a model can be considered

FIG. 10. As in Fig. 3, but for sea surface temperature: (top left) Pacific Ocean (238–758N); (top right) Atlantic Ocean

(458–758N); and (bottom) Niño-3.4 region.
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a decent enough replica of nature to allow predictability

estimates to be credible. One more check, comparing the

EOFs of eachmodel with those in nature (not done here),

has shown great improvements over the years.

Regarding cross validation (CV) for this application,

the aspect to be cross validated assumes that we know

the model’s climate mean. Even with 30 yr of data, this is

far from perfectly true. Luckily, CV is unnecessary for

assessing homogeneous predictability, since the pre-

diction and the verification are both from the same

world, so we are entitled to assuming they have the same

mean. Regarding heterogeneous predictability, as well

as actual forecast skill, the risk of overestimation of skill

is present and CV such as ‘‘CV3RE’’ (Barnston and Van

den Dool 1993; Van den Dool 2009; Becker et al. 2013)

would be appropriate. Earlier studies have found that

applying cross validation reduces low AC substantially

while only slightly affecting higher correlations (Van

den Dool 2007; Becker et al. 2013). In this study, the

relationships between the resulting AC and AChom are

of as much interest as the scores themselves, and so re-

sults are shown with no CV applied.When predictability

and forecast skill was examined for cross-validated

anomalies (not shown) the expected effect was ob-

served: AC below approximately 0.1 was reduced to

zero, while AC above approximately 0.4 were only

slightly affected.
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APPENDIX

Ensemble Spread and RMS Differences

We repeat Eq. (4) immediately below to show in some

detail for which combination of fields one can conceivably

take mean-square differences. Here we also want to tie

together otherwise somewhat vague references to ‘‘dis-

persion,’’ ‘‘spread,’’ interannual standard deviation, etc.,

RMSD(m, t)5

 
�
s
�
j

ws[X2Y]2

W

!1/2

,

whereW is the sum of weightsws over all time and space

points. Here, X and Y are generic datasets, where the

number of arguments of X and Y (at most 5 arguments:

s, j,m, n, and t) varies, where s, j,m, n, and t if they apply

stand for space, year, month, ensemble member, and

lead, respectively. The systematic error (if the notion

applies) has already been removed fromX and Y before

executing Eq. (4). We use the letter D in RMSD above

because for some choices ofX and Y the notion ‘‘error’’

as in RMSE does not apply. At least the following eight

combinations of X and Y shown in Table A1 can be

considered.

The boldfaced options 1, 2, 5, 7, and 8 (Table A1) and

associated descriptors correspond exactly to what is given

in Figs. 1, 4, 7, and 9. Not used explicitly in these figures

are spread, option 6, and two versions of RMSEhom, op-

tions 3 and 4. However, for Gaussian distributions it can

be shown thatffiffiffi
2

p
(Spread)5 Singmem_RMSEhom (A1)

and

Spread5EM_RMSEhom , (A2)

while

(Singmem_SD)25 (EM_SD)21 Spread2 . (A3)

Not included in Table A1 are heterogeneous esti-

mates, which would be twomore rows like options 3 and

4, leading to RMSEhet, with the added condition that Y

is from a different model. For the anomaly correlation

the equivalent of options 1–4 apply, but options 5–8 are

unique to the RMS attribute.

Equation (A3) is only strictly valid when spread as

function of time ( j) does not depend on the time-

dependent ensemble mean. Equation (A3) decomposes

Singmem_SD, which can be compared directly to the

observable Obs_SD, into two quantities, EM_SD and

spread: neither of which has a counterpart in the obser-

vations but they can be calculated fromamodel ensemble.

Obviously, when Singmem_SD is too large at least one of

the two unobservable components may be too large also.

Comparing Singmem_SD to Obs_SD is one popular way

of judging whether a system has the right dispersion. The

other popular way is to compare spread to EM_RMSE,

which is the same as comparing RMSEhom to RMSE,

whether it has EM or Singmem as prefix.

It is expected that RMSEhom,RMSE. The RMSEhom

is a measure for the spread of the members around the

ensemble mean, so in this paper we judge there to be

potential predictability over and beyond the already re-

alized prediction skill when RMSEhom , RMSE (or

AChom . AC; these two criteria should almost always

agree). We should point out though that in many papers

frequent note has been made of RMSEhom , RMSE as

a sign of underdispersion, a sign of a too-narrow pdf
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needing a remedy, such as an added stochastic compo-

nent (for a single model), postprocessing, or indeed the

multimodel approach. So while underdispersion has been

often mentioned as a bad thing, in this paper we take

a positive view and appreciate potential predictability

exceeding prediction skill.
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