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ABSTRACT

A regression model was developed for use with ensemble forecasts. Ensemble members are assumed to

represent a set of equally likely solutions, one of which will best fit the observation. If standard linear

regression assumptions apply to the best member, then a regression relationship can be derived between the

full ensemble and the observation without explicitly identifying the best member for each case. The ensemble

regression equation is equivalent to linear regression between the ensemble mean and the observation, but is

applied to each member of the ensemble. The ‘‘best member’’ error variance is defined in terms of the

correlation between the ensemble mean and the observations, their respective variances, and the ensemble

spread. A probability density function representing the ensemble prediction is obtained from the normalized

sum of the best-member error distribution applied to the regression forecast from each ensemble member.

Ensemble regression was applied to National Centers for Environmental Prediction (NCEP) Climate

Forecast System (CFS) forecasts of seasonal mean Niño-3.4 SSTs on historical forecasts for the years 1981–2005.

The skill of the ensemble regression was about the same as that of the linear regression on the ensemble mean

when measured by the continuous ranked probability score (CRPS), and both methods produced reliable

probabilities. The CFS spread appears slightly too high for its skill, and the CRPS of the CFS predictions

can be slightly improved by reducing its ensemble spread to about 0.8 of its original value prior to regression

calibration.

1. Introduction

a. Background

An ensemble forecasting system addresses the chaotic

nature of the atmosphere by providing a dynamic esti-

mate of the prediction confidence. Such systems exploit

the stochastic nature of the atmosphere by generating

many solutions based on slightly perturbed initial states

(Toth and Kalnay 1993). The chaotic nature of the

predicted system leads the model solutions to diverge

from one another with time, resulting in different real-

izations representing possible future atmospheric states

(Epstein 1969a; Leith 1974). For well-calibrated models,

closely grouped model realizations (in phase space)

are assumed to indicate low uncertainty in the final at-

mospheric state, while widely scattered solutions indi-

cate higher uncertainty. Ensemble forecasting is also

used for climate predictions, where predictive skill may

be low or negligible, but where ensembles are hoped

to accurately reflect a range of possible climatic anom-

alies, and identify areas of potential predictability as-

sociated with boundary forcing (Barnett 1995; Stern and

Miyakoda 1995; Kumar and Hoerling 1995).

Ensemble predictions generally require calibration to

remove biases and to ensure that the forecast frequency

of events gives a realistic representation of that in the

atmosphere. Many methods have been developed to

calibrate ensemble predictions to provide reliable prob-

abilistic forecasts. The choice of an appropriate method

depends on the characteristics of the ensemble forecasts

and on their intended applications. Since a primary mis-

sion of the Climate Prediction Center (CPC) is seasonal

climate prediction, we require a calibration method suit-

able for use in global climate models. Skill in climate

prediction is low and varies considerably both spatially

and temporally (Livezey 1990; Rowell 1998; Phelps et al.

2004; Livezey and Timofeyeva 2008; O’Lenic 2008). This

may be reflected in the ensemble spread of GCM pre-

dictions, so it is critical to retain as much of this infor-

mation as possible. The amount of data available to de-

velop relationships for seasonal prediction is very limited.
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The National Centers for Environmental Prediction’s

(NCEP) Climate Forecast System (CFS) model (Saha

et al. 2006), for example, has hindcast data available only

since 1981 so any calibration procedure must do well with

very limited sample sizes. An additional requirement is

the ability to estimate the full probability density function

(PDF) of the forecast element in order to support CPC’s

Probability of Exceedance product (Barnston et al. 2000).

The small amount of hindcast data available from

most GCM predictions eliminates some ensemble cali-

bration methods from serious consideration. Some cal-

ibration methods such as binning procedures (Anderson

1996; Hamill and Colucci 1997, 1998; Eckel and Walters

1998) or logistic regression (Hamill et al. 2004) divide

the range of the forecast element into a series of cate-

gories (bins). The limited data available for seasonal

prediction make subdivision of the data sample into

multiple categories impractical. The analog approach

described by Hamill and Whitaker (2006) is similarly

impractical for climate prediction in view of the diffi-

culty in finding good analogs for the limited data

available for seasonal prediction (van den Dool 1994).

Regression-based approaches to the problem are

appealing because of their ability to optimally ‘‘fit’’ data

to minimize errors. When applied to continuous varia-

bles, this allows the entire dataset to simultaneously

contribute to the regression relationship, enabling max-

imum use of small samples. Several methods based on

regression have been proposed for ensemble calibra-

tion. Gneiting et al. (2005) use a pair of regression re-

lationships to calibrate ensemble forecasts, one to cor-

rect the ensemble mean forecast and another to correct

the ensemble spread. This method was among the most

successful of those tested in a side-by-side comparison

of a variety of ensemble calibration methods, both on an

idealized model (Wilks 2006) and on GFS reforecasts of

temperature and precipitation (Wilks and Hamill 2007).

The method requires that the ensemble members be fit

with a parametric distribution in each case. While this

may be beneficial if the distribution of the residuals

about the ensemble mean forecast is believed known,

some aspects of atmospheric circulation are known to

exhibit complex PDFs (Benzi and Speranza 1989), so a

calibration method that can retain information from

nonparametric distributions forecast by a model is de-

sired for CPC’s operations, at least for model diagnos-

tics, if not for prediction.

We propose a regression model specifically designed

for use on ensemble forecasts. This ‘‘ensemble regres-

sion’’ (EREG) model is formulated for the commonly

held assumption that individual ensemble members rep-

resent possible solutions for a given initial state (Sivillo

et al. 1997). Of the many solutions, one will be ‘‘best’’ and

if the ensembles are generated from the same model, it

can reasonably be assumed that the probability of each

member being best is about equal. We will show that,

given this assumption, together with other assumptions

usually made for linear regression, a ‘‘best member’’ re-

gression equation can be estimated from the statistics of

the ensemble set as a whole, with no need to explicitly

identify a best member in each case. The regression

model produces a calibrated set of ensemble forecasts,

together with an estimated error distribution around each

member that can be used to produce a PDF of the pre-

dicted variable from the ensemble forecasts.

The EREG estimates, together with their estimated

errors, resemble the ‘‘dressed ensemble’’ approach to

ensemble calibration (Roulston and Smith 2003; Wang

and Bishop 2005; Fortin et al. 2006), except the ensemble

members are fully calibrated for a least squares fit to the

data (rather than just bias corrected as in the dressed

ensemble approach) and the kernel distributions are

derived from the regression estimates of the distribution

of residuals about the calibrated best member.

The regression coefficients for the best-member

equation are identical to those derived from the ensemble

mean and are applied to each member of the ensemble.

Therefore, EREG can be implemented by developing a

regression relationship between the ensemble mean

forecast and the observation, and applying the result to

the individual members in the ensemble. This approach

has recently been pragmatically explored by the National

Weather Service’s Meteorological Development Labo-

ratory (Glahn et al. 2009) on short-range forecasts. We

show theoretical justification for such an approach here.

We will present the mathematical basis for the EREG

procedure in section 2. EREG is applied to long-lead

seasonal predictions of sea surface temperature (SST) in

the Niño-3.4 region of the Pacific Ocean from NCEP’s

Climate Forecast System to produce calibrated proba-

bilistic predictions and these results are presented in

section 3.

b. Terminology

For this discussion, we assume that statistics are accu-

mulated over a sample of forecasts, such as a series of

forecasts issued daily or monthly. The time average over

the entire sample of M cases is indicated by angle brackets;

hxi5 1

M
�
M

j51
xj.

The subscript, j, represents the temporal dimension

and will usually not appear in equations for individual

forecast cases. For each case, a collection of N ensemble

members are available, Fi, i 5 1, N, and the ensemble
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mean is denoted as Fm. Note that over M cases, hFii 5

hFmi, since the summation over the N ensemble mem-

bers is implied in averaging.

It is usually appropriate to eliminate the seasonal

cycle from the predictions by expressing both forecasts

and observations as departures from long-term clima-

tology. Statistics can also be stratified by month and lead

time so that data for all forecasts initialized at a given

time of year and for a given lead time are pooled to-

gether to form a regression relationship.

2. Regression relationships

a. Simple linear regression

Regression has been applied to the output from dy-

namic numerical prediction models for over 40 yr (Glahn

and Lowry 1972; Glahn et al. 2009). Regression analysis

usually begins with a tentative assumption of a linear

relationship between the predictors (in this case the

forecasts from a numerical model) and the predictand

(observations), with errors represented by the term, «.

For reasons that will become clear later, this will be

illustrated by the relationship between the ensemble

mean, Fm, and the observation, Y:

Y 5 a0 1 a1Fm 1 «.

Linear regression minimizes the quantity h(Fm
9 2 Y)2i

to estimate the a’s and obtains the equation, Fm
9 5 a0 1

a1Fm (Draper and Smith 1981), where Fm9 is the regres-

sion estimate, and coefficients are given by

a1 5 Rm
SY

Sm
, a0 5 hYi � a1hFmi, (2.1)

where SY and Sm are the sample standard deviations of

Y and Fm, respectively, and Rm is the correlation coef-

ficient between the ensemble mean forecast and the

observations. The regression relationship is frequently

subject to an analysis of variance with two components

defined as follows:

sum of squares due to regression,

SSregression 5 �
M

j51
(F9

m, j � hYi)2, and

sum of squares about the regression (residual),

SSresidual 5 �
M

j51
(F9

m, j � Yj)
2.

If the regression estimates are regarded as calibrated

forecasts, the means of these two variance components,

the regression and the residual, can be regarded as the

sample variance of the regression forecasts, SF9m

2 , and an

associated variance in the forecast errors, Se
2, respec-

tively, and are related to Rm as shown:

S2
Y 5 S2

F9m
1 S2

e , (2.2a)

S2
F9m

5 S2
YR2

m, and (2.2b)

S2
e 5 S2

Y(1� R2
m). (2.2c)

Note that these relationships are robust and follow di-

rectly from the definitions of the variance, means, and

correlation with no requirement for Fm or Y to have

Gaussian distributions. Gaussian assumptions are used

in significance testing, or in establishing an estimate of

the forecast error distribution, but are not required for

these relationships to be valid on the dependent data.

Both SY
2 and Se

2 are biased estimates of each variable’s

true variance, sY
2 and se

2, respectively. For a sample size

of M cases,

s2
Y 5

M

M � 1
S2

Y and s2
e 5

M

M � 2
S2

e ,

s2
F9m

5 s2
Y R2

m and (2.3a)

s2
e 5 cs2

Y(1� R2
m), (2.3b)

where c represents an additional correction factor to the

residual variance to account for uncertainty in Rm. It is

frequently the practice in seasonal forecasting to use an

estimate of sY
2 from long-term climatology rather than

to base the estimate on the sample climatology, thereby

partially compensating for the biases in these relation-

ships. The constant c compensates for the remaining

bias and is given by

c 5
M � 1

M � 2
.

Equation (2.3a) is the explained variance, and (2.3b)

gives the unexplained variance of the regression rela-

tionship. If the true relationship between F and Y is

linear, and the errors are uncorrelated and Gaussian

distributed, then the residual distribution will also be

Gaussian. This implies that the residuals, «, can be rep-

resented by a Gaussian distribution centered on F 9
m,

PDF(«) ’ N{F 9
m, sY[c(1 2 R2

m)]1/2}, following standard

terminology where N(m, s) represent a normal distribu-

tion with mean m and standard deviation s. The expected

value of se
2 increases with the distance from the sample

mean due to uncertainty in the regression coefficients.

This effect will be neglected here for simplicity.

An important feature of the regression estimate is

that its variance is reduced according to R2
m. This ‘‘skill
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damping’’ effect can best be seen by expressing the re-

gression equation in terms of a standardized departure

from the mean, as shown:

F 9
m � hYi

SY
5 Rm

Fm � hFmi
Sm

. (2.4)

The standardized anomaly of the regression estimate is

damped toward the mean by the factor Rm.

b. Statistical constraints on an ensemble set

Rather than a single forecast, an ensemble prediction

consists of a set of related forecasts all paired with a

single observation. This constrains the statistics of the

ensemble set according to the following series of rela-

tionships. The mean squared error of the individual

ensemble members, Fi, is related to the ensemble spread

and the squared error in the ensemble mean, by (see

appendix A)

h(Fi � Y)2i5 hE2i1 h(Fm � Y)2i, (2.5)

where hE2i is the mean ensemble spread,

hE2i5 1

N
�
N

i51
(Fi � Fm)2

* +
.

The sample variance of the individual ensemble fore-

casts, SI
2, can be related to the mean spread and variance

of the ensemble mean, S 2
m, by a derivation similar to that

shown in appendix A except substituting hF i for Y:

S2
I 5 S2

m 1 hE2i. (2.6)

The correlation coefficients between Y and (a) the

individual ensembles, RI, and (b) the ensemble mean,

Rm, are also related as shown (see appendix B):

Rm 5 RI
SI

Sm
. (2.7)

Applying (2.6) and rearranging terms, hE2i is given by

hE2i5 S2
I

(R2
m � R2

I )

R2
m

. (2.8)

c. Ensemble regression (EREG)

An ensemble prediction is frequently regarded as

a set of possible states resulting from a given initial

condition. Of the various solutions, one will be ‘‘best,’’

which might be regarded as either the closest to the

observation, or best in some multivariate sense, as

Roulston and Smith (2003) suggest. If the ensemble

members are generated by the same atmospheric

model, it is usually assumed that each member has an

equal likelihood of being best. A linear regression

model can be specifically tailored for use on ensemble

prediction considering these specialized assumptions.

As with any regression procedure, a tentative model is

considered to describe the system, which can be rejected

at a later time if these assumptions are not supported by

the data.

Without actually identifying a best member, Fb, we

postulate that it is related to the observation accord-

ing to

Y 5 a0 1 a1Fb 1 «b, (2.9)

where «b represents the errors only for Fb. It is further

assumed that «b is distributed in the same manner for

each potential realization.

Given our tentative regression model, the regression

equation that minimizes «b is given by (from standard

linear regression theory summarized in section 2a)

F9
b 5 a0 1 a1Fb and (2.10a)

a1 5 Rb
SY

SI
, a0 5 hYi � a1hFbi. (2.10b)

Here, Rb is the unknown expected value of the corre-

lation between the best ensemble member and the ob-

servation. Note that given our assumption that members

are equally likely to be best, on any given case, j,

the expected value of Fb can be calculated from Fi, as

follows:

expv(Fb) 5
1

N
�
N

i51
Fi 5 Fm.

Here it is reasonable to assume that the best member

is determined from the closest ensemble solution after

calibration by (2.10a).

The expected value of the grand mean of Fb is

hexpv(Fb)i5 1

M
�
M

j51
expv(Fb, j)

5
1

MN
�
M

j51
�
N

i51
Fi, j 5 hFi.

By similar reasoning, the expected value of Sb can de-

termined as follows:

expv(S2
b) 5

1

M
�
M

J51
expv(Fb, j � hFbi)2

5
1

MN
�
M

j51
�
N

i51
(Fi, j � hFi)

2
5 S2

I .
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Here, it must be emphasized that these relationships

apply only for when our assumption that each ensemble

member is equally likely to be best are met.

In subsequent discussions, quantities involving best-

member statistics (subscript b, except for Fb and F9
b)

refer to their expected values, and the notation will be

simplified so, for example,

Sb 5 expv(Sb).

Similar to the results in section 2a, the expected values

of both the explained variance, SFb
2 and the residual

error variance, Seb
2 , are given by

S2
Fb 5 S2

YR2
b and (2.11a)

S2
eb 5 S2

Y(1� R2
b). (2.11b)

As shown in appendix C, the expected values of the

regression coefficients a0 and a1 are the same as the

coefficients of the ensemble mean when regressed onto

the observations. Thus, from (2.1),

a1 5 Rm
SY

Sm
5 Rb

SY

SI
, a0 5 hYi � a1hFmi .

Linear transformation of the forecasts does not affect

the correlation between the forecast and the observa-

tion, so, after substitution from (2.7), Rb is given by

Rb 5
R2

m

RI
. (2.12)

Because the expected value of the regression coeffi-

cients of the best-member equation are the same as those

for the ensemble mean, EREG can be implemented by

applying the regression equation based on the ensemble

mean to each individual ensemble member. Here, Rb

represents the expected value of the correlation between

Fb9 and the observation, provided that the regression

model assumptions are accurate. In standardized anom-

aly form, the EREG equation is

F 9
b � hYi

SY
5 Rb

Fb � hFi
SI

,

indicating that EREG damps individual ensemble

members to a lesser extent than the equation applied to

the ensemble mean [see (2.4)].

An estimate of hexpv(Y 2 F9
m)2i can be obtained both

from (2.3b) and also from computing the expected value

after substituting the individual member regression es-

timates:

Fi
9 5 a0 1 a1Fi 1 «b.

Note that the expected value of the error term and the

cross products involving this term is zero, and that «b

already accounts for the expected errors in the ensem-

ble mean (because it is derived from the residual error

of a regression), so after substitution

hexpv(Y � Fm)2i5 a2
1E2 1 «2

b.

The regression estimate of the residual variance about

the calibrated ensemble mean is related to the regression-

corrected ensemble spread, a1
2hE2i, as shown:

cs2
Y(1� R2

m) 5 a2
1hE2i1 «2

b (2.13)

where «b
2 represents the remainder of the variance not

accounted for by the calibrated ensemble members.

Since «b
2 is nonnegative, cs2

Y (1� R2
m) $ a2

1hE
2i.

If the above inequality is not true, then the ensemble

members cannot conform to the EREG assumptions and

the regression model must be rejected. This occurs when

the calibrated ensemble is overdispersive (members near

the ensemble mean have a higher probability of being best

than those near the ensemble’s outer envelope even after

applying the regression equation), and that Rb as calcu-

lated from (2.12) exceeds one. An underdispersive model

presents no problems, since the regression estimate of «b
2

will adjust to account for the model’s missing variance.

However, there is always a possibility that an under-

dispersive model can be improved by increasing the en-

semble spread, shifting more weight to the dynamic pre-

diction of the errors about the calibrated ensemble mean

forecast and less to its statistical estimate. Adjustments to

the ensemble spread will be addressed in section 2e.

d. Estimated PDF of the calibrated ensemble

If «b, in (2.9) is Gaussian distributed, then its regres-

sion estimate, «b, is N(0, seb), seb can be estimated in

a manner similar to (2.3):

seb 5 sY [c(1� R2
b)]1/2. (2.14)

The distribution of observations around the calibrated best

member can then be represented by centering the error

distribution around Fb
9. The forecast PDF representing the

entire ensemble of N equally likely members takes the

form of a series of ‘‘kernel’’ Gaussian distributions, each

centered on the regression estimate of an individual

member. The final PDF is simply the unit-normalized

sum of all error distributions, each representing 1/N of the

total distribution, as illustrated by the example in Fig. 1.

e. Adjustments to the ensemble spread

In this section we will examine the relationship be-

tween the ensemble spread and the EREG residual
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error. A linear transformation is proposed to adjust the

ensemble spread, if necessary, to better fit the assump-

tions required for EREG. As discussed earlier, a re-

duction of the ensemble spread is required to produce a

reasonable regression fit when the calibrated ensemble

is overdispersive.

Consider a spread adjustment factor, K, applied on all

cases prior to regression given by

Fi0 5 Fm 1 K(Fi � Fm), (2.15)

where Fi0 refers to the transformed ensemble forecasts.

The transformation constant, K, alters the correlation

between the observation and individual transformed

ensemble members, RI0, and the expected values of Rb

and seb, and these relationships are derived from (2.6),

(2.7), and (2.14):

RI0
2 5 R2

m

S2
m

S2
m 1 K2hE2i

. (2.16a)

Thus,

Rb0 5
R2

m

RI0
, (2.16b)

s0eb 5 sY [c(1� R02
b )]1/2. (2.16c)

The maximum value of K (Kmax) that is consistent

with regression assumptions can be computed by setting

s0eb 5 0 (implying that Rb0 5 1), and can be calculated as

shown in (2.17):

KMAX 5

1

R2
m

� 1

R2
m

R2
I

� 1

0
BBB@

1
CCCA

½

. (2.17)

When Kmax , 1, the EREG estimates based on the

original model forecasts will be overdispersive and the

spread needs to be reduced to assure that the forecast

variance is less than the observed variance.

Note that Kmax does not account for the sampling

variability expected with a limited number of ensemble

members. If an ensemble forecast is presumed to be a

sample of N solutions drawn randomly from a large

population of potential solutions, then the maximum

value of K based on sampling considerations, KN, is

related to the ensemble size, N, as shown in appendix D:

KN 5
N � 1

N

� �1/2

Kmax. (2.18)

Equation (2.18) expresses the maximum K value

supported by an N-member ensemble randomly chosen

from an infinite population of solutions and over the

dependent data sample. If KN , 1, the EREG PDF

estimate is likely to be overdispersive since the ensem-

ble spread of the original forecasts (K 5 1) is greater

than KN. In this case the ensemble spread needs to be

reduced by applying (2.15) with K 5 KN and computing

kernel distributions from (2.16a)–(2.16c).

The transformation given in (2.15) can be used to

alter the ensemble for specific purposes provided that K

stays within the range 0 , K , Kmax. For example, K

might be set to Kmax to translate the ensemble fore-

casts into a series of calibrated point (deterministic)

forecasts, equivalent to ‘‘inflation’’ in MOS equations

(Klein et al. 1959). Inflation produces a bias-corrected

set of point forecasts whose variance is the same as that

of the observations over the dependent data sample. At

the other extreme, setting K 5 0, implies that RI0 5 Rm,

and ensemble regression becomes standard linear re-

gression on the ensemble mean. This transformation

would be appropriate if the data suggested that the in-

formation from individual ensemble members worsens

the forecast based on the ensemble mean alone. Inter-

mediate values of K can also be tested in conjunction

with verification scores that are appropriate for use on

probabilistic predictions in an attempt to improve the

forecasts. The PDF estimated from an ensemble re-

gression can be generated for a variety of K values, and

the value that produces the best result when measured

by a given scoring rule and on a given set of forecasts

can be selected to provide an estimate of an optimum

ensemble spread for that score.

FIG. 1. Schematic illustration of the PDF derived from an en-

semble regression of four ensemble members. The PDF is the

normalized sum of the Gaussian kernels centered at the regression

estimate of each of the four members. Here, Fi
9 represents the

regression forecast based on of the ith ensemble member, Fi. Both

a0 and a1 are regression coefficients and se is the EREG error

estimate for the best member.
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3. Ensemble calibration applied to Niño-3.4 SSTs

a. Forecast description

EREG was tested on sea surface temperature (SST)

forecasts for the Niño-3.4 region from NCEP’s CFS

model (Saha et al. 2006). Niño-3.4 SSTs (mean SSTs

between 58N and 58S and 1708 and 1208W) correlate well

with the state of the El Niño–Southern Oscillation

(ENSO) (Barnston et al. 1997) and, therefore, are an

important indicator for climate anomalies over many

parts of the globe.

The CFS is an operational coupled ocean–atmosphere

model that is currently run twice daily to produce fore-

casts for up to 6 months in advance. A CFS ensemble

forecast is typically produced to support the Climate

Prediction Center’s (CPC) operational climate outlooks

issued in the middle of each month (Barnston et al.

1994). The CFS ensemble forecast is formed from pre-

dictions initialized at various times in the previous

month, all valid for the same target periods and thus

similar to the strategy used for lagged averaged fore-

casting (Hoffman and Kalnay 1983; Roads 1988). The

use of a lagged average forecast is common in climate

forecasts since perturbations in the initial state have

little effect on the atmospheric seasonal forecast beyond

1 month (Phelps et al. 2004, and about 2 months for

oceanic predictions (Vialard, et al. 2005). Because there

is usually close to a 1-month lag between the latest data

used for the CPC seasonal forecasts and the start of

the first 3-month target season, the effects of different

lead times of the ensemble members are expected to be

minor in most circumstances, although they may have

an impact on early leads.

A retrospective archive of the CFS model is available

from three sets of five consecutive daily forecasts ini-

tialized near the start, middle, and end of each month

between 1981 and 2004. Beginning in August 2004, the

CFS model became operational and was run daily, so

the ensemble was obtained from the 15 most recent

daily runs available early in each month. Lead time is

defined as the approximate amount of time, in months,

between the data used for the latest CFS model run and

the start of the target period. Three-month averages

(referred to here as seasonal averages) of SSTs are

formed from the monthly means from the CFS.

We have translated the CFS ensemble forecasts for

3-month-mean Niño-3.4 SSTs into a cumulative proba-

bility distribution function (CPDF) in a standardized

format for ease of data handling. The standard format

expresses values of SST that are expected to be equal to

or exceed 2%, 5%, 10%, 20%, 30%, 40%, 50%, 60%,

70%, 80%, 90%, 95%, and 98% of the time, so that the

forecast precision is the same regardless of how many

ensembles were used, or how the data distribution was

obtained.

The continuous ranked probability score (CRPS) was

used to verify the probabilistic forecasts (Matheson and

Winkler 1976; Hersbach 2000). The CRPS measures the

squared difference between the forecast CPDF and the

CPDF of the observation over the complete range of

the observations, 2‘ , x , ‘, where x refers to the

range of the forecast values. Note that the CPDF of the

observation, y, is simply F(x) 5 0 for x , y and F(x) 5 1

for x $ y. A CRPS skill score (CRPSS) was formed by

comparison with the scores obtained from climatologi-

cal probabilities, CRPSCL:

CRPSS 5 1 2
CRPS

CRPSCL
.

The CPDF for the standard forecast format was

produced by assuming a linear increase in probabilities

between the specified probability values (2%–98%).

The distribution tails were supplied by assigning points

representing the values where the CPDF reaches 0

and 1. These points were assigned a value that mini-

mizes the CRPS for a linearly increasing CPDF outside

of the forecaster-specified interval, assuming that the

actual distribution of observations outside the interval is

Gaussian.

A CPDF forecast was generated from the ensemble by

three different methods. For one method, the ensembles

were translated directly into CPDF form assuming a lin-

ear increase between the N-ordered ensemble members.

The CFS prediction was assumed to be at the median of

that member’s forecast distribution, with each member

representing 1/N of the total. The tails of the distribution

were obtained by applying the CRPS-minimizing linearly

increasing CPDF to the ends of the distribution as defined

above (see Fig. 2). The piecewise linear CPDF obtained

from the N ensemble members was then interpolated to

the standard format and the CRPS was computed from

that forecast as described above. We referred to these as

the ‘‘original’’ forecasts.

A second method of translation used only the infor-

mation in the forecast ensemble means, processed by

standard linear regression (REG) as described in sec-

tion 2a with the CPDF obtained from a high-resolution

integration of the PDF and then expressed in standard

format. In the third method, the EREG method was

applied to individual ensemble members as described in

sections 2c and 2d.

We processed the historical forecasts for both the

REG and EREG using cross validation (Michaelsen

1987), in which each target year was removed from the

equation development sample, together with two addi-

tional years, chosen randomly. Climatology for a given
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cross-validation trial was always computed from the 30

most recent remaining years.

b. Results

Results for all forecasts made between January 1982

and December 2005 are shown in Table 1. The original

CFS ensemble members are not competitive with the

regression-calibrated forecasts in the CRPS evaluation

at any lead time. Differences in skill between the two

regression-based postprocessing methods are very small,

which is to be expected since they are both based on the

same forecast.

The differences in CRPSS between the various methods

were tested for significance. The score differences be-

tween the models exhibit much less month-to-month

variability than the scores themselves do and they have

some month-to-month dependence. A rough estimate of

the effective sample size was obtained by examination of

lag correlations (Thiébaux and Zwiers 1984) and suggests

that an effective sample size of about 100 might be ap-

propriate for these data. While accurate assessment of

significance would require Monte Carlo resampling tests,

these rough tests indicate that the differences between

the scores for REG and EREG are not significant at the

5% level at any lead time.

Forecasts were translated into the probabilities that

the observation would fall within one of three cate-

gories: below, near, or above normal Niño-3.4 SSTs

based on the lower, middle, or upper third of the cli-

matological distribution, respectively. This is a common

format for seasonal forecasts and is measured here by a

three-category ranked probability skill score (RPSS;

Epstein 1969b; Murphy 1970) (see the columns under

RPSS-3 in Table 1). Results hint that the EREG is

slightly favored over REG on lead 1 and beyond when

measured by RPSS-3, although again, differences are

not significant at the 5% level.

Even though these results show the EREG and REG

to be nearly identical for most lead times, EREG makes

more direct use of the ensembles and, thus, better rep-

resents the information from the CFS. There is some

suggestion that EREG improves the three-category

probabilities.

The reliability diagrams for the 0- and 5-month lead

forecasts are shown in Fig. 3. Because forecasts were

generated from a variable width interval with fixed

probability thresholds, the sample size is the same for all

probability bins in Fig. 3. This is in contrast with most

reliability diagrams in the literature, which show the

reliability for specific events, and therefore, some bins

have more data than others. Reliability diagrams ap-

plied to forecasts specified for fixed probability thresh-

olds effectively measure the same information con-

tained in ranked histograms (Anderson 1996; Talagrand

et al. 1997; Hamill and Colucci 1997) and are subject to

many of the same cautionary issues in their interpreta-

tion as discussed by Hamill (2000).

FIG. 2. Schematic diagram illustrating the translation of the

original ensemble members (represented by squares) to a cumu-

lative probability distribution function for N 5 5. The CPDF is

produced by a linearly increasing CPDF between ensemble fore-

casts. The lowest member of a five-member ensemble is assumed

to represent the 10th percentile of the CPDF (X10), etc. Both X0

and X100 are set to minimize the CRPS for a linearly increasing

CPDF assuming the tails are Gaussian distributed.

TABLE 1. Verification scores for CFS forecasts of seasonal mean SSTs in the Niño-3.4 region for the period 1982–2005. CRPSS and

three-category RPS skill scores (RPSS-3) of probabilistic predictions based on the original CFS ensemble (Orig), CFS probabilities based

on linear regression of the ensemble mean (REG), and those based on ensemble regression (EREG) are shown along with the mean

absolute error (MAE) with respect to the forecast median value.

CRPSS RPSS-3 MAE (8C)

Lead (months) EREG REG Orig EREG REG Orig EREG REG Orig

0 0.559 0.556 0.509 0.607 0.610 0.551 0.333 0.335 0.370

1 0.500 0.497 0.419 0.553 0.550 0.499 0.377 0.378 0.439

2 0.445 0.444 0.348 0.505 0.501 0.445 0.419 0.418 0.503

3 0.397 0.398 0.295 0.443 0.439 0.368 0.456 0.453 0.546

4 0.349 0.350 0.245 0.400 0.397 0.315 0.491 0.491 0.581

5 0.307 0.308 0.175 0.365 0.360 0.295 0.520 0.520 0.614
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The reliability of the forecasts shows that the poor

performance of the original CFS is due primarily to

poor calibration leading to an overconfident forecast (a

slope of less than one crossing the perfect reliability line

near the median). Both regression methods produced

reliable probabilities as evidenced in Fig. 3.

The CRPSS for varying K (2.15) for leads of 1 and 5

stratified by initial time are displayed in Figs. 4 and 5,

respectively. Here, K expresses the ratio of the ensem-

ble spread between the transformed and original en-

sembles prior to the regression. Values summarized in

Table 1 and Fig. 3 are for K 5 1, although the yearly

average of the data in Fig. 3 is slightly different from the

corresponding numbers in Table 1 because this sam-

ple includes additional data from February–December

1981. Results displayed are for Niño-3.4 SST forecasts

initialized in the months of December, January, or

February (D, J, or F); March, April, or May (M, A, or

M); June, July, or August (J, J, or A); and September,

October, or November (S, O, or N). In general, the

CRPSS remains nearly constant from K 5 0 to about

K 5 0.8, and then falls steadily until K 5 Kmax [see

(2.16)]. The value of Kmax varied for each initial month

and was usually between 1.5 and 2 for these data. Where

K in Figs. 4 and 5 exceeded Kmax, scores were obtained

from a kernel width of near zero, duplicating the results

obtained from the K value where the kernel width first

approached zero. The CPDF for K 5 Kmax is a step

function increasing about 1/N each time an ensemble

member’s forecast value is passed. Note that the scale of

the plots in Figs. 4 and 5 varies according to the CRPS

score range, and that the scores are not dramatically

lower than the optimum even for large K. Because the

forecast when K 5 Kmax is essentially a series of cali-

brated point forecasts, a comparison of these values

with the original forecasts (orig in Table 1) shows the

benefits of using calibration as opposed to the benefit

kernel smoothing. The calibrated ensembles are con-

siderably better than the original forecasts, with the

yearly average CRPSS for 1- and 5-month leads of 0.535

and 0.274, respectively, compared to corresponding

values for the original (uncalibrated) ensemble in this

sample of 0.410 and 0.184.

4. Discussion and conclusions

EREG is a statistical model designed for use in en-

semble forecast problems. It has been shown that for

such a system, the expected linear least squared solution

and associated error estimates are relatively simple

functions of sY, sFm
, Rm, and RI. The PDF of the en-

semble forecast is estimated from the normalized sum

of the Gaussian errors around each ensemble member

in a manner similar to Gaussian kernel smoothing

(Silverman 1986), except with kernels centered on the

EREG-calibrated ensemble forecasts and kernel widths

based on the regression error estimates. A linear

transformation of the original model’s ensemble spread

can be employed in conjunction with a suitable proba-

bilistic verification score to improve the predictions.

EREG closely resembles the ensemble dressing ap-

proach to ensemble calibration but has several important

advantages. First, the bias correction and kernel estima-

tion procedures are integrated properly for a least squares

fit to the data. Second, the EREG model puts the problem

into a regression framework, which allows the application

of statistical theory developed for regression to be applied

to ensemble forecasts (analysis of variance, error estima-

tion, weighted regression, etc.). The kernel dressing

approaches of Wang and Bishop (2005), Fortin (2006),

and Roulston and Smith (2003) apply kernels to bias-

corrected, but not skill-damped, ensembles. This can be

expected to significantly degrade the accuracy of the

calibrated ensemble, especially in low-skill situations. This

FIG. 3. Reliability diagrams for CFS forecasts for Niño-3.4 SSTs

for lead times of (a) 0 and (b) 5 months. Forecasts are produced

using three methods: EREG, REG, and direct translation from the

original ensembles (original). Data are from cross-validated results

for the years 1981–2005 with all initial times combined.
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may explain the ensemble dressing method’s relatively

poor calibration in comparison with other ensemble cali-

bration methods (Wilks 2006; Wilks and Hamill 2007).

Fortin (2006) makes an argument for nonequal kernel

widths, and this has some support from regression theory

when uncertainty in the regression line is considered (see

Draper and Smith 1981, section 1.4). The theory indicates

that kernel widths should increase with increasing distance

from the sample mean and not necessarily in relation to

the ensemble mean as Fortin’s model would indicate.

The Bayesian model averaging (BMA) approach as

outlined by (Raftery et al. 2005; Wilson et al. 2007) uses

a kernel density fit to the weighted ensemble members,

with weights determined by Bayesian processing. The

theory presented here suggests that weights from BMA

can be used together with EREG (using weighted re-

gression rather than assuming equal weights as pre-

sented here) to derive an appropriate final calibration

and kernel density fit to the data.

The results presented here give theoretical support for

the approach outlined by Glahn et al. (2009). They ap-

plied multiple linear equations based on model output

from ensemble means to individual members of the

ensemble with good results on short-range weather

forecasts. Appendix C indicates that the approach de-

scribed here applies to the multiple-predictor case and

therefore is applicable to multiple linear regression. The

appropriate kernel distribution widths are not as easy to

compute for multiple linear regression because the in-

dividual member correlation for Rb in (2.12) cannot

easily be estimated from the data without actually gen-

erating forecasts from the individual ensemble members

in a second pass through the data and computing RI

from those regression estimates (Rm can be estimated

from the multiple correlation coefficient). The method

of estimating the kernel width used by Glahn et al.

(2009) is an alternative to the method presented here.

It is likely that the regression theory presented here

can be expanded to include the treatment of ensemble

members of varying skill such as would be found in

multimodel ensembles. This would be expected to in-

troduce many complications that are beyond the scope

FIG. 4. Cross-validated CRPSSs for Niño-3.4 SST forecasts from the CFS for the period 1981–2005 for 1-month lead forecasts initialized

in the winter months (DJF), spring (MAM), summer (JJA), and fall (SON) for varying ensemble spread values. Here, K is the fraction of

the original model spread retained in the transformed forecasts, prior to regression calibration.
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of this work (such as whether to vary the kernel width

for less skillful models). If bias-corrected forecasts from

ensemble members generated by other models are

regarded as additional solutions whose errors are ex-

pected to be no different that the others in the event

they are the best among the ensemble members, then

the derivation of a skill-weighted multimodel ensemble

regression is straightforward. This approach is the basis

of the operational consolidation forecast recently de-

veloped at CPC (O’Lenic et al. 2008).

An examination of seasonal Niño-3.4 SST forecasts

from the CFS suggests that the skill levels of the EREG

(K 5 1) and REG models are nearly the same for all

lead times. While the score differences between the two

methods are small for these data, the EREG procedure

has the advantage of utilizing the uncertainty estimate

from the dynamic model, rather than pooled statistics

from the entire sample.

The CRPSS for CFS Niño-3.4 SST forecasts is not

sensitive to spread transformation, and scores obtained

from a PDF generated from a calibrated ensemble

count (K near its maximum value) are not much worse

than those from optimized spread. There is some evi-

dence that the CFS model spread for this element is

slightly higher than optimum, and that the CRPSS

can be improved slightly by reducing the spread to

about 0.8 of its original value prior to regression cali-

bration. Further reductions in spread have little effect

on scores.
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APPENDIX A

Derivation of (2.5)

Starting with the relationship

(Fi � Y) 5 (Fi � Fm) 1 (Fm � Y),

FIG. 5. Same as in Fig. 4 but for a 5-month lead time.
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Noting that for each case, Si(Fi 2 Fm) 5 0,

�
N

i51
(Fi � Y)2

* +
5 �

N

i51
(Fi � Fm)2

* +

1 �
N

i51
(Fm � Y)2

* +
.

After dividing by N to express the relationship in terms of

the means of individual members rather than the sums,

and noting that the mean ensemble spread, hE2i is

hE2i5 1

N
�
N

i51
(Fi � Fm)2

* +
,

the relationship becomes

h(F i � Y)2i5 hE2i1 h(Fm � Y)2i.

APPENDIX B

Derivation of (2.7)

Starting with the definitions of Rm and RI,

Rm 5
h(Fmj � hFmi)(Yj � hYi)i

SmSY
and (B.1)

RI 5
h(Fi, j � hFi)(Yj � hYi)i

SISY
. (B.2)

Note that the covariance (numerators in the above

relationships) between the ensemble mean and the

observations is identical to that of the individual en-

semble members and the observations as demonstrated

below:

h(Fi, j � hFi)(Yj � hYi)i5
1

MN
�
M

j51
�
N

i51
(Fi, j � hFi)(Yj � hYi)

5
1

MN
�
M

j51
(Yj � hYi)�

N

i51
[(Fi, j � Fmj) 1 (Fmj � hFi)]

8<
:

9=
;,

�
N

i51
(Fi, j � Fmj) 5 0; therefore,

h(Fi, j � hFi)(Yj � hYi)i5
1

MN
�
M

j51
(Yj � hYi)�

N

i51
(Fmj � hFi)

8<
:

9=
;

5
1

MN
�
M

j51
f(Yj � hYi)N(Fmj � hFi)g

5
1

M
�
M

j51
(Fmj � hFi)(Yj � hYi)

5 h(Fmj � hFi)(Yj � hYi)i.

2376 M O N T H L Y W E A T H E R R E V I E W VOLUME 137



Since hFmi 2 hFi, the numerators in (B.1) and (B.2)

are equal for an ensemble forecast, and their correla-

tions are related according to (2.7).

APPENDIX C

Expected Values of Best-Member Regression
Coefficients

This proof follows similar reasoning to that of testing

for bias in regression coefficients as outlined by Draper

and Smith (1981, section 2.12). Because of its importance,

we will discuss this in terms of a generalized regression.

Let Y be the vector of the observations (predictands)

and F be a matrix of the predictors from our ensemble,

illustrated here for the one-predictor case:

Y 5

Y1

Y2

:

YM

2
6664

3
7775 and F 5

1 F1

1 F2

: :

1 FM

2
6664

3
7775.

The true statistical model is postulated to be

Y 5 aFb 1 eb,

where a is the vector of the regression coefficients, eb is

a vector of the errors, and Fb is the vector of predictors

obtained from the best-member forecasts:

a 5 [a0 a1], «b 5

«1

«2

:
«M

2
664

3
775.

The least squares estimate of a is the vector, a:

a 5 [a0a1] and

a 5 (FT
b Fb)21FT

b Y,

where FT
b is the transpose of the matrix Fb.

If the EREG assumptions are correct, then the ex-

pected value of Y for each case, given N equally likely

ensemble members, is computed by applying the re-

gression estimate for Y, Y95 aFb, to each member:

expv(Y) 5 aFm,

where Fm is the matrix of the ensemble mean predictors

(forecasts).

Now, let us examine the regression equation based on

the ensemble mean:

Y 5 bFm 1 e,

where b is the true model’s coefficients, Fm is the matrix

of ensemble mean predictors (the model forecasts in the

single-predictor case), and e is the vector of errors. Note

that some caution is in order when dealing with certain

types of complex predictor variables designed to simu-

late nonlinear responses (e.g., ‘‘dummy’’ variables). We

restrict our discussions here to predictors obtained di-

rectly from the individual members.

This model has a least squared solution for b of

b 5 (FT
mFm)�1FT

mY.

Following the procedure for examining the bias in re-

gression equations, the expected values of b and Y are

related as follows:

expv(b) 5 (FT
mFm)�1FT

mexpv(Y).

Now, we ask whether the expected value of the vector

constants a and b are the same. Substituting expv(Y)

from the best-member equation gives

expv(b) 5 (Fm
TFm)�1(Fm

TFm)a and

expv(b) 5 a.

If the EREG assumptions are correct, then the expected

values of the coefficients of the regression equation

based on the best member and those of a regression

based on the ensemble mean are the same.

APPENDIX D

Maximum Value of K for an N-Member Ensemble
Based on Sampling Theory

A maximum value of K based on sampling theory

can be related to the ensemble size, N, as follows. An

unbiased estimate of the true value of the mean squared

ensemble spread, s2
E (population variance), is given

by

s2
E 5

N

N � 1
hE2i.

The bias in the estimate, hE2i, arises because of uncer-

tainty in the ensemble mean, so a Gaussian error dis-

tribution with standard deviation, su, is assumed to

surround each ensemble member to represent this un-

certainty. Variance is additive, so
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s2
E 5 hE2i1 s2

u and

s2
u 5 s2

E 1�N � 1

N

� �
.

Since sE
2 is the expected value of the true residual

variance about the ensemble mean regression estimate,

(2.3b) implies

sE
2 5 cs2

Y(1� R2
m).

We assume the ensembles to be a faithful representa-

tion of possible solutions and need to calculate the

maximum ensemble spread that is consistent with the

skill and a sample size of N, assuming the underlying

distributions are Gaussian. From EREG, the residual

variance is given by (2.14),

su
2 5 cs2

Y(1� R2
u),

where Ru is the expected correlation between the

closest ensemble member and the observation given

N members:

s2
u 5 cs2

Y(1� R2
u) 5 cs2

Y(1� R2
m) 1�N � 1

N

� �
.

We seek a transformation constant, KN, which when

applied to (2.15), will produce the maximum spread

sustainable for N members and for normally distributed

errors. Noting the relationship Ru and the correlation

between the individual members of a transformed

forecast, R0I ,

Ru 5
R2

m

R0I
.

From (2.6) and (2.7), a relationship for KN can then be

formulated and expressed in terms of statistical pa-

rameters from the original ensemble as shown in

(2.18):

KN 5

N � 1

N

1

R2
m

� 1

 !

R2
m

R2
I

� 1

2
66664

3
77775

1/2

5
N � 1

N

� �1/2

Kmax.

REFERENCES

Anderson, J. L., 1996: A method for producing and evaluating

probabilistic forecasts from ensemble model integrations.

J. Climate, 9, 1518–1530.

Barnett, T. P., 1995: Monte Carlo climate forecasting. J. Climate, 8,

1005–1022.

Barnston, A. G., and Coauthors, 1994: Long lead seasonal fore-

casts—Where do we stand? Bull. Amer. Meteor. Soc., 75,

2097–2114.

——, M. Chelliah, and S. B. Goldberg, 1997: Documentation of a

highly ENSO-related SST region in the equatorial Pacific.

Atmos.–Ocean, 35, 367–383.

——, Y. He, and D. A. Unger, 2000: A forecast product that

maximizes utility for state-of-the-art seasonal climate pre-

diction. Bull. Amer. Meteor. Soc., 81, 1271–1279.

Benzi, R., and A. Speranza, 1989: Statistical properties of low

frequency variability in the Northern Hemisphere. J. Climate,

2, 367–379.

Draper, N., and H. Smith, 1981: Applied Regression Analysis. John

Wiley and Sons, 709 pp.

Eckel, F. A., and M. K. Walters, 1998: Calibrated probabilistic

quantitative precipitation forecasts based on the MRF en-

semble. Wea. Forecasting, 13, 1132–1147.

Epstein, E., 1969a: Stochastic dynamic prediction. Tellus, 21,

739–759.

——, 1969b: A scoring system for probability forecasts of ranked

categories. J. Appl. Meteor., 8, 985–987.

Fortin, V., A. C. Favre, and M. Said, 2006: Probabilistic forecasting

from ensemble prediction systems: Improving on the best

member method by using a different weight and dressing

kernel for each member. Quart. J. Roy. Meteor. Soc., 132,

1349–1369.

Glahn, B., and Coauthors, 2009: MOS uncertainty estimates in an

ensemble framework. Mon. Wea. Rev., 137, 246–268.

Glahn, H. R., and D. Lowry, 1972: The use of model output sta-

tistics (MOS) in objective weather forecasts. J. Appl. Meteor.,

11, 1203–1211.

Gneiting, T., A. Raftery, A. H. Westveld III, and T. Goldman,

2005: Calibrated probabilistic forecasting using ensemble

model output statistics and minimum CRPS estimation. Mon.

Wea. Rev., 133, 1098–1118.

Hamill, T. M., 2000: Interpretation of rank histograms for verifying

ensemble forecasts. Mon. Wea. Rev., 129, 550–560.

——, and S. J. Colucci, 1997: Verification of Eta–RSM short-

range ensemble forecasts. Mon. Wea. Rev., 125, 1312–

1327.

——, and ——, 1998: Evaluation of Eta–RSM ensemble prob-

abilistic precipitation forecasts. Mon. Wea. Rev., 126, 711–

724.

——, and J. S. Whitaker, 2006: Quantitative precipitation forecasts

based on reforecast analogs: Theory and applications. Mon.

Wea. Rev., 134, 3209–3229.

——, ——, and X. Wei, 2004: Ensemble reforecasting: Improving

medium-range forecasting using retrospective forecasts. Mon.

Wea. Rev., 132, 1434–1447.

Hersbach, H., 2000: Decomposition of the continuous ranked

probability score for ensemble prediction systems. Wea.

Forecasting, 15, 559–570.

Hoffman, R. N., and E. Kalnay, 1983: Lagged average forecasting,

an alternative to Monte-Carlo forecasting. Tellus, 35A,

100–118.

Klein, W. H., F. Lewis, and I. Enger, 1959: Objective prediction

of 5-day mean temperature during winter. J. Meteor., 16,

672–682.

Kumar, A., and M. P. Hoerling, 1995: Prospects and limitations of

seasonal atmospheric GCM predictions. Bull. Amer. Meteor.

Soc., 76, 335–345.

Leith, C. E., and Coauthors, 1974: Theoretical skill of Monte Carlo

forecasts. Mon. Wea. Rev., 102, 409–418.

2378 M O N T H L Y W E A T H E R R E V I E W VOLUME 137



Livezey, R. E., 1990: Variability of skill of long range forecasts and

implications for their use and value. Bull. Amer. Meteor. Soc.,

71, 300–309.

——, and M. M. Timofeyeva, 2008: The first decade of long-lead

U.S. seasonal forecasts: Insights from a skill analysis. Bull.

Amer. Meteor. Soc., 89, 843–855.

Matheson, J. E., and R. L. Winkler, 1976: Scoring rules for con-

tinuous probability distributions. Manage. Sci., 22, 1087–1096.

Michaelsen, J., 1987: Cross-validation in statistical climate forecast

models. J. Climate Appl. Meteor., 26, 1589–1600.

Murphy, A. H., 1970: The ranked probability score and the prob-

ability score: A comparison. Mon. Wea. Rev., 98, 917–924.

O’Lenic, E. A., 2008: Developments in operational long-range

climate prediction at CPC. Wea. Forecasting, 23, 496–515.

Phelps, M. W., A. Kumar, and J. J. O’Brien, 2004: Potential pre-

dictability in the NCEP CPC seasonal forecast system.

J. Climate, 17, 3775–3785.

Raftery, A. E., and Coauthors, 2005: Using Bayesian model av-

eraging to calibrate forecast model ensembles. Mon. Wea.

Rev., 133, 1155–1174.

Roads, J. O., 1988: Lagged averaged predictions in a predictability

experiment. J. Atmos. Sci., 45, 147–162.

Roulston, M. S., and L. A. Smith, 2003: Combining dynamic and

statistical ensembles. Tellus, 55A, 16–30.

Rowell, D. P., 1998: Assessing seasonal predictability with an en-

semble of multidecadal GCM simulations. J. Climate, 11,
109–120.

Saha, S., and Coauthors, 2006: The NCEP Climate Forecast Sys-

tem. J. Climate, 19, 3483–3517.

Silverman, B. W., 1986: Density Estimation for Statistics and Data

Analysis. Chapman and Hall, 175 pp.

Sivillo, J. K., J. E. Ahlquist, and Z. Toth, 1997: An ensemble

forecasting primer. Wea. Forecasting, 12, 809–818.

Stern, W., and K. Miyakoda, 1995: Feasibility of seasonal forecasts

inferred from multiple GCM simulations. J. Climate, 8, 1071–1085.

Talagrand, O., R. Vauland, and B. Strauss, 1997: Evaluation

of probabilistic predictions systems. Proc. Workshop on Pre-

dictions, Reading, United Kingdom, ECMWF, 1–25. [Avail-

able from ECMWF, Shinfield Park, Reading, Berkshire

RG29AX, United Kingdom.]
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