Skip Navigation Links www.nws.noaa.gov 
NOAA logo - Click to go to the NOAA home page National Weather Service   NWS logo - Click to go to the NWS home page
Climate Prediction Center

 
HOME > Stratosphere Home > TOVS Total Ozone > TOVS Total Ozone Information
 
 

TOVS Ozone NH TOVS Ozone SH NOAA's TIROS Operational Vertical Sounder(TOVS) is a suite of three instruments: the Microwave Sounding Unit(MSU), the High resolution Infrared Radiation Sounder(HIRS), and the Stratospheric Sounding Unit(SSU). Each instrument measures radiation emmitted by the Earth at several different wavelengths. The HIRS channel 9 measures Earth's emmitted infrared radiation at 9.7 microns (10-6 meters). This is a "window channel" meaning that the radiation measured by the HIRS instrument is emmited from the earth's surface (as opposed to radiation being emmitted at other levels of the earth's atmosphere). The amount of radiation reaching the HIRS instrument is dependant upon how much ozone is in the earth's atmosphere (less ozone = more radiation). Therefore, the TOVS Total Ozone algorithm uses this channel (along with information from other HIRS channels) to estimate the total amount of ozone in the earth's atmosphere. The greatest contribution of the emmitted radiation occurs in a region between 200 hPa and 30 hPa (13km to 27km). This "lower stratosphere" region is below the levels where the greatest contribution to the total ozone amount occurs(50hpa to 10hPa or 20km to 30km). Thus the ozone amount measured by the TOVS Total Ozone algorithm is not a true measure of the "total" amount of ozone in the earth's atmosphere. Rather it is a better measure of the ozone amount in the lower stratosphere. To obtain a "total" ozone amount, the TOVS Total Ozone algorithm adjusts the lower stratosphere ozone amount by a climatological amount that is variable with season and latitude.

This is in contrast with satellite instruments which measure the amount of backscattered radiation at various ultraviolet wavelengths. Backscattered radiation levels at wavelengths where ozone absorbtion does and does not take place are compared with the same wavelenghts measured directly from the sun to derive a "total ozone" amount in the earth's atmosphere. This methodology is used by the NASA TOMS and the NOAA SBUV/2 ozone monitoring programs. This methodology provides a truer measure of the total ozone amount in the earth's atmosphere. One drawback is that this method uses "backscattered" sunlight. Which means that data cannot be retrieved in the earth's shadow or polar night regions.

The TOVS Total Ozone algorithm can determine ozone amounts at all times since it is derived from the Earth's emmitted infrared radiation. There are drawbacks to the TOVS infrared methodolgy though. When the earth's surface is either too cold (e.g., the high Antarctic Plateau) too hot (e.g., the Sahara desert) or too obscured (e.g., by heavy tropical cirrus clouds) the accuracy of this methodolgy declines.

Information about the TOVS ozone algorithm was provided by:

Arthur C. Neuendorffer
Office of Research and Applications
Climate Research & Applications Division
NOAA/NESDIS, RA14, Room 810
5200 Auth Road
Camp Springs, Maryland 20746-4304

Phone: (301)763-8136
Fax (301)763-8108

E-Mail: aneuendorffer@nesdis.noaa.gov

Last Updated March 8, 1999 by Craig S. Long

NOAA/ National Weather Service
NOAA Center for Weather and Climate Prediction
Climate Prediction Center
5830 University Research Court
College Park, Maryland 20740
Page Author: Climate Prediction Center Internet Team
Page last modified: January 11, 2006
Disclaimer
Information Quality
Credits
Glossary
Privacy Policy
Freedom of Information Act (FOIA)
About Us
Career Opportunities