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Tropical Highlights - February 2018

Sea surface temperatures (SSTs) during February 2018 remained below-average across the central
and eastern equatorial Pacific (Fig. T18, Table T2). The latest monthly Nifio indices were -0.2°C for
the Nifio 4 region, -0.9°C for the Nifio 3.4 region, and -0.6°C for the Nifio 1+2 region (Table T2,
Fig. T5). The depth of the oceanic thermocline (measured by the depth of the 20°C isotherm) was
slightly below-average over the eastern equatorial Pacific (Figs. T15, T16), and the corresponding
sub-surface temperatures were 0-1°C below average (Fig. T17).

Also during February, the lower-level wind anomalies were westerly across the western and
central equatorial Pacific while the upper-level westerly winds were above-average over the eastern
equatorial Pacific (Table T1, Figs. T20, T21). Meanwhile, convection was suppressed over Indonesia
and east-central equatorial Pacific and enhanced over the far western and west-central equatorial
Pacific (Figs. T25, E3). Collectively, these oceanic and atmospheric anomalies reflect weakening
La Nifia conditions.

For the latest status of the ENSO cycle see the ENSO Diagnostic Discussion at:
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_advisory/index.html
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Southern QCaclllaion Index (SD_I)
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FIGURE T1. Five-month running mean of the Southern Oscillation Index (SOI) (top), sea-level pressure anomaly (hPa)
at Darwin and Tahiti (middle), and outgoing longwave radiation anomaly (OLR) averaged over the area 5N-5S,
160E-160W (bottom). Anomalies in the top and middle panels are departures from the 1981-2010 base period
means and are normalized by the mean annual standard deviation. Anomalies in the bottom panel are departures
from the 1981-2010 base period means. Individual monthly values are indicated by “x”s in the top and bottom
panels. The x-axis labels are centered on July.



CDAS/Reanalysis—Based S0l and Equatorial SOI
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FIGURE T2. Three-month running mean of a CDAS/Reanalysis-derived (a) Southern Oscillation Index (RSOIl), (b)
standardized pressure anomalies near Tahiti (solid) and Darwin (dashed), (c) an equatorial SOI ([EPAC] - [INDO]),
and (d) standardized equatorial pressure anomalies for (EPAC) (solid) and (INDO) (dashed). Anomalies are de-
partures from the 1981-2010 base period means and are normalized by the mean annual standard deviation. The
equatorial SOI is calculated as the normalized difference between the standardized anomalies averaged between
5°N-5°S, 80°W-130°W (EPAC) and 5°N-5°S, 90°E-140°E (INDO).
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FIGURE T3. Five-month running mean (solid lines) and individual monthly mean (dots) of the 200-hPa zonal wind
anomalies averaged over the area 5N-5S, 165W-110W (top), the 500-hPa virtual temperature anomalies averaged
over the latitude band 20N-20S (middle), and the equatorial zonally-averaged zonal wind anomalies at 30-hPa
(red) and 50-hPa (blue) (bottom). In the top panel, anomalies are normalized by the mean annual standard devia-
tion. Anomalies are departures from the 1981-2010 base period means. The x-axis labels are centered on January.
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FIGURE T4. Five-month running mean (solid line) and individual monthly mean (dots) of the standardized 850-hPa
zonal wind anomaly index in the latitude belt 5N-5S for 135E-180 (top), 175W-140W (middle) and 135W-120W
(bottom). Anomalies are departures from the 1981-2010 base period means and are normalized by the mean an-
nual standard deviation.The x-axis labels are centered on January. Positive (negative) values indicate easterly
(westerly) anomalies.
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FIGURE T5. Nino region indices, calculated as the area-averaged sea surface temperature anomalies (C) for the speci-
fied region. The Nino 1+2 region (top) covers the extreme eastern equatorial Pacific between 0-10S, 90W-80W.
The Nino-3 region (2nd from top) spans the eastern equatorial Pacific between 5N-5S, 150W-90W. The Nino 3.4
region 3rd from top) spans the east-central equatorial Pacific between 5N-5S, 170W-120W. The Nino 4 region
(bottom) spans the date line and covers the area 5N-5S, 160E-150W. Anomalies are departures from the 1981-
2010 base period monthly means (Smith and Reynolds 1998, J. Climate, 11, 3320-3323). Monthly values of each
index are also displayed in Table 2.
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Sea Leval Prasaure (hPa)
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FIGURE T6. Time-longitude section of mean (top) and anomalous (bottom) sea level pressure (SLP) averaged between
5N-5S (CDAS/Reanalysis). Contour interval is 1.0 hPa (top) and 0.5 hPa (bottom). Dashed contours in bottom
panel indicate negative anomalies. Anomalies are departures from the 1981-2010 base period monthly means. The
data are smoothed temporally using a 3-month running average.
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FIGURE T7. Time-longitude section of mean (top) and anomalous (bottom) 850-hPa zonal wind averaged between
5N-5S (CDAS/Reanalysis). Contour interval is 2 ms™. Blue shading and dashed contours indicate easterlies (top)
and easterly anomalies (bottom). Anomalies are departures from the 1981-2010 base period monthly means. The
data are smoothed temporally using a 3-month running average.
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FIGURE T8. Time-longitude section of mean (top) and anomalous (bottom) outgoing longwave radiation (OLR)
averaged between 5N-5S. Contour interval is 10 Wm-2, Dashed contours in bottom panel indicate negative OLR
anomalies. Anomalies are departures from the 1981-2010 base period monthly means. The data are smoothed
temporally using a 3-month running average.
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FIGURE T9. Time-longitude section of monthly mean (top) and anomalous (bottom) sea surface temperature (SST)
averaged between 5N-5S. Contour interval is 1C (top) and 0.5C (bottom). Dashed contours in bottom panel indi-
cate negative anomalies. Anomalies are departures from the 1981-2010 base period means (Smith and Reynolds
1998, J. Climate, 11, 3320-3323).
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FIGURE T10. Time-longitude section of anomalous sea level pressure (hPa) averaged between 5N-5S (CDAS/Re-
anaysis). Contour interval is 1 hPa. Dashed contours indicate negative anomalies. Anomalies are departures from
the 1981-2010 base period pentad means. The data are smoothed temporally using a 3-point running average.
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FIGURE T11. Time-longitude section of anomalous outgoing longwave radiation averaged between 5N-5S. Contour
interval is 15 Wm-2. Dashed contours indicate negative anomalies. Anomalies are departures from the 1981-2010
base period pentad means. The data are smoothed temporally using a 3-point running average.
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FIGURE T12. Time-longitude section of anomalous 200-hPa velocity potential averaged between 5N-5S (CDAS/Re-
analysis). Contour interval is 3 x 10® m?s. Dashed contours indicate negative anomalies. Anomalies are departures
from the 1981-2010 base period pentad means. The data are smoothed temporally using a 3-point running average.
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FIGURE T13. Time-longitude section of anomalous 850-hPa zonal wind averaged between 5N-5S (CDAS/Reanalysis).
Contour interval is 2 ms. Dashed contours indicate negative anomalies. Anomalies are departures from the 1981-
2010 base period pentad means. The data are smoothed temporally by using a 3-point running average.
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FIGURE T14. Equatorial time-height section of anomalous zonally-averaged zonal wind (m s') (CDAS/Reanalysis).
Contour interval is 10 ms. Anomalies are departures from the 1981-2010 base period monthly means.
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FIGURE T15. Mean (top) and anomalous (bottom) depth of the 20C isotherm averaged between 5N-5S in the Pacific
Ocean. Data are derived from the NCEP’s global ocean data assimilation system which assimilates oceanic obser-
vations into an oceanic GCM (Behringer, D. W., and Y. Xue, 2004: Evaluation of the global ocean data assimila-
tion system at NCEP: The Pacific Ocean. AMS 84th Annual Meeting, Seattle, Washington, 11-15). The contour
interval is 10 m. Dashed contours in bottom panel indicate negative anomalies. Anomalies are departures from
the 1981-2010 base period means.
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February 2018
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FIGURE T16. Mean (top) and anomalous (bottom) depth of the 20°C isotherm for FEB 2018. Contour interval is 40
m (top) and 10 m (bottom). Dashed contours in bottom panel indicate negative anomalies. Data are derived from
the NCEP’s global ocean data assimilation system version 2 which assimilates oceanic observations into an oce-
anic GCM (Xue, Y. and Behringer, D.W., 2006: Operational global ocean data assimilation system at NCEP, to be
submitted to BAMS). Anomalies are departures from the 1981-2010 base period means.
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February 2018: Depth—Longitude Sectlon
Equatorial Ocean Temperaturea (C)
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FIGURE T17. Equatorial depth-longitude section of ocean temperature (top) and ocean temperature anomalies (bottom)
for FEB 2018. Contour interval is 1°C. Dashed contours in bottom panel indicate negative anomalies. Data are
derived from the NCEP’s global ocean data assimilation system version 2 which assimilates oceanic observations
into an oceanic GCM (Xue, Y. and Behringer, D.W., 2006: Operational global ocean data assimilation system at
NCEP, to be submitted to BAMS). Anomalies are departures from the 1981-2010 base period means.
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February 2018
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FIGURE T18. Mean (top) and anomalous (bottom) sea surface temperature (SST). Anomalies are departures from the
1981-2010 base period monthly means (Smith and Reynolds 1998, J. Climate, 11, 3320-3323).
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February 2018
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FIGURE T19. Mean (top) and anomalous (bottom) sea level pressure (SLP) (CDAS/Reanalysis). In top panel, 1000
hPa has been subtracted from contour labels, contour interval is 2 hPa, and values below 1000 hPa are indicated
by dashed contours. In bottom panel, anomaly contour interval is 1 hPa and negative anomalies are indicated by
dashed contours. Anomalies are departures from the 1981-2010 base period monthly means.
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February 2018
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FIGURE T20. Mean (top) and anomalous (bottom) 850-hPa vector wind (CDAS/Reanaysis) for FEB 2018. Contour
interval for isotachs is 4 ms? (top) and 2 ms* (bottom). Anomalies are departures from the 1981-2010 base
period monthly means.
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FIGURE T21. Mean (top) and anomalous (bottom) 200-hPa vector wind (CDAS/Reanalysis) for FEB 2018. Contour
interval for isotachs is 15 ms* (top) and 5 ms* (bottom). Anomalies are departures from 1981-2010 base period
monthly means.
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February 2018
200—hPa Streamfunction
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FIGURE T22. Mean (top) and anomalous (bottom) 200-hPa streamfunction (CDAS/Reanalysis). Contour interval is
20 x 10° m?s? (top) and 5 x 10° m2s? (bottom). Negative (positive) values are indicated by dashed (solid) lines.
The non-divergent component of the flow is directed along the contours with speed proportional to the gradient.
Thus, high (low) stream function corresponds to high (low) geopotential height in the Northern Hemisphere and
to low (high) geopotential height in the Southern Hemisphere. Anomalies are departures from the 1981-2010 base
period monthly means.
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February 2018
200—hPa Divergence
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FIGURE T23. Mean (top) and anomalous (bottom) 200-hPa divergence (CDAS/Reanalysis). Divergence and anomalous
divergence are shaded blue. Convergence and anomalous convergence are shaded orange. Anomalies are departures
from the 1981-2010 base period monthly means.
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FIGURE T24. Mean (top) and anomalous (bottom) 200-hPa velocity potential (10°m?s) and divergent wind (CDAS/
Reanalysis). Anomalies are departures from the 1981-2010 base period monthly means.
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FIGURE T25. Mean (top) and anomalous (bottom) outgoing longwave radiation for FEB 2018 (NOAA 18 AVHRR
IR window channel measurements by NESDIS/ORA). OLR contour interval is 20 Wm-2 with values greater than
280 Wm? indicated by dashed contours. Anomaly contour interval is 15 Wm-2 with positive values indicated by
dashed contours and light shading. Anomalies are departures from the 1981-2010 base period monthly means.
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FIGURE T26. Estimated total (top) and anomalous (bottom) rainfall (mm) based on the Special Sensor Microwave/
Imager (SSM/S) precipitation index (Ferraro 1997, J. Geophys. Res., 102, 16715-16735). Anomalies are computed
from the SSM/I 1987-2010 base period monthly means. Anomalies have been smoothed for display purposes.
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February 2018
Cloud Liguid Water
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FIGURE T27. Mean (top) and anomalous (bottom) cloud liquid water (g m2) based on the Special Sensor Microwave/
Imager (SSM/I) (Weng et al 1997: J. Climate, 10, 1086-1098). Anomalies are calculated from the 1987-2010
base period means.
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FIGURE T28. Mean (top) and anomalous (bottom) vertically integrated water vapor or precipitable water (kg m) based
on the Special Sensor Microwave/lmager (SSM/I) (Ferraro et. al, 1996: Bull. Amer. Meteor. Soc., 77, 891-905).
Anomalies are calculated from the 1987-2010 base period means.
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FIGURE T29. Pressure-longitude section (L00E-80W) of the mean (top) and anomalous (bottom) divergence (contour
interval is 1 x 10 s) and divergent circulation averaged between 5N-5S. The divergent circulation is represented
by vectors of combined pressure vertical velocity and the divergent component of the zonal wind. Red shading
and solid contours denote divergence (top) and anomalous divergence (bottom). Blue shading and dashed contours

denote convergence (top) and anomalous convergence (bottom). Anomalies are departures from the 1981-2010
base period monthly means.
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Divergence and West—East Divergent Circulation
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FIGURE T30. Pressure-longitude section (80W-100E) of the mean (top) and anomalous (bottom) divergence (contour
interval is 1 x 10 s1) and divergent circulation averaged between 5N-5S. The divergent circulation is represented
by vectors of combined pressure vertical velocity and the divergent component of the zonal wind. Red shading
and solid contours denote divergence (top) and anomalous divergence (bottom). Blue shading and dashed contours
denote convergence (top) and anomalous convergence (bottom). Anomalies are departures from the 1981-2010
base period monthly means.
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Zonal Wind and N—35 Divergent Circulatian
Western Pacific (120E—170E): Mean
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FIGURE T31. Pressure-latitude section of the mean (top) and anomalous (bottom) zonal wind (m s?) and divergent
circulation averaged over the west Pacific sector (120E-170E). The divergent circulation is represented by vectors
of combined pressure vertical velocity and the divergent component of the meridional wind. Red shading and
solid contours denote a westerly (top) or anomalous westerly (bottom) zonal wind. Blue shading and dashed
contours denote an easterly (top) or anomalous easterly (bottom) zonal wind. Anomalies are departures from
the 1981-2010 base period monthly means.

39



February 2018

Zonal Wind and N—S Divergent Circulation
Eastern Pacific (130W—180W): Mean
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FIGURE T32. Pressure-latitude section of the mean (top) and anomalous (bottom) zonal wind (m s*) and divergent
circulation averaged over the central Pacific sector (130W-180W). The divergent circulation is represented by
vectors of combined pressure vertical velocity and the divergent component of the meridional wind. Red shading
and solid contours denote a westerly (top) or anomalous westerly (bottom) zonal wind. Blue shading and dashed
contours denote an easterly (top) or anomalous easterly (bottom) zonal wind. Anomalies are departures from the
1981-2010 base period monthly means.
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Tropical Pacific Drifting Buoys R. Lumpkin/M. Pazos, AOML, Miami

During February 2018, 1459 satellite-tracked surface drifting buoys were reporting from the tropical Pacific.
The drifter array revealed strong Tropical Instability Waves at 90-100W, and westward aomalies of ~20 cm/s
at 130-140W, 10N. West of 160E near and south of the equator, four drifters indicated very strong (>40 cm/s)
eastward anomalies.
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Figure AL1.1 Top: Movements of drifting buoys in the tropical Pacific Ocean during February 2018. The linear
segments of each trajectory represent a one week displacement. Trajectories of buoys which have lost their subsurface
drogues are gray; those with drogues are black.

Middle: Monthly mean currents calculated from all buoys 1993-2002 (gray), and currents measured by the drogued
buoys this month (black) smoothed by an optimal filter.

Bottom: Anomalies from the climatological monthly mean currents for this month.
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NEAR—SURFACE CURRENTS : FEBRUARY 2018
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FIGURE A1.3. Ocean Surface Current Analysis-Real-time (OSCAR) for FEB 2018 (Bonjean and Lagerloef 2002, J.

Phys. Oceanogr., Vol. 32, No. 10, 2938-2954; Lagerloef et al. 1999, JGR-Oceans, 104, 23313-23326). (top) Total
velocity. Surface currents are calculated from satellite data including Jason sea level anomalies and NCEP winds.

(bottom) Velocity anomalies. The subtracted climatology was based on SSM/I and QuickScat winds and Topex/

Poseidon and Jason from 1993-2003. See also http://www.o0scar.noaa.gov.
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NEAR-SURFACE CURRENTS : FEBRUARY 2018
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Forecast Forum

The canonical correlation analysis (CCA) forecast of SST in the central Pacific (Barnett et al.
1988, Science, 241, 192196; Barnston and Ropelewski 1992, J. Climate, 5, 13161345), is shown
in Figs. F1 and F2. This forecast is produced routinely by the Prediction Branch of the Climate
Prediction Center. The predictions from the National Centers for Environmental Prediction (NCEP)
Coupled Forecast System Model (CFS03) are presented in Figs. F3 and F4a, F4b. Predictions
from the Markov model (Xue, et al. 2000: J. Climate, 13, 849871) are shown in Figs. F5 and F6.
Predictions from the latest version of the LDEO model (Chen et al. 2000: Geophys. Res. Let., 27,
25852587) are shown in Figs. F7 and F8. Predictions using linear inverse modeling (Penland
and Magorian 1993: J. Climate, 6, 10671076) are shown in Figs. F9 and F10. Predictions from
the Scripps / Max Planck Institute (MPI) hybrid coupled model (Barnett et al. 1993: J. Climate, 6,
15451566) are shown in Fig. F11. Predictions from the ENSOCLIPER statistical model (Knaff
and Landsea 1997, Wea. Forecasting, 12, 633652) are shown in Fig. F12. Nifio 3.4 predictions are
summarized in Fig. F13, provided by the Forecasting and Prediction Research Group of the IRI.

The CPC and the contributors to the Forecast Forum caution potential users of this predictive
information that they can expect only modest skill.

ENSO Alert System Status: La Nifia Advisory

Outlook

A transition from La Nifia to ENSO-neutral is most likely (~55% chance) during the March-May
season, with neutral conditions likely to continue into the second half of the year.

Discussion

During February 2018, La Nifia weakened, but was still reflected by below-average sea surface
temperatures (SSTs) in the east-central equatorial Pacific Ocean (Fig. T18). The monthly index values
were -0.9C and -1.0C in the Nifio-3.4 and Nifio-3 regions, respectively, and were less negative in the
surrounding Nifio.4 and Nifio1+2 regions (Table T2). While negative anomalies were maintained
near the surface, the sub-surface temperature anomalies (averaged across 180°-100°W) warmed to
near zero. This warming was due to the eastward propagation of above-average temperatures along
the thermocline in association with a downwelling equatorial oceanic Kelvin wave (Fig. T17). The
atmospheric anomalies typical of La Nifia weakened considerably across the tropical Pacific. Con-
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vection was suppressed near Indonesia and was only weakly enhanced over the far western Pacific
(Fig. T25). Also, low-level wind anomalies were westerly over the western and central Pacific,
while upper-level winds remained anomalously westerly over the eastern Pacific (Figs. T20, T21).
Overall, the ocean and atmosphere system suggests La Nifia is weakening.

Most models in the IRI/CPC plume predict La Nifia will decay and return to ENSO-neutral
during the Northern Hemisphere spring 2018 (Figs. F1-F13). The forecast consensus similarly favors
a transition during the spring, with a continuation of ENSO-neutral conditions through the summer.
In summary, a transition from La Nifia to ENSO-neutral is most likely (~55% chance) during the
March-May season, with neutral conditions likely to continue into the second half of the year.

Weekly updates of oceanic and atmospheric conditions are available on the Climate Prediction
Center homepage (EI Nifio/La Nifa Current Conditions and Expert Discussions).
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FIGURE F2. Canonical Correlation Analysis (CCA) forecasts of sea-surface temperature anomalies for the Nino 3.4
region (5N-5S, 120W-170W) for the upcoming five consecutive 3-month periods. Forecasts are expressed as stan-
dardized SST anomalies. The CCA predictions are based on anomaly patterns of SST, depth of the 20C isotherm,
sea level height, and sea level pressure. Small squares at the midpoints of the vertical forecast bars represent the
CCA predictions, and the bars show the one (thick) and two (thin) standard deviation errors. The solid continuous
line represents the observed standardized three-month mean SST anomaly in the Nino 3.4 region up to the most
recently available data.

48



Last update: Frl War 9 2018
Inltlal comdttlars: 26Fa2018—07Mar2018

Anomallas

- Lo, | j/é’

e il 0 DY W Um o

S St

.r""nH

aead ; ; . —
106 180 1O 140 1ZW LOF OO 1MG LWE 180 10OW 14 LT LW oUW

T

FIGURE F3. Predicted 3-month average sea surface temperature (left) and anomalies (right) from the NCEP Coupled
Forecast System Model (CFS03). The forecasts consist of 40 forecast members. Contour interval is 1°C, with ad-
ditional contours for 0.5°C and -0.5°C. Negative anomalies are indicated by dashed contours.
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FIGURE F4. Predicted and observed sea surface temperature (SST) anomalies for the Nino 3 (top) and Nino 3.4
(bottom) regions from the NCEP Coupled Forecast System Model (CFS03). The forecasts consist of 40 forecast
members. The ensemble mean of all 40 forecast members is shown by the blue line, individual members are shown
by thin lines, and the observation is indicated by the black line. The Nino-3 region spans the eastern equatorial
Pacific between 5N-5S, 150W-90W. The Nno 3.4 region spans the east-central equatorial Pacific between 5N-5S,
170W-120W.
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FIGURE F5. Predicted 3-month average sea surface temperature anomalies from the NCEP/CPC Markov model (Xue
et al. 2000, J. Climate, 13, 849-871). The forecast is initiated in FEB 2018 . Contour interval is 0.3C and nega-
tive anomalies are indicated by dashed contours. Anomalies are calculated relative to the 1971-2000 climatology.
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LDED FORECASTS OF S5T AND WIND STRESS ANOMALIES
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FIGURE F7. Forecasts of the tropical Pacific Predicted SST (shading) and vector wind anomalies for the next 3 sea-
sons based on the LDEO model. Each forecast represents an ensemble average of 3 sets of predictions initialized
during the last three consecutive months (see Figure F8).
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FIGURE F8. LDEO forecasts of SST anomalies for the Nino 3 region using wind stresses obtained from (top) Qui-
kSCAT, (middle) NCEP, and (bottom) Florida State Univ. (FSU), along with SSTs (obtained from NCEP), and sea
surface height data (obtained from TOPEX/POSEIDON) data. Each thin blue line represents a 12-month forecast,
initialized one month apart for the past 24 months. Observed SST anomalies are indicated by the thick red line.
The Nino-3 region spans the eastern equatorial Pacific between 5N-5S, 150W-90W.
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FIGURE F10. Predictions of Nifio 3.4 SSTA (blue solid line) and verification (solid red line). The Nifio3.4 Index was
calculated in the area 6N-6S, 170W-120W. The 1980-2010 climatology was subtracted from ERSST data between
1950 and 2010, after which they were projected onto 20 EOFs containing 90% of thevariance. Significant 1950-
2010 trends were subtracted from the corresponding PCs, the forecast was made on the detrended anomalies, after
which the trend was added to the forecast. The dotted lines indicate the one standard deviation confidence interval
for the forecasts based on a perfect adherence to assumption.
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FIGURE F12. Time series of predicted sea surface temperature anomalies for the Nino 3.4 region (deg. C) from various
dynamical and statistical models for nine overlapping 3-month periods. The Nino 3.4 region spans the east-central
equatorial Pacific between 5N-5S, 170W-120W. Figure provided by the International Research Institute (IRI).
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Extratropical Highlights — February 2018

1. Northern Hemisphere

The 500-hPa circulation during February featured a highly amplified anomalous wave pattern
(Fig. E9), and continued to be strongly influenced by La Nifia and the Madden Julian Oscillation
(MJO). Above-average heights were present over the high latitudes of the North Pacific, the eastern
U.S., and large portions of the polar region, while below-average heights were present over most
of Canada, the western U.S., and southern Europe.

This anomaly pattern projected onto several teleconnection patterns (Fig. E7, Table E1). It
projected onto the positive phases of the North Atlantic Oscillation (NAO, +1.3) and the Tropical/
Northern Hemisphere pattern (TNH, +2.2). It also projected onto the negative phases of the Polar/
Eurasian pattern (-2.2), the east-Atlantic pattern (-1.4), and the east Atlantic/ Western Russian pat-
tern (-1.4).

At 200-hPa, the circulation across the subtropical Pacific Ocean in both hemispheres reflected
La Nifia. The La Nifa signal included highly amplified troughs east of the date line in both hemi-
spheres, in association with the disappearance of deep tropical convection from the central equato-
rial Pacific (Fig. T25). The La Nifa signal also included a focusing of the subtropical ridges over
Australasia (Fig. T22), in association with enhanced convection over the western tropical Pacific,
Indonesia, and the eastern Indian Ocean.

The main land-surface temperature signals during February included above-average temperatures
across the southern and eastern U.S. and in the polar region, and below-average temperatures in
the western Canada and western Europe (Fig. E1). The main precipitation signals included above-
average totals in the central U.S. and southern Europe (Fig. E3).

a. North Pacific and North America

The 500-hPa circulation during February featured above-average heights over the high latitudes
of the North Pacific, the Gulf of Alaska and the southeastern U.S., and below-average heights over
Canada and the western U.S. (Fig. E9). This type of highly amplified wave pattern is typical of La
Nifa.

La Nifia produces an enhanced subtropical ridge over southeastern Asia along with an amplified
mid-Pacific trough (Fig. T22). These conditions act to retract westward the East Asian jet steam.
This anomalous jet structure, in turn, acts to retract westward the mean downstream ridge and
trough positions, resulting in the essence of the anomalous 500-hPa circulation pattern seen during
February. This anomalous wave pattern projected strongly onto two teleconnection patterns which
tend to be favored during La Nifia winter; the positive phase of the TNH pattern and the negative
phase of the PNA pattern (Fig. E7, Table E1).

This overall pattern contributed to anomalously warm surface temperatures in the eastern U.S.
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and to anomalously cool temperatures in western Canada (Fig. E1). It also contributed to above-
average precipitation in the central U.S. (Fig. E3). Area-averages totals in the Great Plains, Great
Lakes, Midwest, and Ohio Valley regions in the upper 90th percentile of occurrences (Fig. E5).

b. Polar region

The mean February 500-hPa circulation during February featured an anomalous zonal wave-1
pattern, with above-average heights north of Eurasia and below-average heights extending from
central Canada to Greenland (Fig. E9). This pattern appears to have reflected a downward exten-
sion of a stratospheric anomaly pattern that was prominent up to at least the 30 hPa level (Fig. S2).

At 500-hPa, this pattern projected strongly onto the negative phase of the Polar/ Eurasian pattern
(-2.2). The anomalous southerly flow between the anomalous trough and the downstream anomalous
ridge resulted in a massive influx of relatively mild air (and significantly warmer temperatures) into
the polar region at levels extending from the surface (Fig. E8) to 500-hPa.

b. Europe

The circulation across the central North Atlantic and Europe reflected an anomalous zonal
wave-4 pattern, with above-average heights over the west-central North Atlantic and Scandinavia,
and below-average heights over Greenland and southern Europe (Fig E9). This pattern reflected an
amplified jet stream over the western Atlantic (Fig. E10), along with a pronounced jet exit region
and split-flow pattern across the eastern Atlantic and Europe. The northern branch of this split flow
brought a large influx of milder air into the polar region. The southern branch contributed to in-
creased storminess and above-average precipitation across southern Europe (Fig. E3). This marked
the first time in more than a year that area-averaged precipitation was above average across southern
Europe (Fig. E4).

2. Southern Hemisphere

The mean 500-hPa circulation during February featured above-average heights over the Indian
Ocean and below-average heights over the high latitudes of the South Pacific Ocean (Fig. E15). At
200-hPa, the subtropical circulation featured an amplified trough over the central and eastern South
Pacific Ocean, and ridge over western Australia (Fig. T22). This anomalous subtropical circulation
is typical of La Nifia.

The South African monsoon season runs from October to April. This area recorded above-average
precipitation during February, with area-averaged totals in the upper 80th percentile of occurrences
(Fig. E4). The most significant surpluses were observed in the northern and central portions of the
monsoon region (Fig E3), where they helped to alleviate significant rainfall deficits which had ac-
cumulated over the last two months.
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FIGURE E1. Surface temperature anomalies (°C, top) and surface temperature expressed as percentiles of the normal
(Gaussian) distribution fit to the 1981-2010 base period data (bottom) for FEB 2018. Analysis is based on station
data over land and on SST data over the oceans (top). Anomalies for station data are departures from the 1981-2010
base period means, while SST anomalies are departures from the 1981-2010 adjusted Ol climatology. (Smith and
Reynolds 1998, J. Climate, 11, 3320-3323). Regions with insufficient data for analysis in both figures are indicated
by shading in the top figure only.
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Monthly Land Surface Temperature Departures (C)
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FIGURE E2. Monthly global (top), Northern Hemisphere (middle), and Southern Hemisphere (bottom) surface tem-

perature anomalies (land only, °C) from January 1990 - present, computed as departures from the 1981-2010 base
period means.
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February 2018

_— Precipitation Anomalies {mm)

BON —“_"
:mru—:::
EQf
305

605

HOS - T T T .
180 1200 60W 0 EQE 120E 180

| | | 1 | | T
=150—=100 =75 —-50 =25 25 50 75 108 150

Precipltation Percentlles

FIGURE E3. Anomalous precipitation (mm, top) and precipitation percentiles based on a Gamma distribution fit to the
1981-2010 base period data (bottom) for FEB 2018. Data are obtained from a merge of raingauge observations
and satellite-derived precipitation estimates (Janowiak and Xie 1999, J. Climate, 12, 3335-3342). Contours are
drawn at 200, 100, 50, 25, -25, -50, -100, and -200 mm in top panel. Percentiles are not plotted in regions where
mean monthly precipitation is <Smm/month.
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FIGURE E4. Areal estimates of monthly mean precipitation amounts (mm, solid lines) and precipitation percentiles
(%, bars) for the most recent 13 months obtained from a merge of raingauge observations and satellite-derived
precipitation estimates (Janowiak and Xie 1999, J. Climate, 12, 3335-3342). The monthly precipitation climatol-
ogy (mm, dashed lines) is from the 1981-2010 base period monthly means. Monthly percentiles are not shown
if the monthly mean is less than 5 mm.
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FIGURE E5. Areal estimates of monthly mean precipitation amounts (mm, solid lines) and precipitation percentiles
(%, bars) for the most recent 13 months obtained from a merge of raingauge observations and satellite-derived
precipitation estimates (Janowiak and Xie 1999, J. Climate, 12, 3335-3342). The monthly precipitation climatol-
ogy (mm, dashed lines) is from the 1981-2010 base period monthly means. Monthly percentiles are not shown

if the monthly mean is less than 5 mm
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Monthly Teleconnection Indices
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FIGURE E7. standardized monthly Northern Hemisphere teleconnection indices. The teleconnection patterns are
calculated from a Rotated Principal Component Analysis (RPCA) applied to monthly standardized 500-hPa height
anomalies during the 1981-2010 base period. To obtain these patterns, ten leading un-rotated modes are first
calculated for each calendar month by using the monthly height anomaly fields for the three-month period cen-
tered on that month: [i.e., The July modes are calculated from the June, July, and August standardized monthly
anomalies]. A Varimax spatial rotation of the ten leading un-rotated modes for each calendar month results in
120 rotated modes (12 months x 10 modes per month) that yield ten primary teleconnection patterns.The tele-
connection indices are calculated by first projecting the standardized monthly anomalies onto the teleconnection
patterns corresponding to that month (eight or nine teleconnection patterns are seen in each calendar month).
The indices are then solved for simultaneously using a Least-Squares approach. In this approach, the indices
are the solution to the Least-Squares system of equations which explains the maximum spatial structure of the
observed height anomaly field during the month. The indices are then standardized for each pattern and calendar
month independently. No index value exists when the teleconnection pattern does not appear as one of the ten
leading rotated EOF’s valid for that month.
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February 2018
Sea—Level Pressure and Anomaly

FIGURE E8. Northern Hemisphere mean and anomalous sea level pressure (CDAS/Reanalysis) for FEB 2018. Mean
values are denoted by solid contours drawn at an interval of 4 hPa. Anomaly contour interval is 2 hPa with values
less (greater) than -2 hPa (2 hPa) indicated by dark (light) shading. Anomalies are calculated as departures from
the 1981-2010 base period monthly means.
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Februory 2018
500—hPa Height and Anomaly

FIGURE E9. Northern Hemisphere mean and anomalous 500-hPa geopotential height (CDAS/Reanalysis) for FEB
2018. Mean heights are denoted by solid contours drawn at an interval of 6 dam. Anomaly contour interval is 3
dam with values less (greater) than -3 dam (3 dam) indicated by dark (light) shading. Anomalies are calculated as
departures from the 1981-2010 base period monthly means.
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February 2018
300—hPo Wind

FIGURE E10. Northern Hemisphere mean (left) and anomalous (right) 300-hPa vector wind (CDAS/Reanalysis) for
FEB 2018. Mean (anomaly) isotach contour interval is 10 (5) ms?. Values greater than 30 ms* (left) and 10 ms*
(rights) are shaded. Anomalies are departures from the 1981-2010 base period monthly means.
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February 2018
500—hPa: Percentage of Anomaly Days
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FIGURE E11. Northern Hemisphere percentage of days during FEB 2018 in which 500-hPa height anomalies greater
than 15 m (red) and less than -15 m (blue) were observed. Values greater than 70% are shaded and contour in-
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Fabruary 2018
500—-hPa Height Anomalies: 40"N
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FIGURE E12. Northern Hemisphere: Daily 500-hPa height anomalies for FEB 2018 averaged over the 5° latitude
band centered on 40°N. Positive values are indicated by solid contours and dark shading. Negative values are
indicated by dashed coutours and light shading. Contour interval is 60 m. Anomalies are departures from the
1981-2010 base period daily means.
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Februory 2018
500—hPa Heighta (Contours)
High Frequency Std. Dev. (Shading)
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FIGURE E13. Northern Hemisphere 500-hPa heights (thick contours, interval is 6 dam) overlaid with (Top) Standard
deviation of 10-day high-pass (HP) filtered height anomalies and (Bottom) Normalized anomalous variance of
10-day HP filtered height anomalies. A Lanczos filter is used to calculate the HP filtered anomalies. Anomalies are
departures from the 1981-2010 daily means.
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Februory 2018
Sea—Level Pressure and Anomaly

FIGURE E14. Southern Hemisphere mean and anomalous sea level pressure(CDAS/Reanalysis) for FEB 2018. Mean
values are denoted by solid contours drawn at an interval of 4 hPa. Anomaly contour interval is 2 hPa with values
less (greater) than -2 hPa (2 hPa) indicated by dark (light) shading. Anomalies are calculated as departures from
the 1981-2010 base period monthly means.
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Februaory 2018
500—hPa Height and Anomaly

FIGURE E15. Southern Hemisphere mean and anomalous 500-hPa geopotential height (CDAS/Reanalysis) for FEB
2018. Mean heights are denoted by solid contours drawn at an interval of 6 dam. Anomaly contour interval is 3
dam with values less (greater) than -3 dam (3 dam) indicated by dark (light) shading. Anomalies are calculated as
departures from the 1981-2010 base period monthly means.
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February 2018
300—hPa Wind
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FIGURE E16. Southern Hemisphere mean (left) and anomalous (right) 300-hPa vector wind (CDAS/Reanalysis) for
FEB 2018. Mean (anomaly) isotach contour interval is 10 (5) ms?. Values greater than 30 ms* (left) and 10 ms*
(rights) are shaded. Anomalies are departures from the 1981-2010 base period monthly means.

77



February 2018
500—hPa: Percentage of Anomaly Days
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FIGURE E17. Southern Hemisphere percentage of days during FEB 2018 in which 500-hPa height anomalies greater
than 15 m (red) and less than -15 m (blue) were observed. Values greater than 70% are shaded and contour in-
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Fabruary 2018
500—=hPa Height Anomalies: 405
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FIGURE E18. Southern Hemisphere: Daily 500-hPa height anomalies for FEB 2018 averaged over the 5° latitude band
centered on 40°S. Positive values are indicated by solid contours and dark shading. Negative values are indicated
by dashed coutours and light shading. Contour interval is 60 m. Anomalies are departures from the 1981-2010
base period daily means.
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February 2018
Height Anomalies
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FIGURE S1. Stratospheric height anomalies (m) at selected levels for FEB 2018. Positive values are indicated by
solid contours and dark shading. Negative values are indicated by dashed contours and light shading. Contour
interval is 60 m. Anomalies are calculated from the 1981-2010 base period means. Winter Hemisphere is shown.
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Februory 2018

Height Anomalies {Contoured): 60.0N
Temperature Anomalles (shaded)
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FIGURE S2. Height-longitude sections during FEB 2018 for height anomalies (contour) and temperature anomalies
(shaded). In both panels, positive values are indicated by solid contours and dark shading, while negative anoma-
lies are indicated by dashed contours and light shading. Contour interval for height anomalies is 60 m and for
temperature anomalies is 2°C. Anomalies are calculated from the 1981-2010 base period monthly means. Winter
Hemisphere is shown.
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FIGURE S3. Seasonal mean temperature anomalies at 50-hPa for the latitude bands 65°-90°N, 25°-65°N, 25°N-25°S,
25°-65°S, 65°-90°S. The seasonal mean is comprised of the most recent three months. Zonal anomalies are taken

from the mean of the entire data set.
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FIGURE S4. Daily mean temperatures at 10-hPa and 2-hPa (thick line) in the region 65°-90°N and 65°-90°S for
the past two years. Dashed line depicts the 1981-2010 base period daily mean. Thin solid lines depict the daily

extreme maximum and minimum temperatures.
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Monthly M ean Ozone Anomalies (%)
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FIGURE S5. Monthly ozone anomalies (percent) from the long term monthly means for five zones: 50N-30N (NH

mid-latitudes), 25N-10N (NH tropical surf zone), 10N-10S (Equatorial-QBO zone), 10S-25S (SH tropical surf
zone), and 30S-50S (SH mid-latitudes). The long term monthly means are determined from the entire data set
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FEBRUARY PERCENT DIFF (2018 - AVG[79-86])
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FIGURE S6. Northern (top) and Southern (bottom) Hemisphere total 0ozone anomaly (percent difference from monthly
mean for the period 1979-1986). The region near the winter pole has no SBUV/2 data.
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FIGURE S7. Daily vertical component of EP flux (which is proportional to the poleward transport of heat or upward
transport of potential energy by planetary wave) at 100 hPa averaged over (top) 30°N—90°N and (bottom) 30°S-90°S
for FEB 2018. The EP flux unit (kg m? s?) has been scaled by multiplying a factor of the Brunt Vaisala frequency
divided by the Coriolis parameter and the radius of the earth. The letter ‘M’ indicates the current monthly mean
value and the letter ‘C’ indicates the climatological mean value. Additionally, the normalized departures from the
monthly climatological EP flux values are shown.
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FIGURE S8. Daily time series showing the size of the SH polar vortex (representing the area enclosed by the 32 PVU
contour on the 450K isentropic surface), and the areal coverage of temperatures < -78C on the 450K isentropic
surface.
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Daily Indices
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FIGURE A2.1. (a) Daily amplitudes of the Arctic Oscillation (AO) the North Atlantic Oscillation (NAO), and the Pacific-
North American (PNA) pattern. The pattern amplitudes for the AO, (NAO, PNA) are calculated by projecting the
daily 1000-hPa (500-hPa) height anomaly field onto the leading EOF obtained from standardized time- series of

500—hFa Height {dm} & Ancmalies (m}
(Feb 1-15, 2018}

500=hPa Height {dm} & Anomalies [m)
{Feb 1-28, 2018)

daily 1000-hPa (500-hPa) height for all months of the year. The base period is 1981-2010.

(b-d) Northern Hemisphere mean and anomalous 500-hPa geopotential height (CDAS/Reanalysis) for selected
periods during FEB 2018 are shown in the remaining 3 panels. Mean heights are denoted by solid contours
drawn at an interval of 8 dam. Dark (light) shading corresponds to anomalies greater than 50 m (less than -50 m).

Anomalies are calculated as departures from the 1981-2010 base period daily means.
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SSM /I Snow Cover for Feb 2018
anomaly based on departure from 1987-2010 baseline
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FIGURE A2.2. SSM/I derived snow cover frequency (%) (left) and snow cover anomaly (%) (right) for the
month of FEB 2018 based on 1987 - 2010 base period for the Northern Hemisphere (top) and Southern Hemi-
sphere (bottom). It is generated using the algorithm described by Ferraro et. al, 1996, Bull. Amer. Meteor. Soc.,

vol 77, 891-905.
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