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Tropical Highlights - December 2017

Sea surface temperatures (SSTs) during December 2017 were below-average across the central
and eastern equatorial Pacific (Fig. T18, Table T2). The latest monthly Nifio indices were -0.3°C for
the Nifio 4 region, -0.8°C for the Nifio 3.4 region, and -1.5°C for the Nifio 1+2 region (Table T2,
Fig. T5). The depth of the oceanic thermocline (measured by the depth of the 20°C isotherm) was
below-average over much of the eastern equatorial Pacific (Figs. T15, T16), and the corresponding
sub-surface temperatures were 1-4°C below average (Fig. T17).

Also during December, the lower-level trade winds were above-average over the western equa-
torial Pacific while the upper-level westerly winds were near-average over much of the equatorial
Pacific (Table T1, Figs. T20, T21). Meanwhile, convection was enhanced over western equatorial
Pacific and suppressed over the central equatorial Pacific (Figs. T25, E3). Collectively, these oceanic
and atmospheric anomalies reflect La Nifia conditions.

For the latest status of the ENSO cycle see the ENSO Diagnostic Discussion at:
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_advisory/index.html
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Southern QCaclllaion Index (SD_I)
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FIGURE T1. Five-month running mean of the Southern Oscillation Index (SOI) (top), sea-level pressure anomaly (hPa)
at Darwin and Tahiti (middle), and outgoing longwave radiation anomaly (OLR) averaged over the area 5N-5S,
160E-160W (bottom). Anomalies in the top and middle panels are departures from the 1981-2010 base period
means and are normalized by the mean annual standard deviation. Anomalies in the bottom panel are departures
from the 1981-2010 base period means. Individual monthly values are indicated by “x”s in the top and bottom
panels. The x-axis labels are centered on July.



CDAS/Reanalysis—Based S0l and Equatorial SOI
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FIGURE T2. Three-month running mean of a CDAS/Reanalysis-derived (a) Southern Oscillation Index (RSOIl), (b)
standardized pressure anomalies near Tahiti (solid) and Darwin (dashed), (c) an equatorial SOI ([EPAC] - [INDO]),
and (d) standardized equatorial pressure anomalies for (EPAC) (solid) and (INDO) (dashed). Anomalies are de-
partures from the 1981-2010 base period means and are normalized by the mean annual standard deviation. The
equatorial SOI is calculated as the normalized difference between the standardized anomalies averaged between
5°N-5°S, 80°W-130°W (EPAC) and 5°N-5°S, 90°E-140°E (INDO).
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FIGURE T3. Five-month running mean (solid lines) and individual monthly mean (dots) of the 200-hPa zonal wind
anomalies averaged over the area 5N-5S, 165W-110W (top), the 500-hPa virtual temperature anomalies averaged
over the latitude band 20N-20S (middle), and the equatorial zonally-averaged zonal wind anomalies at 30-hPa
(red) and 50-hPa (blue) (bottom). In the top panel, anomalies are normalized by the mean annual standard devia-
tion. Anomalies are departures from the 1981-2010 base period means. The x-axis labels are centered on January.
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FIGURE T4. Five-month running mean (solid line) and individual monthly mean (dots) of the standardized 850-hPa
zonal wind anomaly index in the latitude belt 5N-5S for 135E-180 (top), 175W-140W (middle) and 135W-120W
(bottom). Anomalies are departures from the 1981-2010 base period means and are normalized by the mean an-
nual standard deviation.The x-axis labels are centered on January. Positive (negative) values indicate easterly
(westerly) anomalies.
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FIGURE T5. Nino region indices, calculated as the area-averaged sea surface temperature anomalies (C) for the speci-
fied region. The Nino 1+2 region (top) covers the extreme eastern equatorial Pacific between 0-10S, 90W-80W.
The Nino-3 region (2nd from top) spans the eastern equatorial Pacific between 5N-5S, 150W-90W. The Nino 3.4
region 3rd from top) spans the east-central equatorial Pacific between 5N-5S, 170W-120W. The Nino 4 region
(bottom) spans the date line and covers the area 5N-5S, 160E-150W. Anomalies are departures from the 1981-
2010 base period monthly means (Smith and Reynolds 1998, J. Climate, 11, 3320-3323). Monthly values of each
index are also displayed in Table 2.
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FIGURE T6. Time-longitude section of mean (top) and anomalous (bottom) sea level pressure (SLP) averaged between
5N-5S (CDAS/Reanalysis). Contour interval is 1.0 hPa (top) and 0.5 hPa (bottom). Dashed contours in bottom
panel indicate negative anomalies. Anomalies are departures from the 1981-2010 base period monthly means. The
data are smoothed temporally using a 3-month running average.
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FIGURE T7. Time-longitude section of mean (top) and anomalous (bottom) 850-hPa zonal wind averaged between
5N-5S (CDAS/Reanalysis). Contour interval is 2 ms™. Blue shading and dashed contours indicate easterlies (top)
and easterly anomalies (bottom). Anomalies are departures from the 1981-2010 base period monthly means. The
data are smoothed temporally using a 3-month running average.

15
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FIGURE T8. Time-longitude section of mean (top) and anomalous (bottom) outgoing longwave radiation (OLR)
averaged between 5N-5S. Contour interval is 10 Wm-2, Dashed contours in bottom panel indicate negative OLR
anomalies. Anomalies are departures from the 1981-2010 base period monthly means. The data are smoothed
temporally using a 3-month running average.
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FIGURE T9. Time-longitude section of monthly mean (top) and anomalous (bottom) sea surface temperature (SST)
averaged between 5N-5S. Contour interval is 1C (top) and 0.5C (bottom). Dashed contours in bottom panel indi-
cate negative anomalies. Anomalies are departures from the 1981-2010 base period means (Smith and Reynolds
1998, J. Climate, 11, 3320-3323).
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Saa Leval Prazsura Anomaly {(hPa)
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FIGURE T10. Time-longitude section of anomalous sea level pressure (hPa) averaged between 5N-5S (CDAS/Re-
anaysis). Contour interval is 1 hPa. Dashed contours indicate negative anomalies. Anomalies are departures from
the 1981-2010 base period pentad means. The data are smoothed temporally using a 3-point running average.
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FIGURE T11. Time-longitude section of anomalous outgoing longwave radiation averaged between 5N-5S. Contour
interval is 15 Wm-2. Dashed contours indicate negative anomalies. Anomalies are departures from the 1981-2010
base period pentad means. The data are smoothed temporally using a 3-point running average.
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FIGURE T12. Time-longitude section of anomalous 200-hPa velocity potential averaged between 5N-5S (CDAS/Re-
analysis). Contour interval is 3 x 10® m?s. Dashed contours indicate negative anomalies. Anomalies are departures
from the 1981-2010 base period pentad means. The data are smoothed temporally using a 3-point running average.
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FIGURE T13. Time-longitude section of anomalous 850-hPa zonal wind averaged between 5N-5S (CDAS/Reanalysis).
Contour interval is 2 ms. Dashed contours indicate negative anomalies. Anomalies are departures from the 1981-
2010 base period pentad means. The data are smoothed temporally by using a 3-point running average.
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FIGURE T14. Equatorial time-height section of anomalous zonally-averaged zonal wind (m s') (CDAS/Reanalysis).
Contour interval is 10 ms. Anomalies are departures from the 1981-2010 base period monthly means.
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FIGURE T15. Mean (top) and anomalous (bottom) depth of the 20C isotherm averaged between 5N-5S in the Pacific
Ocean. Data are derived from the NCEP’s global ocean data assimilation system which assimilates oceanic obser-
vations into an oceanic GCM (Behringer, D. W., and Y. Xue, 2004: Evaluation of the global ocean data assimila-
tion system at NCEP: The Pacific Ocean. AMS 84th Annual Meeting, Seattle, Washington, 11-15). The contour
interval is 10 m. Dashed contours in bottom panel indicate negative anomalies. Anomalies are departures from
the 1981-2010 base period means.
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January 2018
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FIGURE T16. Mean (top) and anomalous (bottom) depth of the 20°C isotherm for JAN 2018. Contour interval is 40
m (top) and 10 m (bottom). Dashed contours in bottom panel indicate negative anomalies. Data are derived from
the NCEP’s global ocean data assimilation system version 2 which assimilates oceanic observations into an oce-
anic GCM (Xue, Y. and Behringer, D.W., 2006: Operational global ocean data assimilation system at NCEP, to be
submitted to BAMS). Anomalies are departures from the 1981-2010 base period means.
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January 2018: Depth—Longltude Section
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FIGURE T17. Equatorial depth-longitude section of ocean temperature (top) and ocean temperature anomalies (bottom)
for JAN 2018. Contour interval is 1°C. Dashed contours in bottom panel indicate negative anomalies. Data are
derived from the NCEP’s global ocean data assimilation system version 2 which assimilates oceanic observations
into an oceanic GCM (Xue, Y. and Behringer, D.W., 2006: Operational global ocean data assimilation system at
NCEP, to be submitted to BAMS). Anomalies are departures from the 1981-2010 base period means.
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FIGURE T18. Mean (top) and anomalous (bottom) sea surface temperature (SST). Anomalies are departures from the
1981-2010 base period monthly means (Smith and Reynolds 1998, J. Climate, 11, 3320-3323).
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January 2018
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FIGURE T19. Mean (top) and anomalous (bottom) sea level pressure (SLP) (CDAS/Reanalysis). In top panel, 1000
hPa has been subtracted from contour labels, contour interval is 2 hPa, and values below 1000 hPa are indicated
by dashed contours. In bottom panel, anomaly contour interval is 1 hPa and negative anomalies are indicated by
dashed contours. Anomalies are departures from the 1981-2010 base period monthly means.
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FIGURE T20. Mean (top) and anomalous (bottom) 850-hPa vector wind (CDAS/Reanaysis) for JAN 2018. Contour
interval for isotachs is 4 ms? (top) and 2 ms* (bottom). Anomalies are departures from the 1981-2010 base
period monthly means.
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FIGURE T21. Mean (top) and anomalous (bottom) 200-hPa vector wind (CDAS/Reanalysis) for JAN 2018. Contour
interval for isotachs is 15 ms* (top) and 5 ms* (bottom). Anomalies are departures from 1981-2010 base period
monthly means.

29



January 2018
200—hPa Streamfunction
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FIGURE T22. Mean (top) and anomalous (bottom) 200-hPa streamfunction (CDAS/Reanalysis). Contour interval is
20 x 10° m?s? (top) and 5 x 10° m2s? (bottom). Negative (positive) values are indicated by dashed (solid) lines.
The non-divergent component of the flow is directed along the contours with speed proportional to the gradient.
Thus, high (low) stream function corresponds to high (low) geopotential height in the Northern Hemisphere and
to low (high) geopotential height in the Southern Hemisphere. Anomalies are departures from the 1981-2010 base
period monthly means.
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FIGURE T23. Mean (top) and anomalous (bottom) 200-hPa divergence (CDAS/Reanalysis). Divergence and anomalous
divergence are shaded blue. Convergence and anomalous convergence are shaded orange. Anomalies are departures
from the 1981-2010 base period monthly means.
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FIGURE T24. Mean (top) and anomalous (bottom) 200-hPa velocity potential (10°m?s) and divergent wind (CDAS/
Reanalysis). Anomalies are departures from the 1981-2010 base period monthly means.
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FIGURE T25. Mean (top) and anomalous (bottom) outgoing longwave radiation for JAN 2018 (NOAA 18 AVHRR
IR window channel measurements by NESDIS/ORA). OLR contour interval is 20 Wm-2 with values greater than
280 Wm? indicated by dashed contours. Anomaly contour interval is 15 Wm-2 with positive values indicated by
dashed contours and light shading. Anomalies are departures from the 1981-2010 base period monthly means.
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FIGURE T26. Estimated total (top) and anomalous (bottom) rainfall (mm) based on the Special Sensor Microwave/
Imager (SSM/S) precipitation index (Ferraro 1997, J. Geophys. Res., 102, 16715-16735). Anomalies are computed
from the SSM/I 1987-2010 base period monthly means. Anomalies have been smoothed for display purposes.
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FIGURE T27. Mean (top) and anomalous (bottom) cloud liquid water (g m2) based on the Special Sensor Microwave/

Imager (SSM/I) (Weng et al 1997: J. Climate, 10, 1086-1098). Anomalies are calculated from the 1987-2010
base period means.
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FIGURE T28. Mean (top) and anomalous (bottom) vertically integrated water vapor or precipitable water (kg m) based
on the Special Sensor Microwave/lmager (SSM/I) (Ferraro et. al, 1996: Bull. Amer. Meteor. Soc., 77, 891-905).
Anomalies are calculated from the 1987-2010 base period means.
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FIGURE T29. Pressure-longitude section (L00E-80W) of the mean (top) and anomalous (bottom) divergence (contour
interval is 1 x 10 s) and divergent circulation averaged between 5N-5S. The divergent circulation is represented
by vectors of combined pressure vertical velocity and the divergent component of the zonal wind. Red shading
and solid contours denote divergence (top) and anomalous divergence (bottom). Blue shading and dashed contours
denote convergence (top) and anomalous convergence (bottom). Anomalies are departures from the 1981-2010
base period monthly means.
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FIGURE T30. Pressure-longitude section (80W-100E) of the mean (top) and anomalous (bottom) divergence (contour
interval is 1 x 10 s1) and divergent circulation averaged between 5N-5S. The divergent circulation is represented
by vectors of combined pressure vertical velocity and the divergent component of the zonal wind. Red shading
and solid contours denote divergence (top) and anomalous divergence (bottom). Blue shading and dashed contours

denote convergence (top) and anomalous convergence (bottom). Anomalies are departures from the 1981-2010
base period monthly means.
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FIGURE T31. Pressure-latitude section of the mean (top) and anomalous (bottom) zonal wind (m s?) and divergent
circulation averaged over the west Pacific sector (120E-170E). The divergent circulation is represented by vectors
of combined pressure vertical velocity and the divergent component of the meridional wind. Red shading and
solid contours denote a westerly (top) or anomalous westerly (bottom) zonal wind. Blue shading and dashed
contours denote an easterly (top) or anomalous easterly (bottom) zonal wind. Anomalies are departures from
the 1981-2010 base period monthly means.
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FIGURE T32. Pressure-latitude section of the mean (top) and anomalous (bottom) zonal wind (m s*) and divergent
circulation averaged over the central Pacific sector (130W-180W). The divergent circulation is represented by
vectors of combined pressure vertical velocity and the divergent component of the meridional wind. Red shading
and solid contours denote a westerly (top) or anomalous westerly (bottom) zonal wind. Blue shading and dashed
contours denote an easterly (top) or anomalous easterly (bottom) zonal wind. Anomalies are departures from the
1981-2010 base period monthly means.
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Tropical Pacific Drifting Buoys R. Lumpkin/M. Pazos, AOML, Miami

During January 2018, 1466 satellite-tracked surface drifting buoys were reporting from the tropical
Pacific. The drifter array did not reveal any large-scale current anomalies in the basin, while several
drifters in the eastern basin exhibited very strong anomalies associated with tropical instability
waves.
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Figure AL.1 Top: Movements of drifting buoys in the tropical Pacific Ocean during January 2018. The linear segments
of each trajectory represent a one week displacement. Trajectories of buoys which have lost their subsurface drogues are
gray; those with drogues are black.

Middle: Monthly mean currents calculated from all buoys 1993-2002 (gray), and currents measured by the drogued
buoys this month (black) smoothed by an optimal filter.

Bottom: Anomalies from the climatological monthly mean currents for this month.
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NEAR—SURFACE CURRENTS : JANUARY 2018

.\,

[

VLY»@

7
i A
kv v/).\u\\

xt »Aé\

\ i

\\
¢
W]

Fl

\

/K\\ k@ ‘—I«:eﬁe«rf{ii
\N\ﬁ\\_\ T WA Ve

v
Ea
;:.»?ﬁ

,Y&HH \\\\\N\\\
SN
zé\
wy I8
:t\ :m\\ !
sﬁ\\ \\\\ _ /_\

.\w\\\x “

S

\\v\

4<J§&\§\
zéﬁ:; “ ﬁ
]
Hs\\\:
MeaT<py 2\

:x&%&% .//”

»\(vv&\ t\,\\\&

\

\.
/,

pﬁt \\\\

,,g x

é %ﬁ%
A

ﬁ&\hwvvé aﬁ\

W 3\ \& N/

J

>~:vz11€\\\ \\&

4, ¢ 7ry€\\ \\ \\

\ [
|

RS
itltdﬁ v
fﬁ(itiﬁ:& VAVy VY
AT IR WY

z
W:tit::efttﬁ:

g

wkxkzkf LY vy

71| ijté::é»:

/Kek/(xx(ﬁx Nty
:\_\/

NN /:e:ekx.veiav‘r‘_
U\ "

atyal)

5

E_zzz,aﬂ
W ::,S::;‘He
@ Mt«iv.:a&t a7 s “

ERLL NN LS
[

<yNTy ?‘kl)) 1

W
t

o —

AW o
ANy et

e, {iif
i
H /i;&\?@ ?x\
//k...si i,

| /Wi?: o

&K
»41\;

(RO -y

A \q
P A al ey
\\\ .Q ) 3?:5,%53&‘
1/ / r T
‘5 vy
\/ﬂi \ \
w
N7 * e
kalan C
s
\ Wt
; N

Wi, anay

\% N\ Lw AN

N
o
N

N
o
—

T
w0
=
S 32 K&

140E 160E 180 160W 140W 120W 100W 80W

120E

JANUARY 2018 ANOMALIES

\\ul-rﬁ
vdrr\ra»sk\vh

I,
:G s W

3«43!.7&\ N %
VL4A>< va ?Ix
™Moy, )a!.i_iir/

)«»ﬁv;f 7y taa s\\\

lﬁii?ﬁiL x//y

e :k?Z.\A»,: Kk
kﬂaﬁe«\?r\ t
u///

bv &S:wa fil?
Pagvtyy P\_Jﬁ,L ///

DUCIN 4.A>\13

=S

« Tyv A
4
v 94?
s VRErT VY SRy MR by
/&i»i Tz a VA LA A
a3uz> AV Y ALy nv Ny AV o]
¥»1¢<3v€4>v&14>vvf¢ Iz
33<r<>\247ﬂ2 ™z V|
N 7, /k<§,.<r>4<; bva 22y

?<t>><<>715>4<¢1<

A ‘ JENEV L

i
\\A ee«sa!}#r& beydacy
z \

4\«:11\_ AgVerVav et
jﬁ»xxvrkv( «>7va?§»

s ﬂk\k&xvvvr:\,ZL ,.ve
qAa;{w‘AaArﬁrvvv:ai‘A

M s corre sy,

180

e £ CTAAALY M vATAAL
) \;// Vs ShARY *
Z‘J ev:L\\ \!et f?::vviv&&:ﬂv‘\
~ eeﬂi{f&; szaawrvg K/‘ /»4&&5237:A473«;¢47§
ht, e?\x\v Pﬁr;?\xfzﬁ A‘ftttﬁw v #xfia./z
#:siv»»\ aﬂ\ kzkl— K 4::«:*»» >ws &
kKAﬂvsbx?ufv»z” W ”/” /(Kkktﬁ\\\? ?;\e
4&1491#?23.4 :\:«ﬁ w\ e&/« Tovn sy
w/x ?:1\?‘ f; klﬁis e
v<<a1$ v, witht, e& Av4)b L E
:&)kzﬁzf;»:fv@& [EW NS rzni
awxrl\‘,:??vnﬂza:w\ \ /» ﬂ\Viv a:
1«434114?2 »\\\\I _\ "y
//v:A 1;» \_‘ssf’ —
My A 4 N =
i ) m
//:IAl .m/n////» (&)
3 ‘\\ %
ey A
e
?kaf.v
foo 2
1 T T T T T I I
= = = 0 0
o o =) (@] o
N — — N

140W 120w 100W 80w

160W

140E 160E

120E

FIGURE A1.3. Ocean Surface Current Analysis-Real-time (OSCAR) for JAN 2018 (Bonjean and Lagerloef 2002, J.

Phys. Oceanogr., Vol. 32, No. 10, 2938-2954; Lagerloef et al. 1999, JGR-Oceans, 104, 23313-23326). (top) Total
velocity. Surface currents are calculated from satellite data including Jason sea level anomalies and NCEP winds.

(bottom) Velocity anomalies. The subtracted climatology was based on SSM/I and QuickScat winds and Topex/

Poseidon and Jason from 1993-2003. See also http://www.o0scar.noaa.gov.
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FIGURE A1.4. Ocean Surface Current Analysis-Real-time (OSCAR) for JAN 2018 (Bonjean and Lagerloef 2002, J. Phys. Oceanogr., Vol. 32, No. 10, 2938-

2954; Lagerloef et al. 1999, JGR-Oceans, 104, 23313-23326). (top) Total velocity. Surface currents are calculated from satellite data including Jason sea level

anomalies and NCEP winds.

(bottom) Velocity anomalies. The subtracted climatology was based on SSM/I and QuickScat winds and Topex/Poseidon and

Jason from 1993-2003. See also http://www.oscar.noaa.gov.



Forecast Forum

The canonical correlation analysis (CCA) forecast of SST in the central Pacific (Barnett et al.
1988, Science, 241, 192196; Barnston and Ropelewski 1992, J. Climate, 5, 13161345), is shown
in Figs. F1 and F2. This forecast is produced routinely by the Prediction Branch of the Climate
Prediction Center. The predictions from the National Centers for Environmental Prediction (NCEP)
Coupled Forecast System Model (CFS03) are presented in Figs. F3 and F4a, F4b. Predictions
from the Markov model (Xue, et al. 2000: J. Climate, 13, 849871) are shown in Figs. F5 and F6.
Predictions from the latest version of the LDEO model (Chen et al. 2000: Geophys. Res. Let., 27,
25852587) are shown in Figs. F7 and F8. Predictions using linear inverse modeling (Penland
and Magorian 1993: J. Climate, 6, 10671076) are shown in Figs. F9 and F10. Predictions from
the Scripps / Max Planck Institute (MPI) hybrid coupled model (Barnett et al. 1993: J. Climate, 6,
15451566) are shown in Fig. F11. Predictions from the ENSOCLIPER statistical model (Knaff
and Landsea 1997, Wea. Forecasting, 12, 633652) are shown in Fig. F12. Nifio 3.4 predictions are
summarized in Fig. F13, provided by the Forecasting and Prediction Research Group of the IRI.

The CPC and the contributors to the Forecast Forum caution potential users of this predictive
information that they can expect only modest skill.

ENSO Alert System Status: La Nifia Advisory

Outlook

A transition from La Nifia to ENSO-neutral is most likely during the Northern Hemisphere
spring (~55% chance of ENSO-neutral during the March-May season).

Discussion

During January 2018, La Nifia was evident in the pattern of below-average sea surface tempera-
tures (SSTs) across the central and eastern equatorial Pacific Ocean (Fig. T18). The monthly index
values were close to -1.0C in the Nifio-1+2, Nifio-3, and Nifio-3.4 regions, while the western-most
Nifo-4 region was -0.3C (Table 2). While negative anomalies were maintained near the surface,
the sub-surface temperatures in the eastern Pacific Ocean returned to near average during the last
month. Thiswas due to the eastward propagation of above-average temperatures in association with
a downwelling equatorial oceanic Kelvin wave, which undercut the below-average temperatures near
the surface (Fig. T17). The atmospheric conditions over the tropical Pacific Ocean also reflected
La Nifa, with suppressed convection near and east of the International Date Line and enhanced
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convection around Indonesia (Fig. T25). Also, the low-level trade winds remained stronger than
average over the western and central Pacific, while upper-level winds were anomalously westerly
(Figs. T20 & T21). Overall, the ocean and atmosphere system remained consistent with La Nifia.
Most models in the IRI/CPC plume predict La Nifia will decay and return to ENSO-Neutral
during the Northern Hemisphere spring 2018 (Figs. F1-F13). The forecast consensus also favors
a transition during the spring with a continuation of ENSO-neutral conditions thereafter. In sum-
mary, a transition from La Nifia to ENSO-neutral is most likely during the Northern Hemisphere
spring (~55% chance of ENSO-neutral during the March-May season).
Weekly updates of oceanic and atmospheric conditions are available on the Climate Prediction
Center homepage (EI Nifio/La Nifa Current Conditions and Expert Discussions).
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Pacific (5°N to 5°S, 120°W to 170°W (Barnston and Ropelewski, 1992, J. Climate, 5, 1316-1345). The three plots
on the left hand side are, from top to bottom, the 1-season, 2-
each forecast represents the observed SST standardized anomaly through the latest month. The small squares at the
mid-points of the forecast bars represent the real-time CCA predictions based on the anomalies of quasi-global sea
level pressure and on the anomalies of tropical Pacific SST, depth of the 20°C isotherm and sea level height over
the prior four seasons. The vertical lines represent the one standard deviation error bars for the predictions based
on past performance. The three plots on the right side are skills, corresponding to the predicted and observed SST.
The skills are derived from cross-correlation tests from 1956 to present. These skills show a clear annual cycle and
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FIGURE F2. Canonical Correlation Analysis (CCA) forecasts of sea-surface temperature anomalies for the Nino 3.4
region (5N-5S, 120W-170W) for the upcoming five consecutive 3-month periods. Forecasts are expressed as stan-
dardized SST anomalies. The CCA predictions are based on anomaly patterns of SST, depth of the 20C isotherm,
sea level height, and sea level pressure. Small squares at the midpoints of the vertical forecast bars represent the
CCA predictions, and the bars show the one (thick) and two (thin) standard deviation errors. The solid continuous
line represents the observed standardized three-month mean SST anomaly in the Nino 3.4 region up to the most
recently available data.
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Last update: Thu Feb 3 2018
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FIGURE F3. Predicted 3-month average sea surface temperature (left) and anomalies (right) from the NCEP Coupled
Forecast System Model (CFS03). The forecasts consist of 40 forecast members. Contour interval is 1°C, with ad-
ditional contours for 0.5°C and -0.5°C. Negative anomalies are indicated by dashed contours.
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FIGURE F4. Predicted and observed sea surface temperature (SST) anomalies for the Nino 3 (top) and Nino 3.4
(bottom) regions from the NCEP Coupled Forecast System Model (CFS03). The forecasts consist of 40 forecast
members. The ensemble mean of all 40 forecast members is shown by the blue line, individual members are shown
by thin lines, and the observation is indicated by the black line. The Nino-3 region spans the eastern equatorial
Pacific between 5N-5S, 150W-90W. The Nno 3.4 region spans the east-central equatorial Pacific between 5N-5S,
170W-120W.
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FIGURE F5. Predicted 3-month average sea surface temperature anomalies from the NCEP/CPC Markov model (Xue
et al. 2000, J. Climate, 13, 849-871). The forecast is initiated in JAN 2018 . Contour interval is 0.3C and nega-
tive anomalies are indicated by dashed contours. Anomalies are calculated relative to the 1971-2000 climatology.

51



'MOZT-MOLT ‘SG-N§ Usamiaq dij1oed

[erLiorenba [esua-1ses 8yl sueds uoIBal '€ OUIN 8yl "Saul] paysep 3oe|q ayl Aq paiedipul aJe Salfewour | SS 'S OUIN PaAIasqo ay L JaqWISAON pue 1870100
‘Jlagquiaydas Joj s1 (p) pue ‘1snbny pue ‘Ajnr ‘aunc 1oj si (9) ‘AeN pue ‘Judy ‘yadel 1oy st (g) ‘Areniga4 pue ‘Arenuer ‘1aquiadaq Joj si () :syuow Buiiels aAn
-N2asu09 aaly1 Aq padnolf s1sedsslo) sy aue jaued yaes ul umoys ABojorew|d 000Z-T 6T 2U1 01 dAITR|a) pale|naed aJe saljewouy (T/8-6%78 ‘€T ‘@rewl|D r ‘0002
‘[e 18 anX) [apow AOMIBIN DdD/dION 3y} Ag (sypuow pes| ZT 03 dn) uoiBai ' OUIN 8y} Ul saljewoue | SS paidlpald pue paAIasqo JO UOIN|OAS aWl] 94 JHNDI4

810

LU

NOS

(P}

50T

LA L

(q}

3

0 W N Wy

Jra

(o}

52



LDED FORECASTS OF S5T AND WIND STRESS ANOMALIES
FEB-MAR-APR 2018
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FIGURE F7. Forecasts of the tropical Pacific Predicted SST (shading) and vector wind anomalies for the next 3 sea-
sons based on the LDEO model. Each forecast represents an ensemble average of 3 sets of predictions initialized
during the last three consecutive months (see Figure F8).
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FIGURE F8. LDEO forecasts of SST anomalies for the Nino 3 region using wind stresses obtained from (top) Qui-
kSCAT, (middle) NCEP, and (bottom) Florida State Univ. (FSU), along with SSTs (obtained from NCEP), and sea
surface height data (obtained from TOPEX/POSEIDON) data. Each thin blue line represents a 12-month forecast,
initialized one month apart for the past 24 months. Observed SST anomalies are indicated by the thick red line.
The Nino-3 region spans the eastern equatorial Pacific between 5N-5S, 150W-90W.
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(1993: J. Climate, 6, 1067-1076). The contour interval is 0.3C. Anomalies are calculated relative to the 1981-2010
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55



Nino 3.4: Lead = 3mo.
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FIGURE F10. Predictions of Nifio 3.4 SSTA (blue solid line) and verification (solid red line). The Nifio3.4 Index was
calculated in the area 6N-6S, 170W-120W. The 1980-2010 climatology was subtracted from ERSST data between
1950 and 2010, after which they were projected onto 20 EOFs containing 90% of thevariance. Significant 1950-
2010 trends were subtracted from the corresponding PCs, the forecast was made on the detrended anomalies, after
which the trend was added to the forecast. The dotted lines indicate the one standard deviation confidence interval

for the forecasts based on a perfect adherence to assumption.

56

2000 2005 2010 2015

2020



Minm 4 1 Felonan)

D

1 1 1 1 1 1 1

I =ies EoiF 2oiFAa =mie =xisas 2o0a =119.m =xen
EAR

Minm3.4-[1 Fabrunary]

ERO
L]
ITTTTTI

1 1 1 1 1 1 1

om ZoimA =2 2ol . =114 =114.8 =1a =119.18 e n
YEAR

Mirm 3 [1 Falomiery)

EETA D)
LR

1 1 1 1 1 1 1

om ZoimA =2 2ol . =114 =114.8 =1a =119.18
YEAR

Mirm 182 [1 Feoary)

EETFLF‘]
MAENAQANE e

] 1 1 ] 1 ] 1

ol | oimaA =201 7 2ol >m =114a =114a.m =18 =1a.m
YEMFA

201 [1 Foabruary]

EETE.{E‘]
MALENLGANE e

1 1 1 1 1 1 1
om ZoimA =2 2ol . =114 =11a.m =x1d a1a.m o
YTEAR

Ounian Oovimiom
MAUN-LOLNWs

FIGURE F11. ENSO-CLIPER statistical model forecasts of three-month average sea surface temperature anomalies
(green lines, deg. C) in (top panel) the Nino 4 region (5N-5S, 160E-150W), (second panel) the Nino 3.4 region
(5N-5S, 170W-120W), (third panel) the Nino 3 region (5N-5S, 150W-90W), and (fourth panel) the Nino 1+2 region
(0-10S, 90W-80W) (Knaff and Landsea 1997, Wea. Forecasting, 12, 633-652). Bottom panel shows predictions of
the three-month standardized Southern Oscillation Index (SOI, green line). Horizontal bars on green line indicate
the adjusted root mean square error (RMSE). The Observed three-month average values are indicated by the thick
blue line. SST anomalies are departures from the 1981-2010 base period means, and the SOI is calculated from
the 1951-1980 base period means.
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Mid-Jan 2018 Plume of Model ENSO Predictions
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FIGURE F12. Time series of predicted sea surface temperature anomalies for the Nino 3.4 region (deg. C) from various
dynamical and statistical models for nine overlapping 3-month periods. The Nino 3.4 region spans the east-central
equatorial Pacific between 5N-5S, 170W-120W. Figure provided by the International Research Institute (IRI).
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Extratropical Highlights — January 2018

1. Northern Hemisphere

The 500-hPa circulation during January featured an anomalous wave-4 pattern. Above-average
heights were present over the high latitudes of the North Pacific, western North America, the cen-
tral North Atlantic, and northwestern Russia. Below-average heights were present over the Gulf of
Alaska, the high latitudes of the North Atlantic, and eastern Asia (Fig. E9).

At 200-hPa, the circulation reflected La Nifia. This signal included amplified troughs near and
east of the date line across the subtropical Pacific Ocean in both hemispheres, and amplified ridges
over Australasia (Fig. T22). The amplified troughs in both hemispheres reflected the disappearance
of deep tropical convection from the central equatorial Pacific (Fig. T25). The amplified subtropical
ridges reflected enhanced convection over the western tropical Pacific, Indonesia, and the eastern
Indian Ocean.

The main land-surface temperature signals during January included above-average temperatures
across western North America, Europe, and western Russia, and below-average temperatures in the
southeastern and eastern U.S., and in south-central Russia (Fig. E1). The main precipitation signals
included above-average totals in the northwestern U.S. and central Europe, and below-average totals
in the southern and southeastern U.S. (Fig. E3).

a. North Pacific and North America

The 500-hPa circulation during January featured above-average heights over the high latitudes
of the North Pacific and western North America, and below-average heights over the Gulf of Alaska
(Fig. E9). This type of highly amplified wave pattern is often seen during La Nifia. La Nifia produces
an enhanced subtropical ridge over southeastern Asia along with an amplified mid-Pacific trough
(Fig. T22). These conditions act to retract westward the East Asian jet steam, as seen during Janu-
ary by a confinement of that jet core to the area around Japan and by the location of that jet’s exit
region being located well west of the date line (Fig. T21). This anomalous jet structure produces
the essence of the downstream anomalous 500-hPa circulation pattern seen during January.

This overall pattern contributed to anomalously warm surface temperatures in western North
America, and to anomalously cool conditions in the southern and eastern U.S. (Fig. E1). It also
contributed to above-average precipitation in the northwestern U.S., and to below-average precipi-
tation in the southern and southeastern U.S. (Fig. E3).

b. Eurasia
An amplified wave pattern at 500-hPa extended from the central North Atlantic Ocean to
eastern Asia (Fig. E9). Features of this pattern included an anomalous ridges over the central North
Atlantic and northwestern Russia, and anomalous troughs over the high latitudes of the North At-
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lantic and eastern Asia (Fig. E9). This pattern was associated with anomalously warm (Fig. E1)
and wet (Fig. E3) conditions in Europe, and with anomalously cool and dry conditions in portions
of central Russia (Fig. E3).

c. China
At 200-hPa, the subtropical ridge was much stronger than average across southern Asia and
China (Fig. T22). This ridge was associated with an enhanced southerly flow at 850-hPa (Fig. T20)
of deep tropical moisture into eastern China, along with anomalous upper-level divergence in that
region along the equatorward flank of the East Asian jet entrance region (Fig. T23). As a result,
eastern China recorded well above-average precipitation during January, with area-averaged totals
in the upper 90th percentile of occurrences (Fig. E4).

2. Southern Hemisphere

The mean 500-hPa circulation during January featured above-average heights in the vicinity of
New Zealand, and below-average heights over much of the high latitudes (Fig. E15). At 200-hPa,
the subtropical circulation featured an amplified trough over the central and eastern South Pacific
Ocean, and an amplified ridge over western Australia and the eastern Indian Ocean (Fig. T22). This
anomalous subtropical circulation is typical of La Nifia.

On the synoptic scale, the upper-level circulation featured a ridge across western Australia and a
trough off the coast of eastern Australia. This pattern was associated with weaker upper-level west-
erlies across the continent (Fig. T21), and with anomalous upper-level convergence (Fig. T23) and
below-average precipitation (Fig. E3) across eastern Australia between the mean ridge and trough
axes. It was also associated with well above-average surface temperatures in eastern Australia,
with many locations recording temperatures in the upper 90th percentile of occurrences (Fig. E1).

The South African monsoon season runs from October to April. This area recorded well below-
average precipitation during January, with area-averaged totals in the lowest 10th percentile of
occurrences (Fig. E4). The most significant deficits were observed in the northern and western
portions of the monsoon region (Fig E3), where they acted to intensify severe drought in areas
such as Cape Town. In the north and east, many normally heavy-rainfall areas of Zimbabwe and
Mozambique recorded very limited rainfall during January (and December) resulting in 2-month
deficits of 400 mm — 500 mm.
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January 2018
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FIGURE E1. Surface temperature anomalies (°C, top) and surface temperature expressed as percentiles of the normal
(Gaussian) distribution fit to the 1981-2010 base period data (bottom) for JAN 2018. Analysis is based on station
data over land and on SST data over the oceans (top). Anomalies for station data are departures from the 1981-2010
base period means, while SST anomalies are departures from the 1981-2010 adjusted Ol climatology. (Smith and
Reynolds 1998, J. Climate, 11, 3320-3323). Regions with insufficient data for analysis in both figures are indicated
by shading in the top figure only.
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Monthly Land Surface Temperature Departures (C)
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FIGURE E2. Monthly global (top), Northern Hemisphere (middle), and Southern Hemisphere (bottom) surface tem-

perature anomalies (land only, °C) from January 1990 - present, computed as departures from the 1981-2010 base
period means.
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January 2018
Precipitation Anomalies {mm)
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FIGURE E3. Anomalous precipitation (mm, top) and precipitation percentiles based on a Gamma distribution fit to the
1981-2010 base period data (bottom) for JAN 2018. Data are obtained from a merge of raingauge observations
and satellite-derived precipitation estimates (Janowiak and Xie 1999, J. Climate, 12, 3335-3342). Contours are
drawn at 200, 100, 50, 25, -25, -50, -100, and -200 mm in top panel. Percentiles are not plotted in regions where
mean monthly precipitation is <Smm/month.
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Arsa Praclpitation Totals {mm) and Pearcentllas (X)
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FIGURE E4. Areal estimates of monthly mean precipitation amounts (mm, solid lines) and precipitation percentiles
(%, bars) for the most recent 13 months obtained from a merge of raingauge observations and satellite-derived
precipitation estimates (Janowiak and Xie 1999, J. Climate, 12, 3335-3342). The monthly precipitation climatol-
ogy (mm, dashed lines) is from the 1981-2010 base period monthly means. Monthly percentiles are not shown
if the monthly mean is less than 5 mm.
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Area Pracipitation Totals (n:nrn) and Parcentlles (%)
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FIGURE E5. Areal estimates of monthly mean precipitation amounts (mm, solid lines) and precipitation percentiles
(%, bars) for the most recent 13 months obtained from a merge of raingauge observations and satellite-derived
precipitation estimates (Janowiak and Xie 1999, J. Climate, 12, 3335-3342). The monthly precipitation climatol-
ogy (mm, dashed lines) is from the 1981-2010 base period monthly means. Monthly percentiles are not shown
if the monthly mean is less than 5 mm.
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Monthly Teleconnection Indices

North Atiavs Oealiation (NAD) Enet [ wuummm
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Data updated through Januaory 2018

FIGURE E7. standardized monthly Northern Hemisphere teleconnection indices. The teleconnection patterns are
calculated from a Rotated Principal Component Analysis (RPCA) applied to monthly standardized 500-hPa height
anomalies during the 1981-2010 base period. To obtain these patterns, ten leading un-rotated modes are first
calculated for each calendar month by using the monthly height anomaly fields for the three-month period cen-
tered on that month: [i.e., The July modes are calculated from the June, July, and August standardized monthly
anomalies]. A Varimax spatial rotation of the ten leading un-rotated modes for each calendar month results in
120 rotated modes (12 months x 10 modes per month) that yield ten primary teleconnection patterns.The tele-
connection indices are calculated by first projecting the standardized monthly anomalies onto the teleconnection
patterns corresponding to that month (eight or nine teleconnection patterns are seen in each calendar month).
The indices are then solved for simultaneously using a Least-Squares approach. In this approach, the indices
are the solution to the Least-Squares system of equations which explains the maximum spatial structure of the
observed height anomaly field during the month. The indices are then standardized for each pattern and calendar
month independently. No index value exists when the teleconnection pattern does not appear as one of the ten
leading rotated EOF’s valid for that month.
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Januwary 2018
Sea—Level Pressure and Anomaly

FIGURE E8. Northern Hemisphere mean and anomalous sea level pressure (CDAS/Reanalysis) for JAN 2018. Mean
values are denoted by solid contours drawn at an interval of 4 hPa. Anomaly contour interval is 2 hPa with values
less (greater) than -2 hPa (2 hPa) indicated by dark (light) shading. Anomalies are calculated as departures from
the 1981-2010 base period monthly means.
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January 2018
500—hPa Height and Anomaly

FIGURE E9. Northern Hemisphere mean and anomalous 500-hPa geopotential height (CDAS/Reanalysis) for JAN
2018. Mean heights are denoted by solid contours drawn at an interval of 6 dam. Anomaly contour interval is 3
dam with values less (greater) than -3 dam (3 dam) indicated by dark (light) shading. Anomalies are calculated as
departures from the 1981-2010 base period monthly means.
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January 2018
300—hPo Wind
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FIGURE E10. Northern Hemisphere mean (left) and anomalous (right) 300-hPa vector wind (CDAS/Reanalysis) for
JAN 2018. Mean (anomaly) isotach contour interval is 10 (5) ms?. Values greater than 30 ms™ (left) and 10 ms*
(rights) are shaded. Anomalies are departures from the 1981-2010 base period monthly means.
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January 2018
500—hPa: Percentage of Anomaly Days
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FIGURE E11. Northern Hemisphere percentage of days during JAN 2018 in which 500-hPa height anomalies greater
than 15 m (red) and less than -15 m (blue) were observed. Values greater than 70% are shaded and contour in-

72



Janudry 2018
500—-hPa Height Anomalies: 40"N

0 60E 120E 180 120W EOW 0

I
—-300—-240—-180—-120 —60 60 120 180 240 300

FIGURE E12. Northern Hemisphere: Daily 500-hPa height anomalies for JAN 2018 averaged over the 5° latitude
band centered on 40°N. Positive values are indicated by solid contours and dark shading. Negative values are
indicated by dashed coutours and light shading. Contour interval is 60 m. Anomalies are departures from the
1981-2010 base period daily means.
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January 2018
500—hPa Heighta (Contours)
High Frequency Std. Dev. (Shading)
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FIGURE E13. Northern Hemisphere 500-hPa heights (thick contours, interval is 6 dam) overlaid with (Top) Standard
deviation of 10-day high-pass (HP) filtered height anomalies and (Bottom) Normalized anomalous variance of
10-day HP filtered height anomalies. A Lanczos filter is used to calculate the HP filtered anomalies. Anomalies are
departures from the 1981-2010 daily means.
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Januwary 2018
Sea—Level Pressure and Anomaly

FIGURE E14. Southern Hemisphere mean and anomalous sea level pressure(CDAS/Reanalysis) for JAN 2018. Mean
values are denoted by solid contours drawn at an interval of 4 hPa. Anomaly contour interval is 2 hPa with values
less (greater) than -2 hPa (2 hPa) indicated by dark (light) shading. Anomalies are calculated as departures from
the 1981-2010 base period monthly means.
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January 2018
500—hPa Height and Anomaly

FIGURE E15. Southern Hemisphere mean and anomalous 500-hPa geopotential height (CDAS/Reanalysis) for JAN
2018. Mean heights are denoted by solid contours drawn at an interval of 6 dam. Anomaly contour interval is 3
dam with values less (greater) than -3 dam (3 dam) indicated by dark (light) shading. Anomalies are calculated as
departures from the 1981-2010 base period monthly means.
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January 2018
300—hPa Wind

- -

70
BO
50

30

30
25
20
15
10

FIGURE E16. Southern Hemisphere mean (left) and anomalous (right) 300-hPa vector wind (CDAS/Reanalysis) for
JAN 2018. Mean (anomaly) isotach contour interval is 10 (5) ms?. Values greater than 30 ms? (left) and 10 ms™!
(rights) are shaded. Anomalies are departures from the 1981-2010 base period monthly means.
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January 2018
500—hPa: Percentage of Anomaly Days
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FIGURE E17. Southern Hemisphere percentage of days during JAN 2018 in which 500-hPa height anomalies greater
than 15 m (red) and less than -15 m (blue) were observed. Values greater than 70% are shaded and contour in-
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January 2018
500=hPa Height Anomalies: 405
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FIGURE E18. Southern Hemisphere: Daily 500-hPa height anomalies for JAN 2018 averaged over the 5° latitude band
centered on 40°S. Positive values are indicated by solid contours and dark shading. Negative values are indicated
by dashed coutours and light shading. Contour interval is 60 m. Anomalies are departures from the 1981-2010
base period daily means.
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January 2018
Height Anomalies
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FIGURE S1. Stratospheric height anomalies (m) at selected levels for JAN 2018. Positive values are indicated by
solid contours and dark shading. Negative values are indicated by dashed contours and light shading. Contour
interval is 60 m. Anomalies are calculated from the 1981-2010 base period means. Winter Hemisphere is shown.
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January 2018

Height Anomalies {Contourad)— 60.0N
Temperature Anomalles (shaded)

0

ll \ o~
0 30E S0E OO0 120E 150E 180 150W 120W SOW 60W 3OW O
[T T .
—10-8 —B —4 —2 —1 1 2 4 B 8 10

B3 E58 B
UM, e

FIGURE S2. Height-longitude sections during JAN 2018 for height anomalies (contour) and temperature anomalies
(shaded). In both panels, positive values are indicated by solid contours and dark shading, while negative anoma-
lies are indicated by dashed contours and light shading. Contour interval for height anomalies is 60 m and for
temperature anomalies is 2°C. Anomalies are calculated from the 1981-2010 base period monthly means. Winter

Hemisphere is shown.
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FIGURE S3. Seasonal mean temperature anomalies at 50-hPa for the latitude bands 65°-90°N, 25°-65°N, 25°N-25°S,
25°-65°S, 65°-90°S. The seasonal mean is comprised of the most recent three months. Zonal anomalies are taken
from the mean of the entire data set.
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FIGURE S4. Daily mean temperatures at 10-hPa and 2-hPa (thick line) in the region 65°-90°N and 65°-90°S for
the past two years. Dashed line depicts the 1981-2010 base period daily mean. Thin solid lines depict the daily

extreme maximum and minimum temperatures.
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Monthly M ean Ozone Anomalies (%)
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FIGURE S5. Monthly ozone anomalies (percent) from the long term monthly means for five zones: 50N-30N (NH

mid-latitudes), 25N-10N (NH tropical surf zone), 10N-10S (Equatorial-QBO zone), 10S-25S (SH tropical surf
zone), and 30S-50S (SH mid-latitudes). The long term monthly means are determined from the entire data set
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JANUARY PERCENT DIFF (2018 - AVG[79-86])
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FIGURE S6. Northern (top) and Southern (bottom) Hemisphere total 0ozone anomaly (percent difference from monthly
mean for the period 1979-1986). The region near the winter pole has no SBUV/2 data.
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Fz at 100 hPa (Jan. 2018)
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FIGURE S7. Daily vertical component of EP flux (which is proportional to the poleward transport of heat or upward
transport of potential energy by planetary wave) at 100 hPa averaged over (top) 30°N—90°N and (bottom) 30°S-90°S
for JAN 2018. The EP flux unit (kg m? s?) has been scaled by multiplying a factor of the Brunt Vaisala frequency
divided by the Coriolis parameter and the radius of the earth. The letter ‘M’ indicates the current monthly mean
value and the letter ‘C’ indicates the climatological mean value. Additionally, the normalized departures from the
monthly climatological EP flux values are shown.
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FIGURE S8. Daily time series showing the size of the SH polar vortex (representing the area enclosed by the 32 PVU
contour on the 450K isentropic surface), and the areal coverage of temperatures < -78C on the 450K isentropic
surface.
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Draily Indices 500—hFa Height {dm} & Ancmalies (m}
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FIGURE A2.1. (a) Daily amplitudes of the Arctic Oscillation (AO) the North Atlantic Oscillation (NAO), and the Pacific-
North American (PNA) pattern. The pattern amplitudes for the AO, (NAO, PNA) are calculated by projecting the
daily 1000-hPa (500-hPa) height anomaly field onto the leading EOF obtained from standardized time- series of
daily 1000-hPa (500-hPa) height for all months of the year. The base period is 1981-2010.

(b-d) Northern Hemisphere mean and anomalous 500-hPa geopotential height (CDAS/Reanalysis) for selected
periods during JAN 2018 are shown in the remaining 3 panels. Mean heights are denoted by solid contours
drawn at an interval of 8 dam. Dark (light) shading corresponds to anomalies greater than 50 m (less than -50 m).
Anomalies are calculated as departures from the 1981-2010 base period daily means.

88



SSM/I Snow Cover for an 2018
anomaly based on departure from 1987-2010 baseline
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FIGURE A2.2. SSM/I derived snow cover frequency (%) (left) and snow cover anomaly (%) (right) for the
month of JAN 2018 based on 1987 - 2010 base period for the Northern Hemisphere (top) and Southern Hemi-
sphere (bottom). It is generated using the algorithm described by Ferraro et. al, 1996, Bull. Amer. Meteor. Soc.,

vol 77, 891-905.
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