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Definitions

Ensemble: A weighted mean of multiple realistic estimates
— Traditionally used with dynamic GCM forecast runs with different initial conditions

— Average used to estimate the expected value

Statistical Ensemble: A weighted mean of different statistical estimates

— Ensemble members may have different predictors or predictor regions or use different
statistical models

Super Ensemble: Use weights that reflect the accuracy of each ensemble
member
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Improvements

Ensemble-statistical forecasting
— Developed & tested by Shen et al. 2001 & Lau et al. 2002
— Ensemble CCA improved seasonal U.S. T forecasts (Mo 2003)

Method Improvements

— Ensemble members for differences in predictor regions, predictor
types, and statistical models

— Optimal super-ensemble formed

Data Improvements: include satellite ocean-area precipitation
predictors
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Statistical Super Ensemble Method

Find predictors, p,, p,, ..., p,, for some property, g
Separate models for each prediction, f;(p,)=94, .., f.(P,)=9,
Compute the n member ensemble, E[g] =Y./, W, g,
Optimal weights proportional to the correlation squared

Use cross-validation to compute optimal weights
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Predictor & Predictand Areas:
N.H. Oceans and Contiguous US

Region standard deviations, for Ol SST
anomalies (upper) and GPCP P anomalies
(lower)
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One Model: Canonical Correlation Analysis (CCA)

e Used by Barnett, Banston, many others
— Decompose predictor and predictand fields using EOFs
— Compute CCA in spectral space
— X-val tuning indicates that using 20 CCA modes is best

e Correlation between predictor field and the time-lagged
US precipitation field used for forecast

e Separate CCA for each predictor type and region
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Another: Joint Empirical Orthogonal Analysis (JEOF)

e JEOF is EOF of several fields stacked together

e Normalize predictor and time-lagged US P fields, stack together
and perform EOF

e JEOF for each predictor type and region
e X-val tuning shows that 5 JEOF modes is best

e For both CCA & JEOF anomalies are forecasts, and preliminary test
show separate models for different seasons are not needed
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Super-Ensemble Weights

For Ol at a point, spatial correlations = 1 and weights W, 1

) . . . = 2
are a function of noise/signal error variance 1+7,

Assume that each ensemble, X;, is a linear function of

the truth, X, with random error & maybe bias X =X+ f +&

Using definitions of variance and correlation, and we
can show that weights are a function of squared
correlation, w; = r;?

Normalize weights to avoid damping or inflation of
variance, compute maps of weights
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Data & Evaluations

GPCP monthly precipitation and Ol monthly SST inputs
— 1997-2014 1dd GPCP averaged to monthly, compute anomalies

Cross-validation testing of O-lead monthly forecasts

— Omit all data for the year of analysis and 3 months on either side of the
year

Data from month t-1 to predict month t

Correlations used to evaluate skill and improvements
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All-area SST CCA vs ensemble SST CCA

e CCA skill using all SST together <
skill of ensemble from divided SST.
regions, i=1to 4

e Non-ensemble SST skill similar to
skill using Pq(t-1)

e All averages omit no-skill regions
(correlations < 0)

MOAA Satellites and Information

Temporal correlations against
GPCP computed for each month
(1997-2014), averaged over the
contiguous US and annually.

Predictors CCA

SST(t-1) 0.22
E[SST,(t-1)] 0.26
PLs(t-1) 0.22
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Annual Cycle of US Average Correlation Skill

US Area Avg

Multiple-CCA ensemble using

SST(t-1) in regions almost always
better than CCA using the same 0.5
SST(t-1) combined

.5 1

0.4 1

Corr

___________

Spring-summer months most
improved

Ensemble improved more when
including prediction from P (t-1) CCA(T) E[CCA(T)] E[CCA(TiPu)]
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CCA vs JEOF, Annual Cycle of US Average Correlation

Ensemble using SST(t-1) and
Pys(t-1); no oceanic P predictor
members

JEOF typically better than CCA

Improved more if both JEOF and
CCA members used in ensemble
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Cross-Validation Precipitation
Anomaly Correlation:
June, no oceanic precipitation

JEOF and CCA skill patterns similar, but not
identical

Regions of high skill different in different
models

Super ensemble using both takes the best of
each
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Cross-Validation Precipitation
Anomaly Correlation:
December, no oceanic precipitation

Both JEOF and CCA show skill gaps but in
different regions

Using both expands the region of good skill

Methods Conclusions:

1) Ensembles dividing predictors into regions
improves skill

2) Using ensemble members from multiple
models noticeably improves skill

NOAA Satellites and Information

— 0.8

0.3

0.2

0.1

Y

National Environmental Satellite, Data, and Information Service

45N 1

40N 1

35N 1

30N 1

28N 1

45N 1

40N 1

35N 4

30N 1

25N 1

43M 1

40N 1

33N

20N 1

25N 4

1200 110W 100w 90W  BOW  TOW

CCA

JEQF +CCA

1200 11OW  100W  90W  GOW  7OW

GPCP 1997-2014: No Ocean Prec

14



Including Oceanic Precipitation in 4 Regions

US Area Avg

Skill increases when including 0.5
members with ocean area P(t-1)
predictors

Corr

JEOF better than CCA, using both
is best
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Skill from more than ENSO

Temporal correlations against GPCP
computed for each month (1997-2014),
averaged over the contiguous US and
annually.

e Skill from Tropical Pacific
area SST or Precip important
but not the whole story

e Combining with forecasts

using SST and Precip from Predictors CCA JEOF

other regions doubles Trpac 0.20 0.18
average correlation Prpac 0.21 0.23
ELT;,Pys] 0.31 0.35

ELT;,P;,Pys] 0.39 0.45
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Overall Improvements from oceanic precipitation

: : Temporal correlations against GPCP
Adding satellite-based Pi(t-1) computed for each month (1997-2014),

predictors improves averaged over the contiguous US and

ensembles

annually.
iﬁgrf ?Ce;hb‘;‘i Z'('f;t‘_tlykiﬁetter Predictors  CCA  JEOF  JEOF+CCA
regions are different ELT:.Puysl 0.31 0.35 0.42

ELT;,Pi,Pys]  0-39 0.45 0.50
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US Area-Average of Forecasts vs GPCP

Monthly values 3-mon smoothed
Most large variations consistent, but with important misses
Tends to damp when it misses

Climate variations like ENSO help the correlation (avg 0.41)
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South Comparisons

US Area South of 35°N Forecasts vs GPCP
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US North of 35°N, West of 100°W
Forecasts vs GPCP

Monthly values 3-mon smoothed
Multi-decadal variations clear

More misses, correlation lower than entire US (avg 0.32)
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US North of 35°N, East of 100°W
Forecasts vs GPCP

Monthly values 3-mon smoothed

Forecast misses slight multi-decadal variations and some
extremes

More misses, correlation slightly lower than entire US
(avg 0.39)
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Comparisons to Similar NAMME Tests prnr—
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3-Category Validation

For each month use the 18 years to define the lowest, middle, and highest
third (below normal, normal, above normal categories)

Find the % time forecast is in the correct third (hit)

Find the % time forecast misses by 2 categories (bad miss)
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Averages for Each Month: Hits With & Without Ocean P

% Hits: forecast in correct third

Average does not change much
over year

Sometimes more hits when
ocean P not used, but typically
better with ocean P
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Tercile Averages for Each Month: Bad Misses With & Without Ocean P

Area Avg Bad Misses

% Bad Misses: forecast upper
& validate lower third or
forecast lower & validate
upper third

Using ocean P reduces bad
misses
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Monthly June Maps: Hits & Bad Misses

Ocean P has little impact on Hits

Differences are clearer in bad misses, especially western areas
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Monthly December Maps: Hits & Bad Misses

Ocean P has more impact on hits in December
Again differences are clearer in bad misses, most in mid west and southeast
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Testing 8-14 Day Forecast

* Forecast for day 8-14 average US Area Avg
of each month as test

* Predictors: SST for previous
month, P for last week of
previous month

Corr

.31

0.21
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e Ensembles of CCA+JEOF, all
predictors E[Month] Efemri].

e Average skill similar to
monthly skill but usually
slightly lower

NOAA Satellites and Information v

National Environmental Satellite, Data, and Information Service



8-14 Day 1-Week Forecast June 8-14 Day
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Conclusions

Super-ensemble-statistical forecast better than comparable non-ensemble
forecasts

JEOF better than CCA and multiple linear models gets additional
information from the same predictors

Ocean-area precipitation predictors improves US-area precipitation
forecasts

NOAA Satellites and Information VVV

National Environmental Satellite, Data, and Information Service

32



Next Steps

Need to more fully develop and test methods and new data sources

— More lead times & more predictors
— Other regions, test both T & P predictions
— Funding likely needed to get more people working on the project

Super ensembles can incorporate both statistical and dynamic predictions

Need interested partners for improvements to become part of operational
forecasts
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