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Definitions 

• Ensemble: A weighted mean of multiple realistic estimates 
– Traditionally used with dynamic GCM forecast runs with different initial conditions 
– Average used to estimate the expected value 

 
• Statistical Ensemble: A weighted mean of different statistical estimates 

– Ensemble members may have different predictors or predictor regions or use different 
statistical models 

 
• Super Ensemble: Use weights that reflect the accuracy of each ensemble 

member 
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Improvements 
• Ensemble-statistical forecasting  

– Developed & tested by Shen et al. 2001 & Lau et al. 2002 
– Ensemble CCA improved seasonal U.S. T forecasts (Mo 2003) 
 

• Method Improvements 
– Ensemble members for differences in predictor regions, predictor 

types, and statistical models 
– Optimal super-ensemble formed 

 
• Data Improvements: include satellite ocean-area precipitation 

predictors 
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Statistical Super Ensemble Method 

• Find predictors, p1, p2, …, pn, for some property, g 
 
• Separate models for each prediction, f1(p1)=g1, …, fn(pn)=gn  

 
• Compute the n member ensemble, E[g] = ∑ 𝑤𝑛𝑔𝑛𝑛

𝑖=1  
 

• Optimal weights proportional to the correlation squared 
 

• Use cross-validation to compute optimal weights 



5 

Predictor & Predictand Areas: 
N.H. Oceans and Contiguous US 
Region standard deviations, for OI SST 
anomalies (upper) and GPCP P anomalies 
(lower) 
 
4 Ocean predictor areas: 
1) Trop Pacific (23°S-23°N, 150°E-80°W) 
2) Trop Atlantic (23°S-23°N, 90°W-20°E) 
3) N. Pacific (20°N-60°N, 150°E-100°W) 
4) N. Atlantic (20°N-60°N, 100°W-0°W) 
Some overlap in ocean areas 
Regions likely to influence PUS, similar to 
Lau et al. (2002) areas 
 
Predictors for ensemble: 
• Ocean area SSTk(t-1) 
• US area PUS(t-1) 
• Ocean area Pk(t-1) 
 
Always predict PUS(t) anoms 
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One Model: Canonical Correlation Analysis (CCA) 

• Used by Barnett, Banston, many others 
– Decompose predictor and predictand fields using EOFs 
– Compute CCA in spectral space 
– X-val tuning indicates that using 20 CCA modes is best 

 
• Correlation between predictor field and the time-lagged 

US precipitation field used for forecast 
 

• Separate CCA for each predictor type and region 
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Another: Joint Empirical Orthogonal Analysis (JEOF) 

• JEOF is EOF of several fields stacked together 
 

• Normalize predictor and time-lagged US P fields, stack together 
and perform EOF 
 

• JEOF for each predictor type and region 
 

• X-val tuning shows that 5 JEOF modes is best 
 

• For both CCA & JEOF anomalies are forecasts, and preliminary test 
show separate models for different seasons are not needed 
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Super-Ensemble Weights 

• For OI at a point, spatial correlations = 1 and weights 
are a function of noise/signal error variance 

 
• Assume that each ensemble, xi, is a linear function of 

the truth, x, with random error & maybe bias 
 

• Using definitions of variance and correlation, and we 
can show that weights are a function of squared 
correlation, wi = ri

2 

 
• Normalize weights to avoid damping or inflation of 

variance, compute maps of weights 
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Data & Evaluations 

• GPCP monthly precipitation and OI monthly SST inputs 
– 1997-2014 1dd GPCP averaged to monthly, compute anomalies 

 
• Cross-validation testing of 0-lead monthly forecasts 

– Omit all data for the year of analysis and 3 months on either side of the 
year 

 
• Data from month t-1 to predict month t 

 
• Correlations used to evaluate skill and improvements 
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All-area SST CCA vs ensemble SST CCA 

Temporal correlations against 
GPCP computed for each month 
(1997-2014), averaged over the 
contiguous US and annually. 
 
 Predictors  CCA 
 SST(t-1)    0.22 
 E[SSTi(t-1)] 0.26 
 PUS(t-1)   0.22 

• CCA skill using all SST together < 
skill of ensemble from divided SSTi 
regions, i=1 to 4 
 

• Non-ensemble SST skill similar to 
skill using PUS(t-1) 
 

• All averages omit no-skill regions 
(correlations < 0) 
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Annual Cycle of US Average Correlation Skill 

Multiple-CCA ensemble using 
SST(t-1) in regions almost always 
better than CCA using the same 
SST(t-1) combined 
 
Spring-summer months most 
improved 
 
Ensemble improved more when 
including prediction from PUS(t-1) 
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CCA vs JEOF, Annual Cycle of US Average Correlation 

Ensemble using SST(t-1) and 
PUS(t-1); no oceanic P predictor 
members 
 
JEOF typically better than CCA 
 
Improved more if both JEOF and 
CCA members used in ensemble 
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Cross-Validation Precipitation 
Anomaly Correlation:  
June, no oceanic precipitation 

JEOF and CCA skill patterns similar, but not 
identical 
 
Regions of high skill different in different 
models 
 
Super ensemble using both takes the best of 
each 
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Cross-Validation Precipitation 
Anomaly Correlation:  
December, no oceanic precipitation 

Both JEOF and CCA show skill gaps but in 
different regions 
 
Using both expands the region of good skill 
 
Methods Conclusions: 
1) Ensembles dividing predictors into regions 

improves skill 
2) Using ensemble members from multiple 

models noticeably improves skill 
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Including Oceanic Precipitation in 4 Regions 

Skill increases when including 
members with ocean area P(t-1) 
predictors 
 
JEOF better than CCA, using both 
is best 
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Cross-Validation Precipitation 
Anomaly Correlation:  
June, with oceanic precipitation 

Ocean P ensemble members improve both 
JEOF and CCA 
 
JEOF still better, and combining them still gives 
higher skill 
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Cross-Validation Precipitation 
Anomaly Correlation:  
December, with oceanic 
precipitation 

More regions with higher skill than the case 
with no oceanic precipitation: satellite-based P 
improves the forecast 
 
Best skill apparently from ENSO 
 
Low-skill regions for both JEOF and CCA not 
improved by combining them 
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Skill from more than ENSO 

Temporal correlations against GPCP 
computed for each month (1997-2014), 
averaged over the contiguous US and 
annually. 
 
Predictors  CCA    JEOF 
TTPac  0.20  0.18 
PTPac  0.21  0.23 
E[Ti,PUS]    0.31    0.35 
E[Ti,Pi,PUS]  0.39    0.45 

• Skill from Tropical Pacific 
area SST or Precip important 
but not the whole story 
 

• Combining with forecasts 
using SST and Precip from 
other regions doubles 
average correlation  
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Overall Improvements from oceanic precipitation 

Temporal correlations against GPCP 
computed for each month (1997-2014), 
averaged over the contiguous US and 
annually. 
 
Predictors  CCA    JEOF   JEOF+CCA 
E[Ti,PUS]    0.31    0.35    0.42 
E[Ti,Pi,PUS]  0.39    0.45    0.50 

• Adding satellite-based Pi(t-1) 
predictors improves 
ensembles 
 

• JEOF method slightly better 
than CCA but best-skill 
regions are different  
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US Area-Average of Forecasts vs GPCP 

Monthly values 3-mon smoothed 
 
Most large variations consistent, but with important misses 
 
Tends to damp when it misses 
 
Climate variations like ENSO help the correlation (avg 0.41) 
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US Area South of 35°N Forecasts vs GPCP 

Monthly values 3-mon smoothed 
 
Region influenced by ENSO 
 
Fewer misses and correlation slightly better than for entire 
US (avg 0.42) 
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US North of 35°N, West of 100°W  
Forecasts vs GPCP 

Monthly values 3-mon smoothed 
 
Multi-decadal variations clear 
 
More misses, correlation lower than entire US (avg 0.32) 
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US North of 35°N, East of 100°W  
Forecasts vs GPCP 

Monthly values 3-mon smoothed 
 
Forecast misses slight multi-decadal variations and some 
extremes 
 
More misses, correlation slightly lower than entire US  
(avg 0.39) 
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Comparisons to Similar NAMME Tests 
Similar Skill Levels but in Different Regions 

From Mo and Lettenmaier (2014, J. Hydromet.) 
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3-Category Validation 

• For each month use the 18 years to define the lowest, middle, and highest 
third (below normal, normal, above normal categories) 
 

• Find the % time forecast is in the correct third (hit) 
 

• Find the % time forecast misses by 2 categories (bad miss) 
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Averages for Each Month: Hits With & Without Ocean P 

% Hits: forecast in correct third 
 
Average does not change much 
over year 
 
Sometimes more hits when 
ocean P not used, but typically 
better with ocean P 
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Tercile Averages for Each Month: Bad Misses With & Without Ocean P 

% Bad Misses: forecast upper 
& validate lower third or 
forecast lower & validate 
upper third 
 
Using ocean P reduces bad 
misses 
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Monthly June Maps: Hits & Bad Misses 

Ocean P has little impact on Hits  
Differences are clearer in bad misses, especially western areas  
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Monthly December Maps: Hits & Bad Misses 

Ocean P has more impact on hits in December 
Again differences are clearer in bad misses, most in mid west and southeast  
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Testing 8-14 Day Forecast 

• Forecast for day 8-14 average 
of each month as test 
 

• Predictors: SST for previous 
month, P for last week of 
previous month 
 

• Ensembles of CCA+JEOF, all 
predictors 
 

• Average skill similar to 
monthly skill but usually 
slightly lower 
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8-14 Day 1-Week Forecast 
Skill Patterns 
 
Different from monthly patterns with 
larger areas of low skill 
 
Need to independently test all 
forecasts of interest 

June 8-14 Day 

December 8-14 Day 
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Conclusions 

• Super-ensemble-statistical forecast better than comparable non-ensemble 
forecasts 
 

• JEOF better than CCA and multiple linear models gets additional 
information from the same predictors 
 

• Ocean-area precipitation predictors improves US-area precipitation 
forecasts 
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Next Steps 
• Need to more fully develop and test methods and new data sources 

– More lead times & more predictors 
– Other regions, test both T & P predictions 
– Funding likely needed to get more people working on the project 

 
• Super ensembles can incorporate both statistical and dynamic predictions 

 
• Need interested partners for improvements to become part of operational 

forecasts 
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