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1). Background

North American Topography
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Observed differences between 9 coldest years and 9 warmest years
(based on N.W. U.S. & S. E. Canada LST)
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Observed April snow water equivalent and its difference
between Coldest and Warmest Years over West U.S.
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The GCM and the RCM were integrated for two months from May 1-10 initial,
1998 through June 30, 1998, with two different initial SUBT conditions over the
Western U.S : one from May 1998 (a cold winter as control) and another from
May 1992 (a warm winter as anomaly)

Imposed Subsurface temperature (SUBT)
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[1] This study explores the impact of spring subsurface soil temperature (SUBT) anomaly
in the western U.S. on North American summer precipitation, mainly southeastern U.S.,
and possible mechanisms using a regional climate Eta model and a general circulation
model (GCM). The GCM produces the lateral boundary condition (LBC) for the Eta
model. Two initial SUBT conditions (one cold and another warm) on May Ist were
assigned for the GCM runs and the corresponding Eta runs. The results suggest that
antecedent May Ist warm initial SUBT in the western U.S. contributes positive June
precipitation over the southern U.S. and less precipitation to the north, consistent with
the observed anomalies between a year with a warm spring and a year with a cold
spring in the western U.S. The anomalous cyclone induced by the surface heating due
to SUBT anomaly propagated eastward through Rossby waves in westerly mean flow.
In addition, the steering flow also contributed to the dissipation of perturbation in the
northeastern U.S. and its enhancement in southeastern U.S. However, these results were
obtained only when the Eta model run was driven by the corresponding GCM run.
When the same reanalysis data were applied for both (cold and warm initial SUBT) Eta
runs’ LBCs, the precipitation anomalies could not be properly produced, indicating the
intimate dependence of the regional climate sensitivity downscaling on the imposed
global climate forcing, especially when the impact was through wave propagation in the
large-scale atmospheric flow.

Citation: Xue, Y., R. Vasic, Z. Janjic, Y. M. Liu, and P. C. Chu (2012), The impact of spring subsurface soil temperature
anomaly in the westem U.S. on North American summer precipitation: A case study using regional climate model downscaling,
J. Geophys. Res., 117, D11103, doi:10.1029/2012JD017692.



2). Further Analyses of Observational Data

CONUS + Puerto Riceo: Current 30-Day Observed Precipitation

Valid at 5/24/2015 1200 UTC- Created 5/25/15 0:26 UTC Ma 20’ 2015

U.S. Drought Monitor June 28,2011
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June Precipitation (mm/day)
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May land surface temperature (NWUS)
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May land surface temperature (NWUS)
vs June Temperature (SGP)
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3). North American Extreme Case Studies
3.1). 2011 Texas Drought Case
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Abstract

Recurrent droughtand associated heatwave episodes are im portant features ofthe US climate. Many
studies have examined the connection between ocean surface temperature changesand conterminous
US droughts. However, remote effects of large-scale land surface temperature variability, over shorter
but still considerable distances, on US regional droughts have been largelyignored. The present study
combines two types of evidence to address these effects: climate observations and model simulations.



Goal: 1o understand whether this relationship is valid for
the 2011 drought and heat case and how SST plays role in this
drought.

Experimental design:

The WRF-NMM/SSiB regional climate model (RCM)
The NCEP GSF coupled with the SSiB model



Case 1: Imposed initial subsurface temperature (SUBT) anomaly based on
surface temperature differences between May 2011 and 9 warmest years

Observed Case 1 Imposed Initial SUBT Condition at 1%t step
T E—— RL | SRR B RS Sootnvee 55N
e\ o § 9
43N . 3
o e P A
45H ‘W' . 2 .
R ' -0.5 .
33N :l 35N
: T
:: 25N
April 2011 snow water Equi. Anomaly oo 2o o oo oo oo o
~ Obs. April 2011 Snow anomaly Case 2 Imposed SST anomaly
55N [ - F 10 70N -
o0ON “’- -"“ 1 : }
N g, R |
FON A
35N 14 Y

L30W 120w 110W 100w 90w gow  7OW BowW




Observed/WRF simulated anomaly/difference of surface
temperature (°K) for May. (a.) Observed; (b.) SUBT effect
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The dotted areas denote statistical significance at the a=0.01 level of t-test values.



Observed/WRF-NMM simulated anomaly/difference of June Precipitation (mm day)

Observed SUBT Effect
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Observed/WRF-Simulated June Precipitation
anomaly/difference over Southern Great Planes
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Observed/WRF-NMM simulated anomaly/difference of June-July Temperature

Observed SUBT Effect
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Observed/WRF-Simulated June-July surface temperature
anomaly/difference over Southern Great Planes
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3.2). 2015 Texas Flood

Goal: 70 understand the cause of 2015 flood and possible
mechanisms.

Experimental design:

The WRF/SSiB regional climate model (RCM)
The NCEP GSF coupled with the SSiB model

Precip OBS for Mean May
2015 minus clim(1986—-2015)
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Obs. May 2015 PreC|p anomaly
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Area-Averaged Obs. and WRF Simulated Precipitation anomalies for Diff. Years

(a) May 2015

o, d m OBS

- 4.14 mSUBT
4 mSST
3
2 -

1.4 (34%)
1.18 (29%)

1
0

(b) June 2011
0
-0.71 (31%)
-1 -1.04 (45%)
-2
-2.31
-3

Observed and simulated precipitation anomalies over United States. (a) Area-averaged observed and WRF simulated (LST &
SUBT and SST effects) May 2015 precipitation anomalies over SGP (88—103°W and 29-38 °N). (b) Area-averaged observed and
WREF simulated (LST & SUBT and SST effects) June 2011 precipitation deficit over SGP. Units: Precipitation: mm day'.




5). Issues
Soil Model
Subsurface data over high elevation



Force Restore method for soil temperature

Energy balance at the ground surface
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Deep so1l temperature equation:
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Soil Temperature Memory in Elt')i)betan
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Soil Temperature Memory in (Tbi)betan
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Observed Soil T Profile  Reanalysis and Force Restore T Profile
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The RCM is designed by its very nature to preserve the large scale features that
imposed from the lateral boundary conditions (LBC) but to produce fine scales
feature that are not exist in the LBC. Using the same LBC for both the control run
and anomaly runs would hamper the development of the perturbation produced
in the anomaly run because the imposed LBC tries to reinstall the climate in the
control run.

Xue, Janjic, Dudhia, Ratko, De Sales, 2014. AR
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Summary

1). SST effects on the drought/flood have been investigated for
several decades but land surface temperature effect is largely ignored.
The findings relating LST/SUBT anomalies to downstream extreme
events can serve as a new approach — complementing SST and snow
anomalies — in understanding and predicting high-impact phenomena
in N. America and East Asian regions. Its effect is compatible to SST's
and is the 1st order forcing in the drought.

2). The LST downstream effects in N. America are associated with a
large-scale atmospheric stationary wave extending eastward from the
LST anomaly region. The climate feature there favors a southward
steering flow, helping the anomalous vorticity to extend to the south.



3). It is challenging to apply the SUBT effects for intraseasonal-seasonal
prediction. The most important issue is to reproduce the observed LST
anomaly over upstream mountain areas. Further model improvement and
SUBT data collection are imperative.

4). This research is still in the incipient stage. More studies with different
models and data sets, different approaches, and different cases and regions
are necessary to understand its effects, mechanisms and initial LST anomaly
causes, and make the LST/SUBT anomaly becomes a useful tool for
addressing drought and flood prediction issues



