Global Ocean Monitoring: Recent Evolution, Current Status, and Predictions

Prepared by
Climate Prediction Center, NCEP
October 10, 2007

http://www.cpc.ncep.noaa.gov/products/GODAS/
Outline

• Overview

• Recent highlights
 – Pacific Ocean
 – Indian Ocean
 – Atlantic Ocean

• GODAS and CFS SST Predictions
Overview

• Pacific Ocean
 - Cold SST anomalies intensified near the dateline
 - CPC’s prognostic assessment: La Niña will continue and may strengthen during the next several months
 - Further development of negative SST anomalies near the west coast of South America
 - Large SST changes in the North Pacific

• Indian Ocean
 - Near normal SST conditions prevailed
 - IOD index increased to about 1°C above normal

• Atlantic Ocean
 - Near normal SST conditions prevailed in equatorial Atlantic.
 - SST anomalies are smaller than for the last year
 - Large SST changes in the North Atlantic
Global SST Anomaly (°C) and Anomaly Tendency

- Cold SST anomalies intensified near the date line... a canonical horseshoe pattern in the Pacific
- Weak positive SST anomalies in the Indian and Atlantic Ocean
- Negative SST anomalies near the maritime continent

- SSTs in the Eq. Pacific cooled
- Large changes in the NH extratropics (shallower mixed layer at this time of the year)
- Further cooling near the maritime continent
SSH Anomaly (cm) v.s. SST Anomaly (°C)

- Good consistency between SSH and SST in the equatorial latitudes
- Changes in the SH extratropical latitudes in the SSH may reflect warming trends in the deeper oceans
Pacific Ocean
Recent Evolution of Pacific NINO SST Indices

- All Niño SST indices had a cooling trend
- Cooler SST anomalies reached Niño 4 region (westward propagation)
- CPC’s ENSO Prognostic Statement: JAS ONI -0.6°C, meeting NOAA La Nina definitions which likely enhance in next 3 months
Evolution of Equatorial Pacific SST (°C), 850-mb Zonal Wind (m/s), 0-300m Heat Content (°C) and MJO Activity

- Intensification of easterlies near the date line in September (TAO data)
- Related to enhanced convection in Philippe Sea
- Western edge of the negative SST anomalies moved further westward due to enhanced westward zonal current
Recent Evolution of Heat Budget in NINO3.4 SST Anomaly

Courtesy of Dr. Dongxiao Zhang

- advective cooling in Dec. 2006 (MJO) followed by entrainment cooling in Jan. 2007
- advective and entrainment warming in May-Jul 2007 (MJO) delayed La Nina development
- advective cooling in Jul. 2007 (MJO) followed by entrainment cooling in Aug-Sep 2007 led to La Nina development
North Pacific: SST Anom., SST Anom. Tend., OLR, 850-mb Winds, Sfc Rad, Sfc Flx

- Western coast of North America and Gulf of Alaska cooled down ... weaken Aleutian Low
- Ekman transport/pumping and Sfc. heat fluxes were likely the main external forcing
North America Western Coastal Upwelling

CPC, NCEP

North America Coastal Upwelling (m³/s/100m coastline)

Pentad Upwelling

North America Coastal Upwelling Anom.

SWFSC, NOAA Fisheries

2007 has a strong upwelling season between 45ºN-36ºN

• Climatologically upwelling season progresses from March to July along the west coast of North America from 36ºN to 57ºN.
Indian Ocean
Recent Evolution of Indian Ocean SST Indices

- Cooling in the south-eastern Indian Ocean
- IO Dipole Mode Index (DMI) is about 1°C above normal
Tropical Indian Ocean: SST Anom., SST Anom. Tend., OLR, 850-mb Winds

- Stronger x-equatorial flow...Above normal monsoon rainfall
- Stronger Somali jet
Evolution of Equatorial/10ºS Indian SST (ºC), 850-mb Zonal Wind (m/s), 0-300m Heat Content (ºC)

- Cooling near the Java coast is associated with easterly anomalies and negative heat content
- Easterly anomalies were associated with stronger monsoon circulations
Atlantic Ocean
Recent Evolution of Tropical Atlantic SST Indices

- TNA SSTs are near normal
- TSA SSTs are near normal
- Warm TNA SST anomalies weaker than they were last year
Attribution of SST Anomaly in Northwest Atlantic

Hurricane season warm SST anomalies weaker than they were last year
CFS SST Predictions and Ocean Initial Conditions
CFS Niño 3.4 SST Predictions from Different Lead Times

- Earlier onset of cold SST anomalies (e.g., March ICs)
- Much colder SST forecast in Sept. ICs
For JJA 2007 as the Target; Forecasts From Different Leads

The low skill in JJA is attributed to both model errors (cold biases) and low predictability related to active MJO activities.
Recent Evolution of Equatorial Far Eastern Pacific SST Biases, Vertical Velocity and D20 Anomaly

Large negative SST biases in spring of 2007
Related to anomalously strong upwelling at 50-meter depth
Related to anomalously shallow thermocline in the analysis
Upwelling is abnormally strong in Sept. 2007
Recent Evolution of GODAS Biases: Equatorial Surface (15 m) Zonal Current

Climatological surface currents are westward since July 2007

Too strong westward currents

Anomalous westward currents since Sept. 2007

Cold SST biases and too strong westward currents contributed to earlier onset of cold SST forecast in spring 2007
Compared to the past La Nina events since 1979 transitioning from positive to negative phase during spring, the current year so far is very similar to the 1995 cold. However, the easterly zonal wind stress anomalies in the central Pacific increased dramatically in September, indicating the 2007-08 La Nina may surpasses the weak 1995-96 event and become a moderate cold event.
Backup Slides
GODAS Equatorial X-Z Temperature

SEP 2007 Eq. Temp Anomaly (°C)

SEP 2007 – AUG 2007 Eq. Temp Anomaly (°C)
Tropical Pacific: SST Anom., SST Anom. Tend., OLR, 850-mb Winds, Sfc Rad, Sfc Flx
Pacific Warm Water Volume

Warm Water Volume (5°N–5°S, 130°E–80°W) and NINO 3.4 SST Anomaly

5 month running mean D20 Anom. Average in [5°S–5°N, 120°E–80°W] and NINO3.4 SST Anomaly

PMEL

GODAS
Tropical Atlantic: SST Anom., SST Anom. Tend, OLR, 850-mb Winds, Sfc Rad, Sfc Flx
North Atlantic: SST Anom., SST ANom. Tend., OLR, 850-mb Winds, Sfc Rad, Sfc Flx
Historical Evolution of Equatorial Far Eastern Pacific SST Biases and Vertical Velocity

Negative anomalous SST biases since 1998
Related to anomalously strong upwelling
Anomalous upwelling - annual cycle – early spring surge since 2003
Decadal Variability of Equatorial Pacific SST

Persistent western Pacific warming since 2001
Weak SST variability since 2001
High frequency (annual) eastern Pacific SST variability – annual cooling in spring
Decadal Variability of Equatorial Pacific Zonal Winds

Easterly anomalies persistent near the dateline since 2001
Westerly wind events abundant west of 160E since 2001
Westerly anomalies persistent in the far eastern Pacific since 2001