Global Ocean Monitoring: Recent Evolution, Current Status, and Predictions

Prepared by
Climate Prediction Center, NCEP/NOAA
December 10, 2015

http://www.cpc.ncep.noaa.gov/products/GODAS/

This project to deliver real-time ocean monitoring products is implemented by CPC in cooperation with NOAA Ocean Climate Observation Program (OCO)
Outline

• Overview

• Recent highlights
  – Pacific/Arctic Ocean
    El Niño, NE tropical Pacific conditions, hurricane activities
  – Indian Ocean
  – Atlantic Ocean

• Global SST predictions
  El Niño, Blob/PDO, tropical North Atlantic
Overview

➢ Pacific Ocean
  ❑ El Niño conditions further strengthened in Nov 2015 and the atmospheric and oceanic anomalies reflect a strong El Niño.
  ❑ Most models indicate that a strong El Niño will continue through the Northern Hemisphere winter 2015-16, followed by weakening and a transition to ENSO-neutral during the late spring or early summer.
  ❑ The current conditions and recent evolution of the 2015 El Niño were compared with those of the 1982 and 1997 El Niño.
  ❑ Upper ocean warming associated with the "Blob" has persisted since winter 2013/2014.

➢ Indian Ocean
  ❑ Positive SSTA dominated most of the tropical Indian Ocean.
  ❑ Positive India Dipole Mode index persisted.

➢ Atlantic Ocean
  ❑ Positive NAO strengthened with NAO=+1.7.
  ❑ SSTA were well above-average along the eastern coast of North America.
Global SST Anomaly (°C) and Anomaly Tendency

- SSTA exceeded +2.5°C across the central-eastern equatorial Pacific.
- Positive SSTA presented near the western and eastern coasts of North America.
- Positive SSTA continued in the tropical Indian Ocean.

- Positive SSTA tendency was observed in the western-central equatorial Pacific and south of Japan.
- Negative SSTA tendency presented in the northeast subtropical Pacific and south of Bering Strait.

Fig. G1. Sea surface temperature anomalies (top) and anomaly tendency (bottom). Data are derived from the NCEP OI SST analysis, and anomalies are departures from the 1981-2010 base period means.
- Patterns of upper 300m ocean heat content and SSH anomaly and their tendency were largely consistent.
Longitude-Depth Temperature Anomaly and Anomaly Tendency in 2°S-2°N

Data are derived from the NCEP’s global ocean data assimilation system which assimilates oceanic observations into an oceanic GCM. Anomalies are departures from the 1981-2010 base period means.

- Positive (negative) temperature anomalies presented in the central-eastern (western) equatorial Pacific.
- Positive temperature anomalies dominated in the upper equatorial Indian Ocean except at 100m depth in the far eastern Indian Ocean.
- Positive temperature anomalies dominated in the upper equatorial Atlantic Ocean.

- Anomaly tendency was positive in the upper 50m of the equatorial Pacific.
- The dipole pattern of anomaly tendency near the thermocline was associated with eastward propagation of upwelling oceanic Kelvin wave.

Fig. G3. Equatorial depth-longitude section of ocean temperature anomalies (top) and anomaly tendency (bottom). Data are derived from the NCEP’s global ocean data assimilation system which assimilates oceanic observations into an oceanic GCM. Anomalies are departures from the 1981-2010 base period means.
Tropical Pacific Ocean and ENSO Conditions
Evolution of Pacific NINO SST Indices

- All NINO indices except NINO 1+2 increased in Nov 2015.
- Nino3.4 = +2.96°C in Nov 2015, which is based on weekly OI SST.

**Fig. P1a.** Nino region indices, calculated as the area-averaged monthly mean sea surface temperature anomalies (°C) for the specified region. Data are derived from the NCEP OI SST analysis, and anomalies are departures from the 1981-2010 (bar) and last ten year (green line) means.
- NINO3.4 based on weekly OI SST (black line) is a few tenth degree higher than that based on ERSST.v4 (red line) in recent months.

- Note that the definition of ENSO events at NOAA (http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml) is based on ERSST.v4.
Equatorial Pacific SST (°C), HC300 (°C), u850 (m/s) and OLR(W/m²) Anomalies

Fig. P4. Time-longitude section of anomalous pentad sea surface temperature (left), upper 300m temperature average (heat content, middle-left), 850-mb zonal wind (U850, middle-right) averaged in 2°S-2°N and Outgoing Long-wave Radiation (OLR, right) averaged in 5°S-5°N. SST is derived from the NCEP OI SST, heat content from the NCEP’s global ocean data assimilation system, U850 from the NCEP CDAS. Anomalies for SST, heat content and U850/OLR are departures from the 1981-2010 base period pentad means respectively.

CPC MJO Indices

- Heat content anomaly was dominated by intraseasonal variability associated with four downwelling oceanic Kelvin wave episodes that were forced by four westerly wind burst events in Mar, May, Jul and Oct. The low frequency component of heat content anomaly was largely stationary.
- However, SST anomaly was dominated by westward propagation since Apr 2015.
- Easterly wind anomaly in W. Pac. persisted, while westerly wind anomaly in C.-E. Pac. weakened in Nov 2015.

http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_mjo_index/mjo_index.shtml

- Heat content anomaly was dominated by intraseasonal variability associated with four downwelling oceanic Kelvin wave episodes that were forced by four westerly wind burst events in Mar, May, Jul and Oct. The low frequency component of heat content anomaly was largely stationary.
- However, SST anomaly was dominated by westward propagation since Apr 2015.
- Easterly wind anomaly in W. Pac. persisted, while westerly wind anomaly in C.-E. Pac. weakened in Nov 2015.

Fig. P4. Time-longitude section of anomalous pentad sea surface temperature (left), upper 300m temperature average (heat content, middle-left), 850-mb zonal wind (U850, middle-right) averaged in 2°S-2°N and Outgoing Long-wave Radiation (OLR, right) averaged in 5°S-5°N. SST is derived from the NCEP OI SST, heat content from the NCEP’s global ocean data assimilation system, U850 from the NCEP CDAS. Anomalies for SST, heat content and U850/OLR are departures from the 1981-2010 base period pentad means respectively.
Sea Surface Salinity (SSS)
Anomaly Evolution over Equatorial Pacific

- Hovemoller diagram for equatorial SSS anomaly (10°S-10°N);
- Negative SSS anomaly strengthened over the central and eastern Pacific, with the maximum SSS anomaly located around 170°W. At the meantime, a stretch of positive SSS anomaly continued over the western Pacific from 130°E – 160°E;

SSS:
Blended Analysis of Surface Salinity (BASS) V0.Y
(a CPC-NESDIS/NODC-NESDIS/STAR joint effort)
(Xie et al. 2014)
ftp.cpc.ncep.noaa.gov/precip/BASS
SST, D20 and 925hPa Wind Anomalies in November

1982

NOV 1982 SST Anom. (°C)

NOV 1982 D20 Anom. (m)

NOV 1982 925hpa Wind Anom (m/s)

1997

NOV 1997 SST Anom. (°C)

NOV 1997 D20 Anom. (m)

NOV 1997 925hpa Wind Anom (m/s)

2015

NOV 2015 SST Anom. (°C)

NOV 2015 D20 Anom. (m)

NOV 2015 925hpa Wind Anom (m/s)
The subsurface temperature anomaly averaged in 1°S-1°N in Nov 2015 was weaker than that in Nov 1997, but comparable to that in Nov 1982.
- Compared to 1997, westerly wind anomalies in 2015 were much weaker.
- Consistent with weaker westerly wind anomalies, the 20°C depth anomaly dipole, positive in the east and negative in the west, was much weaker.
The SST and 20°C depth anomalies were stronger in 2015 than those in 1982 before September.

However, associated with strong westerly wind anomalies since September 1982, the amplitude of 20°C depth anomaly grew rapidly and became stronger than that in 2015 since then.
Enhanced convection (OLR is below climatology) in the central-eastern Pacific (170°W–100°W, 5°S–5°N) in spring/early summer 2015 was comparable to that in 1997, but it has weakened gradually since Jun 2015.

Convection rebounded substantially in Nov 2015, but it was still weaker than that in 1982 and 1997 → possibly different impacts on teleconnection (Chiodi and Harrison 2013)?
In the eastern Pacific, the thermocline depth anomaly was between a third to a half of what it was in 1982 and 1997.
There was warm (cold) water built up in 3S-3N (5N-10N) in spring 2015, which was similar to that in spring 1997 except the anomalies were weaker and more confined near the equator.

For both the 1997 and 2015 El Nino, there was rapid enhancement of the cold anomaly around 5N-15N in spring and summer.

For the 2015 El Nino, both the cold and warm anomaly weakened rapidly in Oct-Nov 2015.

It is interesting that the timing of the discharge of warm water near the equator (from positive to near zero) was similar to that in 1997.
Strong Warming in NE Pacific

- The strong positive SSTA in the NE tropical Pacific [140°W-100°W, 10°N-30°N] emerged in early 2014, and the warming enhanced and migrated to the depth since then.

- The development of positive SSTA in the region coincided with the switch to positive PDO phase.

- Positive SSTA weakened near the surface, but persisted in the subsurface in Nov 2015.
- E. Pacific Outlook (70% above-normal):
  15-22 Named Storms (15 average)
  7-12 Hurricanes (8 average)
  5-8 Major Hurricanes (4 average)
  110%-190% ACE

- E. Pacific Counts by Dec 7:
  26 Named Storms > outlook
  16 Hurricanes > outlook
  11 Major Hurricanes > outlook
  2015 is the second most active Pacific hurricane season on record (behind 1992)
North Pacific & Arctic Oceans
Pacific Decadal Oscillation Index

Positive PDO has persisted for 17 months since July 2014 and PDO weakened with PDO=+0.5 in Nov 2015.

- Pacific Decadal Oscillation is defined as the 1st EOF of monthly ERSST v3b in the North Pacific for the period 1900-1993. PDO index is the standardized projection of the monthly SST anomalies onto the 1st EOF pattern.
- The PDO index differs slightly from that of JISAO, which uses a blend of UKMET and OIv1 and OIv2 SST.
- Positive SSTA in the central N. Pacific dissipated, contributing to weakening of positive PDO-like pattern.
- Anomalous anticyclone was observed near the coast of Alaska and Pacific Northwest.
Record SST warming appeared near the west coast of North America in late 2013, referred to as "Blob" by Bond et al. (2015).

- The warming in the NE Pacific box \([150^\circ W-130^\circ W, 40^\circ N-50^\circ N]\) started near the surface in late 2013 and has persisted and extended to depth since then.

- The development of the enhanced warming in late 2013 seems associated with the switch to positive PDO phase.
Fig. NP2. Total (top) and anomalous (bottom) upwelling indices at the 15 standard locations for the western coast of North America. Upwelling indices are derived from the vertical velocity of the NCEP’s global ocean data assimilation system, and are calculated as integrated vertical volume transport at 50 meter depth from each location to its nearest coast point (m³/s/100m coastline). Anomalies are departures from the 1981-2010 base period pentad means.

- Consistent with anomalous anticyclone, anomalous upwelling was observed north of 36N.

- Area below (above) black line indicates climatological upwelling (downwelling) season.
- Climatologically upwelling season progresses from March to July along the west coast of North America from 36°N to 57°N.
Indian Ocean
Evolution of Indian Ocean SST Indices

Fig. I1a. Indian Ocean Dipole region indices, calculated as the area-averaged monthly mean sea surface temperature anomalies (°C) for the SETIO [90°E-110°E, 10°S-0] and WTIO [50°E-70°E, 10°S-10°N] regions, and Dipole Mode Index, defined as differences between WTIO and SETIO. Data are derived from the NCEP OI SST analysis, and departures from the 1981-2010 base period means and the recent 10 year means are shown in bars and green lines.

- The western tropical Indian Ocean (WTIO) warming persisted, and the Dipole Mode Index (WTIO-SETIO) has been above 0.5°C in the past four months.

- The warming in the basin average SSTA continued.
- Positive SSTA exceeding +0.9C continued in the western-central tropical Indian Ocean.
- Convection was enhanced (suppressed) in the central tropical Indian Ocean (in the eastern tropical Indian Ocean and over Indonesia), which was persistent in Oct-Nov 2015.
Tropical and North Atlantic Ocean
Evolution of Tropical Atlantic SST Indices

Fig. A1a. Tropical Atlantic Variability region indices, calculated as the area-averaged monthly mean sea surface temperature anomalies (°C) for the TNA [60°W-30°W, 5°N-20°N], TSA [30°W-10°E, 20°S-0] and ATL3 [20°W-0, 2.5°S-2.5°N] regions, and Meridional Gradient Index, defined as differences between TNA and TSA. Data are derived from the NCEP OI SST analysis, and departures from the 1981-2010 base period means and the recent 10 year means are shown in bars and green lines.

- Positive SSTA in the tropical North Atlantic (TNA) weakened in Nov 2015.
- Positive Meridional Gradient Mode Index (TNA-TSA) also weakened in Nov 2015.
NAO and SST Anomaly in North Atlantic

- NAO strengthened with NAO=+1.7 in Nov 2015.
- Persistent positive NAO was associated with SST cooling (warming) in high-latitude and subtropics (mid-latitude).

Fig. NA2. Monthly standardized NAO index (top) derived from monthly standardized 500-mb height anomalies obtained from the NCEP CDAS in 20°N-90°N (http://www.cpc.ncep.noaa.gov). Time-Latitude section of SST anomalies averaged between 80°W and 20°W (bottom). SST are derived from the NCEP OI SST analysis, and anomalies are departures from the 1981-2010 base period means.
2015 Atlantic Hurricane Counts
(http://weather.unisys.com/hurricane)

- Atlantic Outlook (May update, 70% below-normal):
  6-11 Named Storms (12 average)
  3-6 Hurricanes (6 average)
  0-2 Major Hurricanes (3 average)
  40%-85% ACE

- Atlantic Counts by Dec 7:
  11 Named Storms
  4 Hurricanes
  2 Major Hurricanes
  Successful outlook!

- Only four seasons since 1995 were below-normal (1997, 2009, 2013 and 2014).
- 2015 became the fifth below-normal season since 1995.
- It marked the first time since 1995 that three consecutive seasons were below-normal.
Global SST Predictions
NCEP CFSv2 NINO3.4 Forecast

**NINO3.4 SST anomalies (K)**

- CFSv2 predicted Nino3.4 will gradually dissipate through northern hemisphere winter/spring and transition into neutral conditions by summer 2016.
- The ensemble spread in the CFSv2 forecasts is noticeably small since Jun 2015 I.C., indicating a high confidence in the forecast.
NOAA “ENSO Diagnostic Discussion” on Dec 10 2015 states that “El Niño is expected to remain strong through the Northern Hemisphere winter 2015-16, with a transition to ENSO-neutral anticipated during late spring or early summer 2016.”
Comparison of NCEP CFSv2 and NMME SST Prediction

IC= 201511

- CFSv2 predicted the “Blob” SSTA will dissipate rapidly, while NMME suggested it will persist into spring.

- CFSv2 predicted much stronger warming in the tropical North Atlantic in spring 2016 than NMME did.
NCEP CFSv2 Tropical North Atlantic SST Forecast

Tropical N. Atlantic SST anomalies (K)

- CFSv2 predicted tropical North Atlantic SSTA will grow rapidly in early 2016.
Real-Time Multiple Ocean Reanalyses Intercomparison
(1993-2013 Climatology)

Anomalous Depth (m) of 20°C Isotherm: NOV 2015
Overview

➢ Pacific Ocean

- El Niño conditions further strengthened in Nov 2015 and the atmospheric and oceanic anomalies reflect a strong El Niño.
- Most models indicate that a strong El Niño will continue through the Northern Hemisphere winter 2015-16, followed by weakening and a transition to ENSO-neutral during the late spring or early summer.
- The current conditions and recent evolution of the 2015 El Niño were compared with those of the 1982 and 1997 El Niño.
- Upper ocean warming associated with the "Blob" has persisted since winter 2013/2014.

➢ Indian Ocean

- Positive SSTA dominated most of the tropical Indian Ocean.
- Positive India Dipole Mode index persisted.

➢ Atlantic Ocean

- Positive NAO strengthened with NAO=+1.7.
- SSTA were well above-average along the eastern coast of North America.
Switch to 1981-2010 Climatology

- **SST from 1971-2000 to 1981-2010**
  - Weekly OISST.v2, monthly ERSST.3b

- **Atmospheric fields from 1979-1995 to 1981-2010**
  - NCEP CDAS winds, sea level pressure, 200mb velocity potential, surface shortwave and longwave radiation, surface latent and sensible fluxes, relative humidity
  - Outgoing Long-wave Radiation

- **Oceanic fields from 1982-2004 to 1981-2010**
  - GODAS temperature, heat content, depth of 20°C, sea surface height, mixed layer depth, tropical cyclone heat potential, surface currents, upwelling

- **Satellite data climatology 1993-2005 unchanged**
  - Aviso Altimetry Sea Surface Height
  - Ocean Surface Current Analyses – Realtime (OSCAR)
The seasonal mean SST in February-April (FMA) increased by more than 0.2°C over much of the Tropical Oceans and N. Atlantic, but decreased by more than 0.2°C in high-latitude N. Pacific, Gulf of Mexico and along the east coast of U.S.

Compared to FMA, the seasonal mean SST in August-October (ASO) has a stronger warming in the tropical N. Atlantic, N. Pacific and Arctic Ocean, and a weaker cooling in Gulf of Mexico and along the east coast of U.S.

1971-2000 SST Climatology (Xue et al. 2003):
http://www.cpc.ncep.noaa.gov/products/predictions/30day/SSTs/sst_clim.htm

1981-2010 SST Climatology: http://origin.cpc.ncep.noaa.gov/products/people/yxue/sstclim/

- The seasonal mean SST in February-April (FMA) increased by more than 0.2°C over much of the Tropical Oceans and N. Atlantic, but decreased by more than 0.2°C in high-latitude N. Pacific, Gulf of Mexico and along the east coast of U.S.

- Compared to FMA, the seasonal mean SST in August-October (ASO) has a stronger warming in the tropical N. Atlantic, N. Pacific and Arctic Ocean, and a weaker cooling in Gulf of Mexico and along the east coast of U.S.
Data Sources and References

- Optimal Interpolation SST (OI SST) version 2 (Reynolds et al. 2002)
- NCEP CDAS winds, surface radiation and heat fluxes
- NESDIS Outgoing Long-wave Radiation
- NDBC TAO data (http://tao.noaa.gov)
- PMEL TAO equatorial temperature analysis
- NCEP’s Global Ocean Data Assimilation System temperature, heat content, currents (Behringer and Xue 2004)
- Aviso Altimetry Sea Surface Height
- Ocean Surface Current Analyses – Realtime (OSCAR)

Please send your comments and suggestions to Yan.Xue@noaa.gov. Thanks!
Backup Slides
Positive (negative) zonal current anomalies were associated with downwelling (upwelling) oceanic Kelvin waves.
NINO3.4 Heat Budget

SSTA tendency (dT/dt) in NINO3.4 region (dotted black line) was near zero in Nov 2012, indicating a persistence in NINO3.4.

- All the advection terms were positive, the sum of which was largely in balance with the negative thermodynamical term (Qq).


Qu: Zonal advection; Qv: Meridional advection;
Qw: Vertical entrainment; Qzz: Vertical diffusion
Qq: (Qnet - Qpen + Qcorr)/ρcph; Qnet = SW + LW + LH +SH;
Qpen: SW penetration; Qcorr: Flux correction due to relaxation to OI SST
Tropical Pacific: SST Anom., SST Anom. Tend., OLR, Sfc Rad, Sfc Flx, 925-mb & 200-mb Winds

Fig. P2. Sea surface temperature (SST) anomalies (top-left), anomaly tendency (top-right), Outgoing Long-wave Radiation (OLR) anomalies (middle-left), sum of net surface short- and long-wave radiation, latent and sensible heat flux anomalies (middle-right), 925-mb wind anomaly vector and its amplitude (bottom-left), 200-mb wind anomaly vector and its amplitude (bottom-right). SST are derived from the NCEP OI SST analysis, OLR from the NOAA 18 AVHRR IR window channel measurements by NESDIS, winds and surface radiation and heat fluxes from the NCEP CDAS. Anomalies are departures from the 1981-2010 base period means.
North Pacific & Arctic Ocean: SST Anom., SST Anom. Tendency, OLR, SLP, Sfc Rad, Sfc Flx

Fig. NP1. Sea surface temperature (SST) anomalies (top-left), anomaly tendency (top-right), Outgoing Long-wave Radiation (OLR) anomalies (middle-left), sea surface pressure anomalies (middle-right), sum of net surface short- and long-wave radiation anomalies (bottom-left), sum of latent and sensible heat flux anomalies (bottom-right). SST are derived from the NCEP OI SST analysis, OLR from the NOAA 18 AVHRR IR window channel measurements by NESDIS, sea surface pressure and surface radiation and heat fluxes from the NCEP CDAS. Anomalies are departures from the 1981-2010 base period means.

Fig. I2. Sea surface temperature (SST) anomalies (top-left), anomaly tendency (top-right), Outgoing Long-wave Radiation (OLR) anomalies (middle-left), sum of net surface short- and long-wave radiation, latent and sensible heat flux anomalies (middle-right), 925-mb wind anomaly vector and its amplitude (bottom-left), 200-mb wind anomaly vector and its amplitude (bottom-right). SST are derived from the NCEP OI SST analysis, OLR from the NOAA 18 AVHRR IR window channel measurements by NESDIS, winds and surface radiation and heat fluxes from the NCEP CDAS. Anomalies are departures from the 1981-2010 base period means.
North Atlantic: SST Anom., SST Anom. Tend., OLR, SLP, Sfc Rad, Sfc Flx

Fig. NA1. Sea surface temperature (SST) anomalies (top-left), anomaly tendency (top-right), Outgoing Long-wave Radiation (OLR) anomalies (middle-left), sea surface pressure anomalies (middle-right), sum of net surface short- and long-wave radiation anomalies (bottom-left), sum of latent and sensible heat flux anomalies (bottom-right). SST are derived from the NCEP OI SST analysis, OLR from the NOAA 18 AVHRR IR window channel measurements by NESDIS, sea surface pressure and surface radiation and heat fluxes from the NCEP CDAS. Anomalies are departures from the 1979-1995 base period means except SST anomalies are computed with respect to the 1971-2000 base period means.
- Negative SSTA in the far W. Pacific weakened, and positive SSTA in the C.-E. Pacific extended further west.
- The atmospheric signature of the El Nino, suppressed (enhanced) convection over the Maritime Continent (near the Dateline), persisted in Nov 2015.
20°C depth anomaly at [155°W, 2°S-2°N] shows that the upwelling Kelvin wave episode had contributed to a discharge of warm water volume in Nov 2015, similar to that in Nov 1997, indicating a tendency to decay in the El Nino.