Global Ocean Monitoring: Recent Evolution, Current Status, and Predictions

Prepared by
Climate Prediction Center, NCEP/NOAA
May 11, 2021

http://www.cpc.ncep.noaa.gov/products/GODAS/

This project, to deliver real-time ocean monitoring products, is implemented by CPC in cooperation with NOAA’s Global Ocean Monitoring and Observing Program (GOMO)
• Overview
• Recent highlights
 – Pacific/Arctic Ocean
 – Indian Ocean
 – Atlantic Ocean
• Global SSTA Predictions
Overview

- **Pacific Ocean**
 - NOAA “ENSO Diagnostic Discussion” on 8 Apr 2021 stated “A transition from La Niña to ENSO-Neutral is likely in the next month or so, with an 80% chance of ENSO-neutral during May-July 2021.”
 - La Niña conditions weakened with Niño3.4 = -0.49°C in Apr 2021.
 - The negative phase of PDO has persisted since Jan 2020 with PDOI = -1.2 in Apr 2021.

- **Indian Ocean**
 - SSTAs were small in the tropical Indian Ocean in Apr 2021.

- **Atlantic Ocean**
 - SSTs were mostly near average in the tropical Atlantic Ocean in Apr 2021.
 - NAO switched to a negative phase in Apr 2021 with NAOI = -1.7.

- **Arctic Ocean**
 - The sea ice extent for Apr 2021 was the 6th lowest since 1979.
 - With ICs in Apr 2021, NCEP/CPC predicted a below-normal sea ice extent during summer and autumn 2021.
Global Oceans
Sea surface temperature anomalies (top) and anomaly tendency (bottom). Data are derived from the NCEP OI SST analysis, and anomalies are departures from the 1991-2020 base period means.

- Negative SSTAs weakened in the central tropical Pacific.
- Positive SSTAs were evident in the NE Pacific.
- Negative SSTAs were present in the tropical Atlantic Ocean.
- SSTAs were small in the tropical Indian Ocean.

- Positive (negative) SSTA tendencies were present in the central (eastern) equatorial Pacific.
Equatorial depth-longitude section of ocean temperature anomalies (top) and anomaly tendency (bottom). Data is from the NCEP's global ocean data assimilation system. Anomalies are departures from the 1991-2020 base period means.

- Positive subsurface ocean anomalies dominated along the thermocline in the equatorial Pacific.
- Positive anomalies have been observed in the eastern Indian Ocean since Oct 2020.

- Temperature anomaly tendency was positive (negative) along the thermocline in the eastern (western) Pacific, implying an eastward propagation of the positive anomalies.
The SSHA pattern was overall consistent with the HC300A pattern, but with a significant trend component in SSHA.

La Nina-like pattern persisted.

Anomaly tendencies: Positive in the eastern tropical Pacific; negative in the western tropical Pacific, consistent with the subsurface ocean temperature anomaly tendency (the previous slide).
Tropical Pacific Ocean and ENSO Conditions
- Niño4 and Niño3.4 indices weakened, and Niño3 and Niño1+2 indices strengthened, with Niño3.4 = -0.49°C in Apr 2021.

- Compared with Apr2020, the central and eastern tropical Pacific was cooler in Apr 2021.

- The indices may have slight differences if based on different SST products.
Relative Niño3.4 index is now included in ENSO monitoring, which is defined as the conventional Niño3.4 index minus the SSTA averaged in the whole tropics (0°-360°, 20°S-20°N), in order to remove the global warming signal. Also, to have the same variability as the conventional Niño3.4 index, the relative Niño3.4 index is renormalized (van Oldenborgh et al. 2021: ERL, 10.1088/1748-9326/abe9ed).

Relative Niño3.4 data updated monthly at:
https://www.cpc.ncep.noaa.gov/data/indices/RONI.ascii.txt
- With the relative Niño3.4 index, the strength of 2020/21 La Niña increased slightly, compared with the Niño3.4 index.

https://www.climate.gov/news-features/blogs/enso/enso-running-fever-or-it-global-warming
Sea surface temperature (SST) anomalies (top-left), anomaly tendency (top-right), Outgoing Long-wave Radiation (OLR) anomalies (middle-left), sum of net surface short- and long-wave radiation, latent and sensible heat flux anomalies (middle-right; positive means heat into the ocean), 925-mb wind anomaly vector and its amplitude (bottom-left), 200-mb wind anomaly vector and its amplitude (bottom-right). SST are derived from the NCEP OI SST analysis, OLR from the NOAA 18 AVHRR IR window channel measurements by NESDIS, winds and surface radiation and heat fluxes from the NCEP CDAS. Anomalies are departures from the 1991-2020 base period means.
Latest 3-month Tropical Pacific SST, OLR, & uv925 anomalies
Latest 3-month subsurface temperature anomaly along the Equator
NOTE: Since June 2015, the BASS SSS is from in situ, SMOS and SMAP; before June 2015, the BASS SSS is from in situ, SMOS and Aquarius.

- Hovemoller diagram for equatorial SSS anomaly (5° S-5° N);
- In the equatorial Pacific Ocean, west of 140°E, negative SSS signal continues; positive SSS signal also continues between 140°E and 170°W; while negative SSS signal continues and likely became weaker east of 160°W.
Upwelling Kelvin waves were initiated in Apr & Jul 2020, leading to the subsurface cooling in the eastern equatorial Pacific.

Downwelling Kelvin wave was initiated in late Jan or early Feb 2021, consisting with the weakening of La Niña.

Oceanic Kelvin Wave (OKW) Index

(OKW index is defined as standardized projections of total anomalies onto the 14 patterns of Extended EOF1 of equatorial temperature anomalies (Seo and Xue, GRL, 2005).)

Anomalous eastward currents emerged in the western & central equatorial Pacific in both OSCAR and GODAS in Feb-Apr 2021, contributing to the weakening of the La Niña.
Negative SSTAs have weakened since Feb 2021, which may be associated with a downwelling Kelvin wave triggered by a westerly wind burst event.
Equatorial Sub-surface Ocean Temperature Monitoring

Projection of ocean temperature anomalies onto EOF1 and EOF2; EOF1: Tilt/dipole mode (ENSO peak phase); EOF2: WWV mode.

Recharge/discharge oscillation (ENSO transition phase); Recharge process: heat transport from outside of equator to equator; Negative -> positive phase of ENSO

- The equatorial Pacific has been in a recharge phase since Nov 2020.
Warm Water Volume (WWV) and Niño3.4 Anomalies

- Equatorial Warm Water Volume (WWV) has been in a recharge phase since Dec 2020.

As WWV is intimately linked to ENSO variability (Wyrtki 1985; Jin 1997), it is useful to monitor ENSO in a phase space of WWV and Niño3.4 (Kessler 2002).

- Increase (decrease) of WWV indicates recharge (discharge) of the equatorial oceanic heat content.

Phase diagram of Warm Water Volume (WWV) and Niño3.4 indices. WWV is the average of depth of 20°C in [120°E-80°W, 5°S-5°N] calculated with the NCEP’s GODAS. Anomalies are departures from the 1991-2020 base period means.
- 2020/21 La Niña ranks 6th strongest La Niña and it is the weakest strong La Niña event since 1982 based on monthly mean relative Niño3.4.
Peak seasonal (3-month-average) sea surface temperature anomalies in the ENSO 3.4 region for all La Niña events since 1950. The year label is the first year of the event; e.g., "2020" is the "2020–21" La Niña.

- 2020/21 La Niña ranks 10th strongest La Niña event since 1950 based on 3-month mean Niño3.4.
All strong La Niña should be followed by a weaker La Niña unless a strong downwelling Kelvin wave emerges.
North Pacific & Arctic Oceans
Pacific Decadal Oscillation (PDO) Index

- PDO is defined as the 1st EOF of monthly ERSST v3b in the North Pacific for the period 1900-1993. PDO index is the standardized projection of the monthly SST anomalies onto the 1st EOF pattern.
- The PDO index differs slightly from that of JISAO, which uses a blend of UKMET and OIv1 and OIv2 SST.

- The negative phase of PDO has persisted since Jan 2020 with PDOI = -1.2 in Apr 2021.

- Statistically, ENSO leads PDO by 3-4 months, through teleconnection via atmospheric bridge, with El Niño (La Niña) associated with positive (negative) PDO Index.
(top) Total and (bottom) anomalous upwelling indices at the 15 standard locations for the western coast of North America. Derived from the vertical velocity of the NCEP’s GODAS and are calculated as integrated vertical volume transport at 50-meter depth from each location to its nearest coast point (m³/s/100m coastline). Anomalies are departures from the 1991-2020 base period pentad means.

- Area below (above) black line indicates climatological upwelling (downwelling) season.

- Coastal anomalous upwelling has been present north of 27°N since 2nd half of Jan 2021.

- Climatologically upwelling season progresses from March to July along the west coast of North America from 36°N to 57°N.
Latest 3-month North Pacific SST, OLR & uv925 anomalies

Data source: NCEP/NCAR Reanalysis 1
- Latest CFSv2 predictions suggest that the current warm state will weaken in the next 6 months.
CFSv2 NE Pacific Marine Heatwave Index Predictions

SST anomalies (K) [150W–125W, 28N–50N]

- Latest CFSv2 predictions call weakening of the positive SSTAs in the NE Pacific in 2021.

CFS NE Pacific SST predictions from the latest 9 initial months. Displayed are 40 forecast members (brown) made four times per day initialized from the last 10 days of the initial month (labelled as IC=MonthYear) as well as ensemble mean (blue) and observations (black). Anomalies were computed with respect to the 1991-2020 base period means.
- The sea ice extent averaged for Apr 2021 was the 6th lowest in the satellite record.
- Through 2021, the linear rate of decline for Apr sea ice extent is 2.6% per decade.
For ICs in Apr 2021, NCEP/CPC predicted a below-normal sea ice extent.

Indian Ocean
Overall, SSTAs were small in the tropical Indian Ocean in Apr 2021.
SSTAs (top-left), SSTA tendency (top-right), OLR anomalies (middle-left), sum of net surface short- and long-wave radiation, latent and sensible heat flux anomalies (middle-right), 925-mb wind anomaly vector and its amplitude (bottom-left), 200-mb wind anomaly vector and its amplitude (bottom-right). SST are derived from the OI SST analysis, OLR from the NOAA 18 AVHRR IR window channel measurements by NESDIS, winds and surface radiation and heat fluxes from the NCEP CDAS. Anomalies are departures from the 1991-2020 base period means.

- SSTAs were small and the tendencies were positive in the tropical Indian Ocean.
Tropical and North Atlantic Ocean
Evolution of Tropical Atlantic SST Indices

Tropical Atlantic Variability region indices, calculated as the area-averaged monthly mean sea surface temperature anomalies (°C) for the TNA [60°W-30°W, 5ºN-20ºN], TSA [30°W-10°E, 20ºS-0] and ATL3 [20°W-0, 2.5ºS-2.5ºN] regions, and Meridional Gradient Index, defined as differences between TNA and TSA. Data are derived from the NCEP OI SST analysis, and anomalies are departures from the 1991-2020 base period means.

ATL3 SST has been below average since Nov 2020.
SSTAs in the North Atlantic & MDR

- SST in MDR was below average during the last two months.
NAO and SST Anomaly in North Atlantic

- NAO switched to a negative phase in Apr 2021 with NAOI = -1.7.
- The prolonged positive SSTAs in the middle latitudes were evident, due to the domination of the positive phase of NAO during the last 5-6 years.

Monthly standardized NAO index (top) derived from monthly standardized 500-mb height anomalies obtained from the NCEP CDAS in 20°N-90°N (http://www.cpc.ncep.noaa.gov). Time-Latitude section of SST anomalies averaged between 80°W and 20°W (bottom). SST are derived from the NCEP OI SST analysis, and anomalies are departures from the 1991-2020 base period means.
Tropical Atlantic Ocean: SSTA, SSTA Tend, TCHP, OLR, UV200, UV200-UV850, Heat Flux Anomalies

Top Row: SSTA (left; OI SST), SSTA tendency (central), Tropical Cyclone Heat Potential anomaly (right; GODAS).

Middle row: OLR (left; NOAA 18 AVHRR IR), UV200 (central; NCEP CDAS), UV200-UV850 (right; NCEP CDAS) anomalies.

Bottom row: SW+LW (left), LH+SH (central), Relative humidity at 700 hPa (right; NCEP CDAS) anomalies.

Anomalies are departures from the 1991-2020 base period means.
ENSO and Global SST Predictions
- **ENSO Alert System Status:** La Niña Advisory Issued on 8 Apr 2021

- **Synopsis:** A transition from La Niña to ENSO-Neutral is likely in the next month or so, with an 80% chance of ENSO-neutral during May-July 2021.
Individual Model Niño3.4 Forecasts

EC: IC= 01 May, 2021

NINO3.4 SST anomaly plume

ECMWF forecast from 1 May 2021

Monthly mean anomalies relative to NCEP OIv2 1981/2010 climatology

JMA: Updated 9 Apr, 2021

BOM: Updated 08 May, 2021

Monthly sea surface temperature anomalies for NINO3.4 region

UKMO: Updated 11 May, 2021

SST Deviation (°C)

All rights reserved. Copyright © Japan Meteorological Agency

Model 410705-53

Model run: 8 May 2021

Base period 1981-2010

UKMO SST anomaly (deg C)
NMME forecasts with the latest 4-month initial conditions
CFSv2 Niño3.4 SST Predictions

Latest CFSv2 predictions call for below-normal SSTs, re-occurrence of La Niña in late 2021.
Latest CFSv2 predictions call above-normal SST in the next 8 months (2021 hurricane season).
CFS Tropical North Atlantic (TNA) SST predictions from the latest 9 initial months. Displayed are 40 forecast members (brown) made four times per day initialized from the last 10 days of the initial month (labelled as IC=MonthYear) as well as ensemble mean (blue) and observations (black). Anomalies were computed with respect to the 1991-2020 base period means. TNA is the SST anomaly averaged in the region of [60oW-30oW, 5oN-20oN].

- Latest CFSv2 predictions call for above normal SSTs in the tropical N. Atlantic in 2021 hurricane season.
CFSv2 DMI SST Predictions

Latest CFSv2 predicts a negative phase of IOD in 2021.

CFS Dipole Model Index (DMI) SST predictions from the latest 9 initial months. Displayed are 40 forecast members (brown) made four times per day initialized from the last 10 days of the initial month (labelled as IC=MonthYear) as well as ensemble mean (blue) and observations (black). The hindcast climatology for 1981-2006 was removed, and replaced by corresponding observation climatology for the same period. Anomalies were computed with respect to the 1991-2020 base period means.
CFSv2 Pacific Decadal Oscillation (PDO) Index Predictions

CFS Pacific Decadal Oscillation (PDO) index predictions from the latest 9 initial months. Displayed are 40 forecast members (brown) made four times per day initialized from the last 10 days of the initial month (labelled as IC=MonthYear) as well as ensemble mean (blue) and observations (black). Anomalies were computed with respect to the 1991-2020 base period means. PDO is the first EOF of monthly ERSSTv3b anomaly in the region of [110°E-100°W, 20°N-60°N]. CFS PDO index is the standardized projection of CFS SST forecast anomalies onto the PDO EOF pattern.

- CFSv2 predicts a negative phase of PDO in the coming seasons.
Drs. Jieshun Zhu, Caihong Wen and Arun Kumar: reviewed PPT, and provide insightful suggestions and comments

Drs. Li Ren and Pingpingping Xie provided the BASS/CMORPH/CFSR EVAP package

Dr. Wanqiu Wang provided the sea ice forecasts and maintained the CFSv2 forecast archive

Please send your comments and suggestions to:
Zeng-Zhen.Hu@noaa.gov
Jieshun.Zhu@noaa.gov
Arun.Kumar@noaa.gov
Caihong.Wen@noaa.gov
Weekly Optimal Interpolation SST (OI SST) version 2 (Reynolds et al. 2002)
Extended Reconstructed SST (ERSST) v5 (Huang et al. 2017)
Blended Analysis of Surface Salinity (BASS) (Xie et al. 2014)
CMORPH precipitation (Xie et al. 2017)
CFSR evaporation adjusted to OAFlux (Xie and Ren 2018)
NCEP CDAS winds, surface radiation and heat fluxes (Kalnay et al. 1996)
NESDIS Outgoing Long-wave Radiation (Liebmann and Smith 1996)
NCEP’s GODAS temperature, heat content, currents (Behringer and Xue 2004)
Aviso altimetry sea surface height from CMEMS
Ocean Surface Current Analyses – Realtime (OSCAR)
In situ data objective analyses (IPRC, Scripps, EN4.2.1, PMEL TAO)
Operational Ocean Reanalysis Intercomparison Project
http://www.cpc.ncep.noaa.gov/products/GODAS/multiora_body.html
http://www.cpc.ncep.noaa.gov/products/GODAS/multiora93_body.html
Backup Slides
New Update: The NCEI SST data used in the quality control procedure has been updated to version 2.1 since May 2020;

Positive SSS anomaly still continues in the western equatorial Pacific Ocean and SPCZ region. Positive SSS anomaly strengthens and expands along the Equatorial Pacific Ocean east of date line. Also, positive SSS anomaly in the central N. Pacific Ocean between 20° N and 40° N became stronger. Positive SSS anomaly continues and strengthens between equator and 40° N in the North Atlantic Ocean. Positive SSS anomaly appears in the Indian Ocean north of Equator, which is likely cause by reduced precipitation.

SSS : Blended Analysis of Surface Salinity (BASS) V0.Z
(a CPC-NESDIS/NODC-NESDIS/STAR joint effort)
ftp.cpc.ncep.noaa.gov/precip/BASS

Precipitation: CMORPH adjusted satellite precipitation estimates
Evaporation: Adjusted CFS Reanalysis
Compared with last month, SSS increased significantly between 20° N and 40° N in the North Pacific Ocean, especially in the central and east basins. SSS increased in the Indian Ocean north of 20° S except the Arabian Sea. SSS also increased in the North Atlantic Ocean between Equator and 40° N. In the Atlantic Ocean, the SSS increased along the equator which is likely due to reduced precipitation.
Figure caption:
Hovemoller diagram for equatorial (5° S–5° N) 5-day mean SSS, SST and precipitation anomalies. The climatology for SSS is Levitus 1994 climatology. The SST data used here is the OISST V2 AVHRR only daily dataset with its climatology being calculated from 1985 to 2010. The precipitation data used here is the adjusted CMORPH dataset with its climatology being calculated from 1999 to 2013.
- Positive ocean temperature anomalies along the thermocline in the western and central Pacific persisted and negative anomalies in the far-eastern Pacific weakened in the last 2 months, consistent with the weakening of La Niña.

- The features of the ocean temperature anomalies were similar between GODAS and TAO analysis.
North Pacific & Arctic Ocean: SSTA, SSTA Trend, OLR, SLP, Heat Flux Anomalies

Sea surface temperature (top-left; NCEP OI SST Analysis), anomaly tendency (top-right), Outgoing Long-wave Radiation (OLR) (middle-left; NOAA 18 AVHRR IR), sea surface pressure (middle-right; NCEP CDAS), sum of net surface short- and long-wave radiation (bottom-left; positive means heat into the ocean; NCEP CDAS), sum of latent and sensible heat flux (bottom-right; positive means heat into the ocean; NCEP CDAS). Anomalies are departures from the 1991-2020 base period means.
Sea surface temperature (top-left; NCEP OI SST Analysis), anomaly tendency (top-right), Outgoing Long-wave Radiation (OLR) (middle-left; NOAA 18 AVHRR IR), sea surface pressure (middle-right; NCEP CDAS), sum of net surface short- and long-wave radiation (bottom-left; positive means heat into the ocean; NCEP CDAS), sum of latent and sensible heat flux (bottom-right; positive means heat into the ocean; NCEP CDAS). Anomalies are departures from the 1991-2020 base period means.