
The North American Multimodel Ensemble prediction experiment is described, and forecast 

quality and methods for accessing digital and graphical data from the model are discussed.
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A fter more than three decades of research into  
 the origins of seasonal climate predictability  
 and the development of dynamical model-based 

seasonal prediction systems, the continuing relatively 
deliberate pace of progress has inspired two notable 
changes in prediction strategy, largely based on multi-
institutional international collaborations. One change 
in strategy is the inclusion of quantitative information 
regarding uncertainty (i.e., probabilistic prediction) in 
forecasts and probabilistic measures of forecast quality 
in the verifications (e.g., Palmer et al. 2000; Goddard 
et al. 2001; Kirtman 2003; Palmer et al. 2004; DeWitt 
2005; Hagedorn et al. 2005; Doblas-Reyes et al. 2005; 
Saha et al. 2006; among many others). The other 
change is the recognition that a multimodel ensemble 
strategy is a viable approach for adequately resolving 
forecast uncertainty (Palmer et al. 2004; Hagedorn 
et al. 2005; Doblas-Reyes et al. 2005; Palmer et al. 
2008), although other techniques such as perturbed 
physics ensembles (currently in use at the Met Office 
for their operational system) or stochastic physics (e.g., 
Berner et al. 2008) have been developed and appear 

to be quite promising. The first change in prediction 
strategy naturally follows from the fact that climate 
variability includes a chaotic or irregular component, 
and, because of this, forecasts must include a quantita-
tive assessment of this uncertainty. More importantly, 
the climate prediction community now understands 
that the potential utility of climate forecasts is based 
on end-user decision support (Palmer et al. 2000; 
Morse et al. 2005; Challinor et al. 2005), which re-
quires probabilistic forecasts that include quantita-
tive information regarding forecast uncertainty. The 
second change in prediction strategy follows from the 
first, because, given our current modeling capabilities, 
a multimodel strategy is a practical and relatively 
simple approach for quantifying forecast uncertainty 
due to uncertainty in model formulation, although it 
is likely that the uncertainty is not fully resolved.

More recently, there has been a growing inter-
est in forecast information on time scales beyond 
10 days but less than a season. For example, the 
National Centers for Environmental Prediction 
Climate Prediction Center (NCEP/CPC) in the United 
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States currently makes outlook-type forecasts for 
extended weather forecast ranges (i.e., 2 weeks) such 
as the NCEP/CPC Global Tropical Hazards/Benefits 
Assessment provides forecasts of anomalous tropi-
cal temperature and precipitation. The U.S. Hazards 
Assessment product, also issued by NCEP/CPC, 
includes outlooks of potential hazards in the United 
States up to 16 days. At present, such outlook-style 
forecast products are based on a subjective combina-
tion of various statistical and dynamical methods, 
although there is momentum to make the process 
more objective using real-time dynamic model fore-
casts. These developments demonstrate the demand 
for such dynamical forecast information.

This week 2–4 time scale is coupled to the seasonal 
time scale1 and is often viewed as a source of predict-
ability for seasonal time scales, yet the mechanisms 
for predictability on this time scale are less well 
understood (as compared to, say, ENSO). Despite this, 
there is substantial evidence for dynamic subseasonal 
predictions that are of sufficient quality to be useful 
(e.g., Pegion and Sardeshmukh 2011) and evidence 
that a multimodel approach will enhance forecast 
quality on this time scale [see the coordinated Intra-
seasonal Variability Hindcast Experiment (ISVHE); 
http://iprc.soest.hawaii.edu/users/jylee/clipas/].

Given the pragmatic utility of the multimodel 
approach, there is multiagency [National Oceanic 
and Atmospheric Administration (NOAA), National 
Science Foundation (NSF), National Aeronautics and 
Space Administration (NASA), and U.S. Department 
of Energy (DOE)] support for a North American 
Multimodel Ensemble (NMME) intraseasonal to 
seasonal to interannual (ISI) prediction experiment. 

This experiment leverages an NMME team that 
has already formed and began producing routine 
real-time multimodel ensemble ISI predictions since 
August 2011. The forecasts are provided to the NOAA 
CPC on an experimental basis for evaluation and con-
solidation as a multimodel ensemble ISI prediction 
system. The experimental prediction system devel-
oped by this NMME team is as an “NMME of oppor-
tunity” in that the seasonal-to-interannual prediction 
systems are readily available and each team member 
has independently developed the initialization and 
prediction protocol. We will refer to the NMME of 
opportunity as phase-1 NMME (or NMME-1). The 
NMME-1 focuses on seasonal-to-interannual time 
scales in that the data that are exchanged monthly.

The newly funded multiagency experiment will 
develop a more “purposeful NMME” in which the 
requirements for operational ISI prediction will be 
used to define the parameters of a rigorous refore-
cast experiment and evaluation regime. This will be 
phase-2 NMME (or NMME-2). The NMME team 
will design and test an operational NMME protocol 
that will guide future research, development, and 
implementation of the NMME beyond what can be 
achieved based on the NMME-1 project.

The NMME-2 experiment will do as follows:

i) Build on existing state-of-the-art U.S. climate 
prediction models and data assimilation systems 
that are already in use in NMME-1 (as well as 
upgraded versions of these forecast systems), 
introduce a new forecast system, and ensure in-
teroperability so as to easily incorporate future 
model developments.
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1 Any dynamical seasonal prediction system (e.g., coupled atmosphere–ocean model) must pass through the subseasonal time scale.
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ii) Take into account operational forecast require-
ments (forecast frequency, lead time, duration, 
number of ensemble members, etc.) and regional/
user-specific needs. A focus of this aspect of the 
experiment will be the hydrology of various re-
gions in the United States and elsewhere in order 
to address drought and extreme event predic-
tion. An additional focus of NMME-2 will be to 
develop and evaluate a protocol for intraseasonal 
or subseasonal multimodel prediction.

iii) Utilize the NMME system experimentally in a 
near-operational mode to demonstrate the feasi-
bility and advantages of running such a system 
as part of NOAA’s operations.

iv) Enable rapid sharing of quality-controlled refore-
cast data among the NMME team members and 
develop procedures for timely and open access 
to the data, including documentation of models 
and forecast procedures, by the broader climate 
research and applications community.

This paper describes the ongoing NMME-1 proj-
ect, including a preliminary multimodel forecast 
quality assessment and our strategy for evaluating 
how the multimodel approach contributes to the 
forecast quality. We also describe how NMME-2 will 
evolve from NMME-1 and the coordinated research 
activities and data dissemination strategy envisaged.

THE PHASE-1 NMME. Based on two Climate 
Test bed (CTB) NMME workshops (18 February and 
8 April 2011), a collaborative and coordinated imple-
mentation strategy for a NMME prediction system 
(NMME-1) was developed. The strategy included 
calendar year 2011 (CY2011) experimental real-time 
ISI forecasting (summarized below) that leveraged 
existing CTB partner activities.

Hindcast and real-time experimental prediction protocol. 
The CY2011 NMME experimental predictions have 
been made in real time since August 2011. As part 
of the development of the real-time capability, the 
NMME partners agreed on a hindcast and real-time 
prediction protocol. Some of the key elements of this 
protocol include the following:

• Real-time ISI prediction system must be identical to 
the system used to produce hindcasts. This necessarily 
includes the procedure for initializing the prediction 
system. The number of ensemble members per fore-
cast, however, can be larger for the real-time system.

• Hindcast start times must include all 12 calendar 
months, but the specific day of the month or the 

ensemble generation strategy is left open to the 
forecast provider.

• Lead times up to 9 months are required, but longer 
leads are encouraged.

• The target hindcast period is 30 years (typically 
1981–2010).

• The ensemble size is left open to the forecast pro-
vider, but larger ensembles are considered better.

• Data distributed must include each ensemble 
member (not the ensemble mean). Total fields are 
required [i.e., systematic error corrections to be 
coordinated by multimodel ensemble (MME) com-
bination lead; NOAA/CPC]. Forecast providers are 
welcome to also provide bias-corrected forecasts 
and to develop their own MME combinations.

• Model configurations—resolution, version, physi-
cal parameterizations, initialization strategies, and 
ensemble generation strategies—are left open to 
forecast providers.

• Required output is monthly means of global grids 
of SST, 2-m temperature (T2m), and precipitation 
rate. More fields will be added based on expe-
rience and demand. It is also recognized that 
higher-frequency data are desirable and this will 
be implemented as feasible.

• Routine real-time forecast data must be available 
by the eighth of each month.

The NMME-1 activity began in February 2011 
and became an experimental real-time system in 
August 2011. Specifically, on 8 August, NCEP [CPC 
and the Environmental Modeling Center (EMC)] 
collected from the respective FTP sites of the NMME 
partners the real-time seasonal predictions. In the 
months before August 2011, the hindcast data were 
collected and climatologies and skill assessments for 
each model to be applied to subsequent real-time 
predictions were calculated. Graphical forecast 
guidance based on the NMME was prepared and 
given to NOAA operational forecasters in time for 
the CPC seasonal prediction cycle. The graphical 
forecast guidance includes North American and 
global domains and T2m (T), precipitation (P), and 
SST fields, and the plots are for monthly and seasonal 
means with and without a skill mask applied. All 
NMME forecasts are bias corrected (making use of 
the hindcasts) using cross validation [see Kirtman 
and Min (2009) for details of how to make the bias 
correction].

The effort is signif icant because, a lthough 
experimental, the NMME protocol adheres to CPC’s 
operational schedule, so the forecasters can use the 
information for operational guidance. The scripts for 
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the data ingest and graphical outputs are intended 
to be robust (i.e., any number of models) with any 
number of ensemble members can be used. A major 
element of the NMME experiment is to continue 
this effort for the benefit of operations. Meanwhile, 
we have built up a live hindcast dataset of about 30 
years that is open to anybody and can be used for 
research. Quite probably, this NMME dataset is now 
the most extensive multimodel seasonal prediction 
archive currently available that includes models 
that are continuing to make real-time predictions. 
Table 1 summarizes the NMME-1 hindcast datasets 
and identifies the point of contact for each predic-
tion system.

In addition, NOAA/CPC has agreed to evalu-
ate the hindcasts, combine the forecasts, perform 

verification, provide an NMME website (www.cpc 
.ncep.noaa .gov /products /NMME), and make 
the real-time NMME forecast delivery to NOAA 
forecasters. CPC is also maintaining an NMME 
newsletter. The hindcast data and real-time forecast 
data are also available for download or analysis at 
the International Research Institute for Climate 
and Society (IRI) (http://iridl.ldeo.columbia.edu 
/SOURCES/.Models/.NMME/). The CPC site primar-
ily serves the real-time needs of the project, and the 
IRI site, along with the analysis tools that are being 
developed at the IRI (http://iridl.ldeo.columbia.edu 
/home/.tippett/.NMME/.Verification/), primarily 
serves research needs in terms of assessing the 
prediction skill and predictability limits associated 
with NMME-1 in terms of designing the NMME-2 

Table 1. NMME partner models and forecasts.

Model
Hindcast 

period
Ensemble 

size
Lead times 
(months)

Arrangement of 
ensemble members

Contact and 
reference

CFSv1 1981–2009 15 0.5–8.5 First 0000 UTC ±2 days, 
21st 0000 UTC ±2 days, 
and 11th 0000 UTC ±2 days

Saha  
(Saha et al. 2006)

CFSv2 1982–2010 24(28) 0.5–9.5 Four members (0000, 
0600, 1200, and 1800 UTC) 
every fifth day

Saha  
(Saha et al. 2014)

GFDL Climate Model, 
version 2.2 (GFDL 
CM2.2)

1982–2010 10 0.5–11.5 All first of the month 
0000 UTC

Rosati  
(Zhang et al. 2007)

IRI-ECHAM4f* 1982–2010 12 0.5–7.5 All first of the month 
0000 UTC

DeWitt  
(DeWitt 2005)

IRI-ECHAM4a* 1982–2010 12 0.5–7.5 All first of the month 
0000 UTC

DeWitt  
(DeWitt 2005)

CCSM3 1982–2010 6 0.5–11.5 All first of the month 
0000 UTC

Kirtman  
(Kirtman and Min 2009)

Goddard Earth 
Observing System, 
version 5 (GEOS5)

1981–2010 11** 0.5–9.5 One member every 
fifth day

Schubert  
(G. Vernieres et al. 
2011, unpublished 
manuscript)

Third Generation 
Canadian Coupled 
Global Climate Model 
(CMC1-CanCM3)

1981–2010 10 0.5–11.5 All first of the month 
0000 UTC

Merryfield  
(Merryfield et al. 2013)

Fourth Generation 
Canadian Coupled 
Global Climate Model 
(CMC2-CanCM4)

1981–2010 10 0.5–11.5 All first of the month 
0000 UTC

Merryfield  
(Merryfield et al. 2013)

* Real-time forecasts terminated in Jul 2012.

** The number of forecast and hindcast ensemble members is not constant during the period. It has grown from 6 for the 
initial Aug 2011 forecasts (and associated hindcasts) to 11 starting with our Jun 2012 forecasts. The additional (beyond 6 
initialized every fifth day) ensemble members are based on breeding and other perturbations applied on the day closest 
to the beginning of the month.
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experimental protocol. While the NMME-1 data 
are limited to monthly-mean data, it is a research 
tool (or testbed) that is proving extremely useful 
in supporting the basic prediction and predictabil-
ity research needs of the project participants. This 
database also serves as “quick look” easy access data 
that are the external face of the NMME experiment 
to the research community.

RESULTS: NMME-1. Here, we show some results 
from the 28 years of hindcasts that cover a common 
period (i.e., 1982–2009) for all the models and the 
real-time experimental forecast from the NMME of 
opportunity (i.e., NMME-1). The results help provide 
evidence of the benefit of a multimodel ensemble of 
predictions, as compared with the ensemble predic-
tions of just one high-performing model. Figure 1 
shows the range spanned by the individual ensemble 
members from each forecast system in NMME-1, 
for 0.5-month-lead2 hindcasts for the Niño-3.4 SST 
index. This presentation of the range assumes that 
each ensemble member of each model is equally likely 
to occur. To calculate anomalies, the forecast bias or 
systematic error has been removed and is calculated 
separately for each model using all ensemble mem-
bers for that particular model. See Saha et al. (2006) 
or Kirtman and Min 
(2009) for a discussion of 
how the systematic error 
is removed. At this short 
lead time, the hindcasts 
tend to agree with one 
another and with the 
observations, to a great 
extent, although there is 
also some disagreement, 
particularly at certain 
times (e.g., near the end 
of 1988 and in the mid-
dle of 1998). However, 
it is worth noting that 

nowhere do the observations lie noticeably outside 
the envelope of the predictions.

Figure 2 shows the same results except for 
5.5-month-lead predictions, with appropriately 
greater uncertainties shown by the larger range—
often in excess of 2°C. We will show that it is just 
such dispersion in the individual predictions that 
best reflects forecast uncertainty, as well as the “best 
guess” multimodel-mean prediction.

Figure 3 shows the spatial distribution of the 
anomaly correlation between the 5.5-month lead of 
the grand ensemble monthly-mean hindcast and ob-
served SST over 1982–2009. Here, the grand ensemble 
mean is defined as the average of all the hindcasts, 
assuming that each ensemble member of each model 
is equally probable. This is distinct from assuming 
that each model should be weighted equally. High 
skill is evident in the central and eastern tropical 
Pacific Ocean, as well as portions of the tropical 
Atlantic and Indian Oceans and some isolated regions 
in the extratropics.

One of the important motivating factors for both 
phases on the NMME project is to understand the 
complementary sources of skill among the models. 
Essentially, we seek to understand the “where and 
why” in how the multimodel approach improves 

Fig. 1. Niño-3.4 (area-averaged SSTA 5°S–5°N, 170°–120°W) plumes for 
0.5-month lead: (top) 1982–95 and (bottom) 1996–2010.

2 The rea l-t ime forecasts are 
issued on the 15th of the month, 
so that, for example, a January 
2013 monthly-mean forecast 
issued on 15 January 2013 is 
the 0.5-month lead, and the 
February 2013 monthly-mean 
forecast issued on 15 January 
2013 is the 1.5-month lead and so 
on. The retrospective forecasts 
also follow this convention.
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forecast quality. Here, we show the first step in this 
process—simply documenting how the multimodel 
compares to any single model. For example, Fig. 4 
shows scatterplots of the root-mean-square error of 

the SST anomaly (SSTA) 
for individual models’ 
0.5- to 5.5-month-lead 
ensemble-mean hind-
casts versus the corre-
sponding multimodel 
ensemble-mean hind-
casts for tropical SST for 
September starts. The 
percentage noted in each 
panel corresponds to the 
number of points where 
the individual model 
beat the multimodel. 
For every single indi-
vidual model, most of 
the points are above the 
diagonal (i.e., the per-
centage of points below 
the diagonal is less than 
50%), indicating that 
the multimodel tends to 
have smaller errors than 
the individual models. 
Generally, the models 
cluster around 26%–

48%. The Community Climate 
System Model, version 3 (CCSM3), 
is an outlier and is being replaced 
with the Community Climate 
System Model, version 4 (CCSM4) 
in NMME-2.

Preliminary examination (not 
shown) has suggested that in gen-
eral the individual model having 
the highest anomaly correlation 
skill is Climate Forecast System, 
version 2 (CFSv2). However, this 
identification of the generally 
best model does not suggest that 
the other models, when allowed 
to contribute to the multimodel-
mean forecast, do not further 
enhance the performance. To 
demonstrate the benefit reaped 

by using the multimodel ensemble over the single 
best-performing model, the ranked probability skill 
score (RPSS)3 of the multimodel ensemble hindcasts 
and the CFSv2 hindcasts of SST for December–

Fig. 2. As in Fig. 1, but for 6.5-month lead.

Fig. 3. SSTA correlation coefficient with each ensemble member 
weighted equally. Retrospective forecasts are initialized in Aug 1982–
2009 and verified in the following Feb (i.e., 5.5-month lead).

3 RPSS is a probabilistic forecast skill metric [see Weigel et al. (2007) for details]. The RPSS evaluates the hindcasts probabilisti-
cally (using tercile-based categories and the equal-odds climatology forecasts as the reference forecast). A good rule of thumb 
is that an RPSS of 0.08 corresponds to a deterministic correlation of 0.4.

590 APRIL 2014|



February (DJF) for forecasts initialized in early July 
are shown in Fig. 5, while those for June–August (JJA) 
initialized in early January are shown in Fig. 6. In 
the case of both seasons, the multimodel ensemble 
produces higher mean skill. There are isolated areas 
where CFSv2 outperforms the multimodel ensemble, 
such as in the DJF forecasts (Fig. 5) just south of the 
equator near 85°, south of Sri Lanka. However, the 
multimodel ensemble has higher, and more reliably 
positive, skill over most of the globe than that of any 
of the individual model forecasts—even the best of 
them.

The comparatively better RPSS results of the 
multimodel ensemble hindcasts than those of the 
CFSv2 forecasts are not limited to SST hindcasts but 
generalize to predictions for land surface tempera-
ture and precipitation as well. Figure 7, for example, 
shows the spatial distribution of RPSS for land surface 
temperature for JJA initialized in early January for 
the multimodel ensemble 
(top) and CFSv2 (bottom). 
Again, the mult imodel 
mean has considerably less 
area with negative skil l 
while maintaining the skill 
levels at many of the areas 
where CFSv2 has the high-
est skill. Multimodel skill 
at the locations of the most 
extreme peaks of CFSv2 
skill tends to be slightly 
attenuated (e.g., northeast-
ern Brazil and parts of the 
Middle East), but mean 
skill is clearly enhanced.

Figure 8 shows the spa-
tial distribution of RPSS 
for hindcasts of precipita-
tion for DJF (initialized in 
July) over North America 
using the multimodel en-
semble (left) and CFSv2 
alone (right). Figure 9 is 
the same as Fig. 8, but for 
the JJA season (initialized 
in Januar y). The com-
parative superiority of the 
multimodel forecast over 
CFSv2 alone is noted for 
both seasons. This is most 
obvious in the relative lack 
of negative skill in the mul-
timodel hindcasts but also 

in the maintenance or even enhancement of areas of 
peak skill. Additional results for NMME are shown 
in Yuan and Wood (2012).

It is worth noting that in the case of probabilistic 
verification, a larger ensemble size has a stronger 
positive inf luence on skill than it does for deter-
ministic verification (e.g., using anomaly correla-
tion). This ensemble size effect is described in detail 
in Richardson (2001), and this greater sensitivity 
in probability forecasts is due to the larger role of 
sampling variability in defining tercile probabilities 
(particularly when done by counting the fraction of 
ensemble members falling into each category) than 
in forming an ensemble mean. Indeed, Richardson 
(2001) shows that a Brier skill score (BSS) of, say, 0.2 
for a 100-member ensemble of a single model would 
be about 0.1 for a 10-member ensemble and 0.17 for 
a 25-member ensemble. Hence, in addition to the 
balancing or cancellation of individual model biases, 

Fig. 4. SSTA RMSE 20°S–20°N for each individual model compared to the 
multimodel mean; Sep starts 1982–2009, leads 0.5–5.5 months. The x axis 
ranges from 0° to 2°C and corresponds to the NMME RSME, and the y axis 
ranges from 0° to 2°C and corresponds to the individual model RMSE. Dots 
above the diagonal imply NMME has smaller RMSE. The percentage of 
points below the diagonal is noted in each panel. IRI-AC corresponds to IRI-
ECHAM4a and IRI-DC corresponds to IRI-ECHAM4f in Table 1.
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a secondary reason for the relatively better perfor-
mance of the multimodel hindcasts than CFSv2 is the 
much larger ensemble size of all the models together 
than of any single model.

A tool used to diagnose a set of probabilistic 
forecasts is reliability analysis, which measures the 
correspondence between the forecast probabilities 
and their subsequent observed relative frequencies, 
spanning the full range of issued forecast probabilities 
for each of the three climatologically equiprobable 
categories (below, near, or above normal). If one col-
lected all instances of forecasts of 45% probability 
for “above normal,” for example, and that category 
were actually later observed in 45% of the cases, the 
forecasts for that particular probability bin would be 
shown to have perfect reliability. Results of reliability 
analysis for forecasts initialized in October and veri-
fied in the following January–March (JFM) for 2-m 
temperature anomalies over the globe are shown in 

Fig. 10 for the multimodel ensemble hindcasts over 
the 28-yr period for the below-normal and above-
normal categories. The light dotted line denotes 
perfect reliability.

Two aspects of common interest in reliability 
diagnosis are 1) the overall position of the lines rela-
tive to the ideal 45° line and 2) the slope of the lines 
relative to unity. The general positions of the lines in 
Fig. 10 are near that of the ideal line, but the line rep-
resenting above-normal (below normal) forecasts is 
just slightly higher (lower) than ideal. This indicates 
a slight tendency to underforecast above-normal 
and to overforecast below-normal temperature. The 
observed mean relative frequency of occurrence of 
the categories, shown as colored dots on the y axis, 
indicates that above normal occurred in about 39% 
of cases, while below normal (and near normal) 
occurred in about 30% of cases. However, this weak 
shift toward above-normal temperature in the mean 

Fig. 5. SSTA RPSS for the (a) grand NMME multimodel 
ensemble and for (b) CFSv2. The skill is based on 
hindcasts initialized in Jul 1982–2009 and verified in 
the following DJF seasonal mean for tercile forecasts. 
Positive values indicate probabilistic skill that is better 
than climatology, and negative values indicate probabi-
listic skill that is worse than a climatological forecast. 
Global-averaged RPSS is noted in the figure.

Fig. 6. SSTA RPSS for the (a) grand NMME multimodel 
ensemble and for (b) CFSv2. The skill is based on 
hindcasts initialized in Jan 1982–2009 and verified in 
the following JJA seasonal mean for tercile forecasts. 
Positive values indicate probabilistic skill that is better 
than climatology, and negative values indicate probabi-
listic skill that is worse than a climatological forecast. 
Global-averaged RPSS is noted in the figure.
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climate over the 28-yr period was induced by a 
slight offset in the base period of the observations 
and the model hindcasts: for the observations, the 
period is 1981–2010, while for the model forecasts it 
is 1982–2009. Thus, the overall position of the reli-
ability curves, while usually indicative of the model 
bias, is influenced here by the slight model versus 
observational base period offset.

The slope of the lines is related to the confidence 
level of the probability forecasts. Lines with slopes 
of less than 1 indicate forecast overconfidence, with 
greater relative differences in forecast probabil-
ity than the corresponding differences in observed 
frequencies. A bias toward overconfidence has 
been noted in many individual dynamical models. 
Figure 10 indicates that this problem, while present, 
is very mild in the multimodel ensemble hindcasts 
compared to the individual models shown in Fig. 11. 
The amelioration of the overconfidence problem is 
undoubtedly a consequence of partial cancellation 
of somewhat conflicting signals that are overconfi-
dent in many of the individual models, resulting in 
an appropriately more probabilistically conservative 
forecast when the models are combined.

The offsetting of potentially overconfident fore-
casts of individual models when combined into a 
multimodel ensemble is illustrated by an example of a 
recent real-time prediction of the Niño-3.4 SST index 
(Fig. 12). The predictions of the individual ensemble 
members express the uncertainty distribution within 
each model, while the overall plume of forecasts 
express the uncertainty of the full multimodel en-
semble. It is noted that the uncertainty distributions 
of the individual models is smaller than that of the 
collection of members of 
all models. The multimodel 
ensemble is probabilistical-
ly less overconfident than 
the ensembles of most of the 
individual models, because 
each individual model is 
imperfect, but has a higher 
than realistic confidence 
level in its “model world.” 
Combining many models 
serves to offset differing 
biases, resulting in a more 
balanced and probabilisti-
cally reliable prediction.

One measure of the suc-
cess of the NMME project 
is whether it will advance 
hydrologic applications, 

Fig. 8. Precipitation forecast RPSS for the (a) grand NMME multimodel 
ensemble and for (b) CFSv2. The skill is based on hindcasts initialized in Jul 
1982–2009 and verified in the following DJF seasonal mean for tercile fore-
casts. Positive values indicate probabilistic skill that is better than climatology, 
and negative values indicate probabilistic skill that is worse than a climatologi-
cal forecast. Global-averaged RPSS is noted in the figure.

Fig. 7. Surface atmospheric temperature (2 m) RPSS 
for the (a) grand NMME multimodel ensemble and for 
(b) CFSv2. The skill is based on hindcasts initialized in 
Jan 1982–2009 and verified in the following JJA seasonal 
mean for tercile forecasts. Positive values indicate 
probabilistic skill that is better than climatology, and 
negative values indicate probabilistic skill that is worse 
than a climatological forecast. Global-averaged RPSS 
is noted in the figure.
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which include streamflow and drought forecasting. 
Drought forecasting includes not only meteorological 
drought but also agricultural and hydrological 
drought. Meteorological drought is assessed through 
precipitation deficits with indices like the standardized 

precipitation index (SPI) 
determined over a win-
dow centered on the initial 
forecast date. Agricultural 
drought focuses on soil 
moisture deficits or indices 
such as their percentiles 
(Sheffield et al. 2004) and 
hydrological drought on 
streamf low. Collectively 
under the NMME proj-
ect, seasonal hydrologic 
forecasting will include 
drought forecasting as well 
as related hydrological sea-
sonal forecasting such as 
persistent wet conditions. 
Since hydrological applica-
tions usually require infor-
mation at smaller spatial 

scales than that provided by the seasonal forecast 
models, the climate forecasts from the multimodel 
ensemble will be downscaled and bias corrected, 
using the approach of Luo et al. (2007), and used to 
drive a calibrated land surface model. The output of 
the land surface model is then used to for hydrologic 
forecasts, including drought. This approach has been 
well developed (Luo and Wood 2007, 2008; Yuan 
et al. 2013). Figure 13 shows the results for streamflow 
forecast skill from NMME relative to the skill from the 
often-used ensemble streamflow prediction (ESP) ap-
proach where hydrological model forcings come from 
historical resampling. The results are presented over 
the National Integrated Drought Information System 
(NIDIS) Colorado and southeastern U.S. testbeds. For 
the Colorado domain, NMME is more skillful than 
ESP, particularly in the summer with the skill coming 
primarily from increased precipitation skill. Not shown 
is the comparison between CFSv2 alone and NMME in 
which CFSv2 has slightly lower precipitation skill. For 
the southeast NIDIS domain, ESP is more skillful for 
1-month leads due to low NMME precipitation skill, 
but the situation changes for longer leads when the 
full resolution is downscaled; bias-corrected forecasts 
are used in the hydrological model. For both ESP and 
NMME hydrological forecasts, observed hydrologic 
initial states are used at the initial forecast time. These 
can be provided from the North American Land Data 
Assimilation System (NLDAS) (Mitchell et al. 2004).

For meteorological drought assessed at conti-
nental-to-global scales, the 1° NMME model pre-
cipitation forecasts can be used. Figure 14 shows 
the NMME 6-month SPI (SPI6) forecast initiated 

Fig. 9. Precipitation forecast RPSS for the (a) grand NMME multimodel 
ensemble and for (b) CFSv2. The skill is based on hindcasts initialized in Jan 
1982–2009 and verified in the following JJA seasonal mean for tercile forecasts. 
Positive values indicate probabilistic skill that is better than climatology, and 
negative values indicate probabilistic skill that is worse than a climatological 
forecast. Global-averaged RPSS is noted in the figure.

Fig. 10. NMME reliability diagram for T2m anomalies 
throughout the globe. The reliability corresponds to 
forecasts initialized in Oct 1982–2009 and verified in 
following JFM season.
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on 1 June 2011 and 2012 for six models (ensemble 
mean), the equally weighted multimodel mean, and 
the observed SPI6 from the CPC-merged gauge radar 
precipitation analysis. As is done with SPI forecasts, 
observed March–May (MAM) precipitation is com-
bined with JJA-precipitation forecasts to provide the 
SPI6 forecast. This methodology of combining 50% 

observational data with 50% forecast data is described 
in Quan et al. (2012).

THE PHASE-2 NMME. The NMME-2 project 
was awarded in August 2012 so results to present 
here are limited. However, there are some specific 
issues to highlight. In particular, we provide some 

Fig. 11. Reliability diagram for T2m anomalies throughout the globe from a sample of individual models. 
The reliability corresponds to forecasts initialized in Oct 1982–2009 and verified in following JFM season.
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preliminary results indicating that both modeling 
system improvements and data assimilation system 
improvements will contribute to improved NMME-2 
forecast quality. We also describe an example of 

how some lessons learned regarding the retrospec-
tive forecast protocol in NMME-1 contribute to the 
NMME-2 forecast protocol. Finally, we provide some 
details regarding the data dissemination strategy on 

NMME-2.

Prediction system improvement. 
The NMME team will transition 
from CCSM3 (T85) to CCSM4 
(0.9 × 1.25_g1v6 resolution), 
although if CCSM3 continues 
to be a useful contributor to the 
NMME, we will continue the 
real-time predictions. CCSM4 
has significant improvements in 
the simulation of tropical vari-
ability relative to CCSM3 (Neale 
et al. 2008; Jochum et al. 2008; 
Gent et al. 2010). The initial-
ization procedure differs from 
CCSM3 in that we will use the 
operational Climate Forecast 
System Reanalysis (CFSR) ocean, 
land, and atmospheric states to 
initialize CCSM4 as opposed 

to ocean-only initial-
ization using optimal 
i nter p olat ion  f rom 
the Geophysical Fluid 
Dynamics Laboratory 
(GFDL) (i.e., Derber and 
Rosati 1989). We have 
begun testing the CFSR 
ocean states in CCSM4 
hindcast experiments, 
and Fig. 15 shows the 
hindcast SSTA correla-
tion for a parallel set 
of experiments using 
CCSM3 with the origi-
nal GFDL ocean states 
(bot tom panel) and 
using the CFSR ocean 
states (top panel). The 
correlation is notably 
la rger w it h CCSM4 
u s i n g  C F S R  o c e a n 
states. We separately 
examined the impact of 
the model changes (i.e., 
CCSM3 vs CCSM4) and 
the changes associated 
with the different ocean 

Fig. 13. Percent difference in RPSS skill of streamflow forecasts over the (left) 
Colorado NIDIS testbed and (right) southeastern U.S. NIDIS testbed with lead 
times out to 6 months. Skill differences above 0 indicates NMME forecasts are 
more skillful than ESP. Full resolution indicates using the downscaled 1/8°, daily 
seasonal climate model variables; Avg Time indicates the forecasts are averaged 
over the lead time; and Avg Time and Space indicates that the forecasts are 
averaged over the lead times and domain.

Fig. 12. Real-time Niño-3.4 predictions initialized in May 2013.
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state. Both changes contribute to the increases in the 
correlation but are dominated by the model changes. 
We have also developed procedures for using CFSR 
data for the atmosphere and land initial states (e.g., 
Paolino et al. 2012).

The GFDL NMME contribution will transition 
from the GFDL Climate Model, version 2.1 (CM2.1) 
to the high-resolution coupled GFDL Climate 
Model, version 2.5 (CM2.5) (described below). The 
atmospheric component of CM2.5 is derived from 
the atmospheric component of the coupled GFDL 
CM2.1. The horizontal resolution has been refined 
from roughly 200 km to approximately 50 km. The 
ocean model is substantially different from that used 
in CM2.1. The ocean grid is considerably finer, with 
horizontal spacing varying from 28 km at the equator 
to 8 km in high latitudes. In addition, the grid boxes 
maintain an aspect ratio close to one, in contrast to 
CM2.1 where the aspect ratio can exceed 2 at high 
latitudes due to the convergence of the meridians. 
The ocean component uses 50 levels in the vertical 
as in CM2.1. The land model (Dunne et al. 2013) in 

CM2.5 is called LM3 and represents a major change 
from the land model used in CM2.1. LM3 is a new 
model for land water, energy, and carbon balance. 
The sea ice component used in CM2.5 is almost 
identical to that used in CM2.1, called the GFDL Sea 
Ice Simulator (SIS).

Data dissemination strategy. One of the major challeng-
es for both NMME-1 and NMME-2 is to provide rapid 
and open access to all the hindcasts and real-time 
forecasts. The strategy developed includes two major 
components. First, NOAA/CPC will obtain and store 
the monthly-mean data (hindcasts and real-time fore-
casts) for the three [expanding to eight, that is, SST, 
precipitation, T2m, 500-mb geopotential, maximum 
temperature (Tmax), minimum temperature (Tmin), 
and soil moisture and runoff] required variables from 
all the participating models, and the IRI will maintain 
a NMME website serving this minimal dataset to the 
broader research and applications communities in 
real time. This rapid and open access to the data is a 
critical element distinguishing the NMME activity. 

Fig. 14. NMME SPI6 forecasts initialized 1 Jun 2011 and 2012. Observed MAM precipitation is combined with 
JJA model ensemble-mean forecast. The NMME forecast is the equally weighted ensemble model average.
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The second component of the approach recognizes 
that the data and possibly the number of participating 
models will grow; a more robust centralized data 
strategy is required to meet the needs of the broader 
research and applications communities. As such, 
we have developed an NMME-2 data server to be 
housed at the new National Center for Atmospheric 
Research (NCAR) Wyoming Supercomputing Center 
(NWSC). This NMME-2 data server will include high 
frequency (e.g., 3 hourly and daily) and a much more 
complete three-dimensional distribution of the data.

NMME-2 RESEARCH. A major challenge to the 
NMME experiment is to quantitatively document the 
success of the project. Here, we briefly summarize 
some elements of our strategy but also welcome the 
broader research community to rigorously assess 
and use the data. Indeed, we assert that making the 
data readily available to all interested parties is the 
best approach for evaluating the utility of the mul-
timodel approach advocated here. The measures of 
success envisioned by the NMME-2 team include a 
spectrum of quantitative metrics such as forecast skill 
assessment as a function of the number of models and 
ensemble members to identifying complementary 
skill among the models to assessing phenomenologi-
cal skill.

For example, to determine the 
forecast skill as a function of the 
number of models and the number 
of ensemble members, we will assess 
a hierarchy of methods of vary-
ing complexity using a variety of 
deterministic and probabilistic 
verification measures. The deter-
ministic verifications will be applied 
to the multimodel ensemble-mean 
forecast, while the probabilistic 
verifications will be applied to the 
forecast probabilities of tercile-based 
categories (hereafter called terciles) 
and of the extreme 15% tails of 
the climatological distribution. To 
facilitate this analysis the NMME 
project is developing an open access 
“verification map room” (http://iri 
.columbia.edu/~tippett /NMME/) 
that will also be easily accessible 
via smartphone. The reader is also 
encouraged to visit this website and 
the developing reliability website 
(http://iri.columbia.edu/~shuhua 
/mis-html/Reliability_nmme.html), 

both of which are already delivering results.
The above forecast skill assessment is applied 

without any mechanistic or phenomenological per-
spective. A second important measure of success is 
the extent to which we provide a better understanding 
of the mechanisms and sources of predictive skill. 
In this second category, we confront the forecasts 
with observations from a mechanistic and phenom-
enological perspective that also has the advantage of 
entraining some additional user communities into 
the skill assessment. We already have in place com-
mitments to use the NMME data for the U.S. drought 
briefing, to derive standardized drought precipitation 
indices (K. Mo 2012, personal communication), and 
for the emerging Global Drought Information System 
(GDIS). Feedback from these applications will aid in 
assessing forecast skill from a drought user perspec-
tive, and the use of the NMME data in this regard is 
a clear measure of success.

An NMME, or any combination of forecast 
methods, begs the question as to how many models 
and ensemble members we really need for the 
problem at hand [this question also comes up in 
the Intergovernmental Panel on Climate Change 
(IPCC) context]. For example, do the N + 1 models 
always provide more skill than N models? The 
NMME phase-2 hindcasts provide an excellent 

Fig. 15. SSTA correlation coefficient for forecasts initialized in early 
Jan and verified for May (1982–2000). The top panel shows results 
using CCSM4 and CFSR initial states for the ocean and the bottom 
panel shows results for CCSM3 using MOM3 ODA initial states.
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opportunity to research this issue for subseasonal-to-
seasonal time scales (beyond 2 weeks, excluding the 
weather prediction portion of each forecast period). 
Well-known notions with respect to the effective 
number of degrees of freedom in space and time 
(often approximated by how many EOFs it takes to 
explain, say, 90% of the variance of a dataset) can be 
applied here where an additional dimension “space” 
is taken to be across all the ensemble members. 
This way we could find that it takes only n models 
with k ensemble members to describe 90% of the 
information we have generated by K members of N 
models. This information content approach can be 
applied straightforwardly and is directly related to 
the notion of orthogonality/independence. It will 
take more originality to combine this with the skill 
of the forecasts; that is, add the observational dataset 
(1 single realization) to arrive at those components 
of a huge forecast dataset that are orthogonal with 
respect to their ability to add skillful information. 
These questions and many others can be addressed 
with the NMME phase-2 data that will be available 
to researchers beyond the NMME team.

CONCLUDING REMARKS. The purpose of 
this paper is to introduce the weather and climate 
research and applications communities to the NMME 
experiment. Here, we have provided a description 
of the NMME project and its expected evolution 
over the next 18–24 months (i.e., NMME-2). Part 
of the description emphasized both deterministic 
and probabilistic retrospectives in forecast verifi-
cation. We chose to compare the NMME system 
(which includes the NOAA operational CFSv2) to 
CFSv2 alone. This choice was pragmatic and based 
on addressing the question of whether the NMME 
project can enhance the NOAA operational system. 
Overall, the various skill metrics (correlation, RMSE, 
RPSS, and reliability) all suggest that the NMME sys-
tem improves the skill over the CFSv2. Admittedly, 
we have not clearly shown whether the improvement 
is due to a larger ensemble size or the use of multiple 
models (or both); nevertheless, the distribution of the 
forecast production to a number of different groups 
and centers is an effective strategy for economically 
increasing the forecast skill.

The assertion that the use of multiple models is 
an important aspect of the improved skill is sup-
ported by a number of previous efforts [e.g., Climate-
System Historical Forecast Project (CHFP; www 
.wcrp-climate.org/wgsip/chfp/index.shtml), North 
American Ensemble Forecast System (NAEFS; 
www.emc.ncep.noaa.gov/gmb/ens/NAEFS.html), 

The Observing System Research and Predictability 
Experiment (THOR PEX) Interact ive Grand 
Global Ensemble (TIGGE; http://tigge.ecmwf.int/),  
Development of a European Multimodel Ensemble 
System for Seasonal-to-Interannual Prediction 
(DEMETER; www.ecmwf.int /research/demeter 
/index.html), and Ensemble-Based Predictions of 
Climate Changes and their Impacts (ENSEMBLES; 
w w w. e c m w f . i n t / r e s e a r c h / E U _ p r o j e c t s 
/ENSEMBLES/index.html)]. Indeed, much like the 
NMME activity, the International Multimodel 
Ensemble [IMME; the IMME project is an expansion 
of the European Seasonal to Interannual Prediction 
(EUROSIP) superensemble to include the CFSv2; 
see www.ecmwf.int/products/forecasts/d/charts 
/seasonal/forecast/eurosip/] is motivated by the 
results of these early studies. The distinction of the 
NMME project is twofold. First, the previous efforts 
focus entirely on retrospective forecasts, whereas 
the NMME project includes both real-time and 
retrospective forecasts. Second, the NMME project 
is committed to provide easy access to all the data 
(in near–real time), whereas the access to data is re-
stricted in the IMME project. There is an important 
caveat here; namely, while multimodels’ approaches 
are the pragmatic approach, we recognize that they do 
not adequately resolve the uncertainty due to model 
formulation.

Finally, we note that the NMME models that are 
retained as we enter phase-2 of the project are from 
major national modeling centers [i.e., NOAA–GFDL, 
NOAA–NCEP, NASA, NCAR, and the Canadian 
Meteorological Centre (CMC)], and it is our expec-
tation that these efforts have critical mass in terms 
of human resources for continued evaluation and 
testing and that participation by the various NMME 
partners is mutually beneficial. For example, the 
project leverages all the model, assimilation, and 
data development activities at the various centers. 
The various centers, in turn, test their models against 
other state-of-the-art prediction systems in both 
retrospective and real-time mode and potentially 
have a much wider user community examine the 
predictions in various applications. We also believe 
that this continual enhanced collaboration among 
a broad base of researchers will lead to improved 
specific operational prediction products. Just as 
important, the core research collaboration that is at 
the heart of the NMME project will lead to a better 
understanding of mechanism of and sources for pre-
dictability and better estimates of the inherent limits 
of predictability. Moreover, some of these national 
efforts have distinct science missions, and the NMME 
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project provides common experimental framework to 
evaluate model performance. Nevertheless, it remains 
a challenge to demonstrate that the research results 
from the NMME experiment feedback to model 
development, and the success of the project should 
be evaluated in this regard.
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