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[1] We have produced a 0.5� � 0.5� monthly global soil moisture data set for the period
from 1948 to the present. The land model is a one-layer ‘‘bucket’’ water balance model,
while the driving input fields are Climate Prediction Center monthly global precipitation
over land, which uses over 17,000 gauges worldwide, and monthly global temperature
from global Reanalysis. The output consists of global monthly soil moisture, evaporation,
and runoff, starting from January 1948. A distinguishing feature of this data set is that all
fields are updated monthly, which greatly enhances utility for near-real-time purposes.
Data validation shows that the land model does well; both the simulated annual cycle and
interannual variability of soil moisture are reasonably good against the limited
observations in different regions. A data analysis reveals that, on average, the land surface
water balance components have a stronger annual cycle in the Southern Hemisphere than
those in the Northern Hemisphere. From the point of view of soil moisture, climates can be
characterized into two types, monsoonal and midlatitude climates, with the monsoonal
ones covering most of the low-latitude land areas and showing a more prominent annual
variation. A global soil moisture empirical orthogonal function analysis and time series of
hemisphere means reveal some interesting patterns (like El Niño-Southern Oscillation)
and long-term trends in both regional and global scales. INDEX TERMS: 1620 Global Change:

Climate dynamics (3309); 1836 Hydrology: Hydrologic budget (1655); 1866 Hydrology: Soil moisture; 3322

Meteorology and Atmospheric Dynamics: Land/atmosphere interactions; KEYWORDS: soil moisture data set,
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1. Introduction

[2] Data sets of soil moisture have a number of obvious
primary applications, such as in real time drought/flood
monitoring [Svoboda et al., 2002], climatology studies (of
the ‘‘how rare is this drought?’’ variety), river flow fore-
casts, land surface hydrology process studies, and initial
states for coupled land-atmosphere prediction. Less obvi-
ous, secondary, applications include geodetic studies, such
as the variations in geoid over the course of the annual cycle
[Cazenave et al., 1999], the Earth’s rotation and temporal
variation in gravity [Velicogna et al., 2001]. Gravity, rota-
tion etc change due to any redistribution of mass. A
National Research Council study [Dickey et al., 1997]
predicted that the interannual variation in continental soil
moisture would be among the strongest signals to be
detected by a gravity satellite. Conversely, now that we
have a dedicated gravity satellite, such as GRACE
(launched in 2002), meaningful remote measurements of

continental soil moisture may be possible, at least at scales
larger than some cutoff [Rodell and Famiglietti, 2002].
[3] It is difficult to make representative in situ measure-

ments of soil moisture, and such measurement, even where
successful, have been taken only at a few places, and in
most cases not for very long. In the United States, the
Hollinger and Isard [1994] soil moisture data for Illinois
stand out as the exception; they cover about 20 years in
1/50th of the country. The situation for other countries is
generally not better, see description by Robock et al. [2000],
but at least there is some data for model validation.
[4] To better serve any application there has been a truly

tremendous push in the last 10 years toward calculating soil
moisture over certain space-time domains [Mitchell et al.,
2000; Maurer et al., 2002]. This is done essentially by
integrating a land surface model forward in time over a large
area and many years. In essence a land surface model
contains an equation of the form

dw=dt ¼ P � E � R; ð1Þ

where w is soil moisture and P, E, and R are precipitation,
evapotranspiration, and runoff, respectively. Assuming that
P, E, and R are all known from observation, or at least can
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be calculated from still other observations, it is not difficult
to see that w can be integrated in time, and calculated soil
moisture can be generated at the space-time resolution we
have input data for.
[5] At first sight, equation (1) may not yield much, given

that the input to equation (1) consists of three variables, the
observation of which has its own serious troubles. So why
should this approach work? Of the three variables E is even
less observed than w. R can be inferred in principle from
river flow, but only by inverting a river routing scheme and
inserting the available river flow observation. Fortunately, E
and R have been parameterized with some success and thus
can be calculated (this may involve still other observations,
such as temperature and/or radiation, wind etc, which we
assume we have). The main consideration is that the E and
R parameterizations are acting usually as negative feedbacks
to anomalies in soil moisture, so even if the E and R
estimates are somewhat wrong, they will not cause an
accumulating bias or runaway effect in w. The main burden
in equation (1), certainly in terms of interannual variation, is
thus on the quality of P observations. P is the forcing of
equation (1) in the sense that large/small P cause, with some
delay, large/small w, while E and R mainly react as a
restoring negative feedback on w anomalies. Definitely P
is far better observed than w, E or R. In the United States
alone one can count on thousands of rain gauges daily for a
period of at least 50 years [Higgins et al., 2000]. This is
why the approach through equation (1) may succeed.
Accepting this line of reasoning one must also admit that
the w thus obtained is essentially the same as a backward
looking integral of P with an integral timescale of 4–
5 months [van den Dool et al., 2003]. The integral timescale
varies with season and location.
[6] While observing P is not easy, and collecting, QCing

the data and analyzing the P observation onto a grid is a
daunting problem, especially near orography, we are
benefiting from the enormous amount of attention given
to this problem over many years by many researchers.
[7] Here we report on the details of making a global data

set of monthly soil moisture at 0.5� resolution for the period
1948 to present. The land model used is exactly as described
in Huang et al. [1996] and the input P and temperature (T )
are due to Chen et al. [2002] and Kistler et al. [2001]
respectively. In section 2 we present a few details of the
land model, the P and T input and a validation discussion. In
section 3 we present a few salient features of calculated soil
moisture and its variation during 1948 to present. In a short
section 4 we explain how the data can be obtained by
interested readers. Section 5 has concluding remarks, dis-
cusses caveats and looks ahead at better data sets that may
become available fairly soon.

2. Model and Observations

2.1. Land Model

[8] A full explanation of the soil model can be found in
the work of Huang et al. [1996] (hereinafter referred to as
H96), their section 2. H96 is a one-layer ‘‘bucket’’ model in
a modeling tradition started by Manabe [1969]. The tradi-
tion of forcing bucket models off-line by observed inputs
was started by Mintz and Serafini [1981], and continued
by Schemm et al. [1992] and Mintz and Walker [1993].

Briefly, we integrate equation (1) pointwise, using observed
monthly P as input. E is estimated using an adjusted
Thornthwaite expression, depending on monthly tempera-
ture (T ), T thus being another required observed input
variable. The runoff consists of surface runoff (R1), base
runoff (R2) and loss to groundwater (G), which, as in
operational hydrological practice, are all parameterized in
terms soil moisture and rainfall. H96 differs most from the
Mintz and Serafini models in the treatment of runoff. The
tuning of R1, R2 and G was done on a few small streams in
Oklahoma for 1961–1990 following Georgakakos [1986a,
1986b]. This procedure requires five empirical coefficients
to be fitted, one of which is the effective holding capacity
of 76 cm of water, which at a porosity of 0.47 corresponds
to a 1.6-m-deep ‘‘leaky’’ bucket. Importantly, we keep
these five coefficient constant in space. H96 is integrated
with a time step that depends on the amount of precipitation;
with high P the calculation of nonlinear R requires a small
time step. Note that the time step is very much smaller than
monthly data input would suggest. In their original work,
H96 was applied to 344 climate divisions of varying size
covering the United States for which monthly P and T are
available back to 1931. In this new study the P and T inputs
are global and gridded at 0.5� resolution, but over the United
States the results should be close to H96. In order to avoid a
long-lasting spin-up of soil moisture, the model was run
through 1948 about 15 times. Also in some of the colder
climates the evaporation parameterization had to be slightly
adjusted in order to avoid unreasonable results; that is, in
those colder areas we set potential evaporation to be zero
when the air temperature (T ) � (�C) or the heat index
(I ) � 0.1 (see equation (3a) in H96).

2.2. Precipitation Input

[9] The monthly precipitation data set chosen here is
described by Chen et al. [2002]. This product was selected
not only because of its quality, but because it is kept up to
date, and any future improvements in the analysis method
can be readily implemented retroactively to 1948. Chen et
al. [2002] use over 17,000 gauges worldwide for each
monthly analysis. The main effort by Chen et al. [2002]
was the choice of analysis scheme, so as to produce gridded
products. They considered several analysis schemes
(Barnes, Shepard and Cressman) but decided that Optimum
Interpolation [Gandin, 1965] was the most accurate and
stable for representation on a grid. The analysis for anoma-
lies is done separately from analysis of climatology (long-
term means), then added up to obtain total P for each
month. For more recent years the analysis could have been
based on satellite and radar measurements as well as gauge
data. In the interest of homogeneity we here opt for a data
set that uses rain gauges only throughout the 56 years.

2.3. Temperature Input

[10] As of 2003 it is harder to find a reliable up-to-date
monthly surface global temperature analysis than precipita-
tion. This may be in part because T analysis would seem
easier than P, because the scales are much larger, so less
innovative work has been done. In fact T analysis is very
difficult also, especially for orographic adjustments, con-
sidering a daily cycle in lapse rate etc. Keeping in mind that
T is used in a fairly minor role (in terms of high-frequency
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spatial-temporal variations) to drive the E calculation, we
here opted for a data set, CDAS-Reanalysis, which was
selected mainly for its availability and timely monthly
updates. Van den Dool et al. [2003] argued that the H96
model is reasonable even when the same climatological T is
used every year. The global Reanalysis [Kistler et al., 2001]
used here is first and foremost a three-dimensional atmo-
spheric four-times-daily analysis 1948 to present with the
best results for tropospheric fields away from the surface. We
averaged 28/29/30/31 days multiplied by four analyses per

day into a monthly mean. The surface T analysis is not
very good in an absolute sense as indicated by the status
‘‘B variable’’ [Kistler et al., 2001], but is used here until
better analyses become available. Presumably, the inter-
annual variation in T (driven by data assimilated aloft) is
acceptable.
[11] The Reanalysis also comes with P and soil mois-

ture. As is shown in http://www.cpc.ncep.noaa.gov/soilmst/
sm_ill.html as well as Kanamitsu et al. [2002, Figure 7],
the soil moisture of Reanalysis/CDAS is not very good in

Figure 1. Global soil moisture anomaly in July 2003, defined as the departure relative to the 1971–
2003 climatology. Units are in millimeters, and negative values are inside the dashed contour. See color
version of this figure in the HTML.

Figure 2. The difference of soil moisture in March and September based on 1971–2000 climatology.
Units are in millimeters, and negative values are inside the dashed contour. See color version of this
figure in the HTML.
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Illinois (where we have data to compare). The main reason
is bias in P, which in the absence of negative feedbacks
can drive soil moisture far away from realistic values. This
likely happens at many places. Because of widespread bias
in P, neither P nor w produced by Reanalysis are of much
use. This is the main reason off-line studies, like the
present one, or Land Data Assimilation Studies in general
are taking place.

2.4. Soil Moisture Validation

[12] As shown in H96 and van den Dool et al. [2003],
their Figures 1, the H96 model does well on independent
soil moisture data observed in Illinois. Both the annual
cycle and interannual soil moisture anomalies are fairly
well simulated. The anomaly correlation is about 0.60–
0.75 over the state during the 1984–2001 period. Recently
P. Dirmeyer et al. (Validation and forecast applicability
of multiyear global soil wetness products, submitted to
Journal of Hydrometeorology, 2004) examined the charac-
teristics of eight global soil wetness products and validated
their abilities to simulate the phasing of the annual cycle
and to accurately represent interannual variability by
comparing to in situ measurements in China, Illinois,
India, Mongolia, and Russia. The results show that the
Climate Prediction Center (CPC) global soil moisture data,
in spite of its simplicity, simulates the seasonal to inter-
annual variability of observed soil moisture reasonably
well in many places. We refer the reader interested in
validation to these publications. A totally new validation
may be imminent. Early results of GRACE for 2002 and
2003 [Wahr et al., 2004] show remarkable similarity in the
soil moisture annual cycle and the mass anomaly seen by
this gravity satellite.

[13] Data analysis also shows a long-term trend in the
CPC soil moisture data set, due to the trends in the input
precipitation and temperature forcing. We will discuss this
in next section.

3. Results

[14] The main purpose of this article is to describe the
makings of the global soil moisture data set, so users know
what they have. However, in this section we show a few
results about the annual cycle of the water balance compo-
nents and interannual variability of the soil moisture.
[15] Figure 1 shows the global distribution of the soil

moisture anomaly, defined as the departure relative to the
1971–2000 climatology, in July 2003. This type of product is
useful in flood and drought monitoring. One can see major
wetness in portions of Alaska, northern Canada, eastern
United States, Argentina, Peru, northeast Brazil, central Asia
into northern India and west central Africa, while major
shortages of water are noted for much of Europe (contribut-
ing to their record heat), Australia, East Asia, South Africa,
western United States, and southeast Brazil. Over the United
States the field should be similar to what is shown in http://
www.cpc.ncep.noaa.gov/soilmst/index_jh.html, the H96
version with the U.S. climate division data as input forcing,
but with more frequent (daily) updates through yesterday
12Z. On average, both Northern Hemispheric and Southern
Hemispheric means show that the year 2003 is dry, relative to
its climatology.
[16] Figure 2 displays the difference in soil moisture in

March and September, based on 1971–2000 climatology.
Figure 2 characterizes the annual cycle in a nutshell. One
might think schematically of two type of climates. Those in

Figure 3. Annual cycle of the land surface water budgets over the (a) Northern and (b) Southern
Hemispheres. Units are in millimeters for w (right scale) and millimeters/month for P, E, R, and balance
(left scale). See color version of this figure in the HTML.
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midlatitudes where soil moisture is the lowest at the end of
the summer (midlatitude, high evaporation during summer,
annual cycle in precipitation not dominant, recharge in
winter), and the monsoonal climates where soil moisture
is the highest at the end of the wet monsoon season (in spite
of high E). Figure 2 delineates these two types of climates,
with the monsoonal ones covering a larger area and more
potent annual variation. Climates over interior North Amer-
ica and East Asia show weaker monsoonal signature reach-
ing into the midlatitudes. It may be that March and
September are not the optimal months everywhere.
[17] Figure 3 shows the annual cycle of the components

of the water balance for the two hemispheres (averaged over
all land), month by month. The monsoonal climates dom-
inate in these graphs, so the recharge (positive dw/dt or
‘‘balance’’ or positive P – E – R) is mainly in summer, and
the discharge is mainly in the respective winter. Therefore
the soil moisture reaches its maximum in the fall and
minimum in the spring. Overall, the water budget compo-
nents in Southern Hemisphere show a more prominent
annual cycle than those in the Northern Hemisphere. On
the basis of the annual means, we established that the

water budgets are very well closed; that is, the water
balances (P – E – R) are very close to zero in both
hemispheric and global domains.
[18] Figures 4 and 5 show the interannual variability in

March and September, as per the two first empirical
orthogonal functions (EOFs) of global soil moisture
1948–2003. The spatial maps on the left multiply by the
time series (zero mean) on the right. Although the explained
variance is not all that high (compared to, say, sea surface
temperature) one can clearly see the dominance of El Niño-
Southern Oscillation in the first EOF in March (United
States wet in 1983, 1998 for instance). In both March and
September trend modes are among the leading EOFs,
featuring strong projection on the Sahel, especially in
September. Dai et al. [1998] did a similar EOF analysis
with the Palmer Drought Severity Index (PDSI).
[19] To elaborate further on the issue of long-term trends,

Figure 6 shows global and hemispheric (land only!) aver-
ages of soil moisture and the model input T and P. A 5 year
running mean is applied to focus on the low frequencies.
Clearly soil moisture has decreased since 1980 in both
hemispheres, by a few millimeters. This is caused primarily

Figure 4. Soil moisture empirical orthogonal function (EOF) (top) 1 and (bottom) 2 for March 1948–
2003. (left) Spatial patterns (units are in millimeters, and negative values are inside the dashed contour.
(right) Time series (dimensionless). See color version of this figure in the HTML.
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by decreasing P and secondly by increasing T. According to
the above EOF analysis, the downward trend of soil
moisture in the Northern Hemisphere is prominent in the
Sahel area. Whether the global trend is realistic or an artifact
is hard to establish. According to P. Xie (personal commu-
nication, 2004), the decreasing P after 1980 may in part be
caused by changes in the gauge net work. The upward
trends in T have been widely reported. The Reanalysis/
CDAS trends in T were found to be realistic [Chelliah and
Ropelewski, 2000] and elaborated on further by Chelliah
and Bell [2004].
[20] One should notice that without a 5 year running

mean the long-term trends in w, P and T are dwarfed by
higher-frequency variation. So while interest in trends is
high because of ‘‘global change’’ concerns it should be
kept in mind that spatially uniform trends in this data set
do not explain very much of the variance, a lot less than
leading EOFs.

4. Getting the Data Set

[21] Interested readers can download the data set from
http://www.cpc.ncep.noaa.gov/soilmst/leaky_glb.htm
through a facility on the front page of the Web site.

Alternatively, one can contact Yun Fan. Many graphical
products are available for inspection at this same site, both
of input and output, also both climatologies and anomalies.
The emphasis in the Web graphics is on the last 12 months,
for the purpose of monitoring recent climate anomalies. The
update through the latest calendar month takes place around
the 10th of the month. We also split the map into six
regions: North America, South America, Asia, Africa,
Australia and Europe. By clicking on the image map of
the region of interest, one can see more details from the
amplified figures. The completion of the data set described
in this paper also implies that an earlier version (at lower
spatial resolution, and for 1979–1998 only, and with much
sparser precipitation) produced at CPC several years ago for
research purposes should now be considered obsolete.

5. Conclusion and Discussion

[22] We have produced a 0.5� � 0.5� monthly global soil
moisture data set for the period 1948 to the present. The
land model is identically the same as described by Huang et
al. [1996], while the driving input fields are the gauge based
monthly CPC global land precipitation due to Chen et al.
[2002] and monthly global Reanalysis/CDAS 2 m air

Figure 5. Same as Figure 4, but for September 1948–2003. See color version of this figure in the HTML.
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temperature due to Kistler et al. [2001]. The output consists
of soil moisture, evaporation and surface runoff and ground-
water loss. All fields are updated monthly for near-real-time
applications. The coverage is global, allowing various
applications in fields like hydrology and geodesy. The real
time aspect allows application in real time Drought Moni-
toring and Hazards assessment on any continent. A repre-
sentative set of real-time products can be viewed via http://
www.cpc.ncep.noaa.gov/soilmst/leaky_glb.htm.
[23] Among the caveats of using this data and frequently

asked questions we note the following.
[24] 1. Should we look upon calculated w as the liquid

soil water or liquid plus solid (snow and ice) mass. The
answer actually lies in between these two possibilities. We
administer total observed P (including snow, sleet etc) to
equation (1) as a liquid; we do not explicitly carry frozen

soil water. Since evaporation is small in cold climates the
mass thus added lies around for a while. However, not long
enough because R acts on the liquid, prematurely when it is
still cold.
[25] 2. How about mass anomalies due to runoff? The R

generated by equation (1) disappears in a ‘‘black hole’’ and
is not tracked by a river routing system. It actually could take
months before runoff reaches the oceans, and river routing
calculations [Lohmann et al., 2004] in association with soil
moisture data sets may become standard in the future.
[26] 3. The five empirical parameters are estimated for

Oklahoma. Using them at other locations may produce
suboptimal results, although results for Illinois seemed
reasonable good. Rather than tuning each area separately,
we look forward to better models (see last paragraph) in the
near future.

Figure 6. Time series of hemispheric and global means (land only) of precipitation, 2 m air temperature,
and soil moisture (units are in millimeters/month, �C, and millimeters, respectively). A 5 year running
mean is applied. The period is 1948–2003. First (last) point shown is centered at 1950 (2001). See color
version of this figure in the HTML.
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[27] 4. The temperature fields used for the calculation are
not very good, so-called B variables from CDAS Reanaly-
sis. If a better data set, with real time updates, becomes
available we will change over and recalculate the soil
moisture.
[28] 5. The precipitation (CPC PRECipitation RECon-

struction over Land) will undergo the following improve-
ments in the near future by Chen et al. [2002]: (1) orographic
adjustment/enhancement, (2) dealing with inhomogeneity
resulting from changes in number of gauges over time. Soil
moisture calculations will be repeated when such improve-
ments are implemented.
[29] In the (near) future we expect quantum leaps forward

from better soil models. The type of bucket models used
here may continue as a sanity check for more comprehen-
sive models, but ultimately we will change over to those
more advanced models. We have completed an hourly
analysis over the United States at 1/8th of a degree for
1948–1998 with a very detailed four-layer land surface
model, named Noah [Mitchell et al., 2000]. Some details of
this 50 year data set are given by Fan et al. [2003a, 2003b].
The output variables number order 25 and include all the
energy components, separation of frozen and liquid water,
explicit evaporation by bare soil, open water, plants etc.
Especially impressive are high-spatial-resolution fixed
fields, such as orography, soil type, vegetation type, green-
ness (function of calendar month). All such details were
subsumed crudely in bulk expressions in H96. Soon NCEP
will undertake a global analysis with the Noah model. At
other institutions global analyses with advanced models
have been made for restricted periods, but usually not in
real time, a good example being the VIC model [Nijssen et
al., 2001], for 1980–1993.
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