Improving CFS Precipitation and 2m Temperature Anomaly Outlooks from Week-1 to Week-6 with Machine Learning

Yun Fan¹, Vladimir Krasnopolsky², Huug van den Dool¹, Peitao Peng¹, Jon Gottschalck¹ and David DeWitt¹

¹Climate Prediction Center ²Environmental Modeling Center NOAA Center for Weather and Climate Prediction

NOAA 2nd AI Workshop, Oct. 29, 2020

Outline

- Motivation
- NN Basic
- Preliminary Results
- Summary

Motivation

Demand for S2S P & T2m Fcst Steadily Increasing Problem: Low Forecast Skill Post-Processing:

Data Sets ${ (f_1, f_2,, f_n)_p, O_p }_{p=1,2,....N}$ Where $f_1, f_2,, f_n -- predictors: 1999-2019 daily BC CFSv2$ Week 1-6 P & T2m fcsts, O_p -- predictands: 1999-2019 daily Week 1-6 P & T2m Obs

Mapping: O = M(F)

Traditional method: MLR -- MOS

Can AI or Machine Learning beat BC CFS?

8 Years Cross-Validation

1999 – 2019 daily Week 1-6 forecasts = 6 x 7670 daily samples over North America

Forecast Week-1 P Daily RMSE (mm) & AC (2012-2019)

CFS: Bias corrected NNv: Yearly Cross-Validation NNd: Dependent Fcst

Forecast Week-1 T2m Daily RMSE (°C) & AC (2012-2019)

CFS: Bias corrected NNv: Yearly Cross-Validation NNd: Dependent Fcst

North American Domain

Time Series of Forecast Week-1 T2m Daily Spatial Anomaly Correlation

North American Domain

Forecast Week-1 P & T2m Daily Spatial Anomaly Correlation (2012-2019)

Forecast Week-2 P Daily RMSE (mm) & AC (2012-2019)

CFS: Bias corrected NNv: Yearly Cross-Validation NNd: Dependent Fcst

Forecast Week—2 T2m Daily RMSE (°C) & AC (2012—2019)

CFS: Bias corrected NNv: Yearly Cross-Validation NNd: Dependent Fcst

Time Series of Forecast Week-2 P Daily Spatial Anomaly Correlation

North American Domain

Forecast Week-2 P & T2m Daily Spatial Anomaly Correlation (2012-2019)

North American

Forecast Week-3 P Daily RMSE (mm) & AC (2012-2019)

CFS: Bias corrected NNv: Yearly Cross-Validation NNd: Dependent Fcst

Forecast Week-3 T2m Daily RMSE (°C) & AC (2012-2019)

CFS: Bias corrected NNv: Yearly Cross-Validation NNd: Dependent Fcst

Time Series of Forecast Week-3 P Daily Spatial Anomaly Correlation

North American Domain

Time Series of Forecast Week-3 T2m Daily Spatial Anomaly Correlation

North American Domain

Forecast Week—3 P & T2m Daily Spatial Anomaly Correlation (2012—2019)

Forecast Week-4 P Daily RMSE (mm) & AC (2012-2019)

CFS: Bias corrected NNv: Yearly Cross-Validation NNd: Dependent Fcst

Forecast Week-4 T2m Daily RMSE (°C) & AC (2012-2019)

CFS: Bias corrected NNv: Yearly Cross-Validation NNd: Dependent Fcst

Time Series of Forecast Week-4 P Daily Spatial Anomaly Correlation

North American Domain

Time Series of Forecast Week-4 T2m Daily Spatial Anomaly Correlation

North American Domain

Forecast Week—4 P & T2m Daily Spatial Anomaly Correlation (2012—2019)

Time Series of Forecast Week-1 P Daily Spatial Anomaly Correlation

North American Domain

Time Series of Forecast Week-1 T2m Daily Spatial Anomaly Correlation

North American Domain

Forecast Week 1-6 Spatial Anomaly Correlations (2012-2019)

Observed and Forecast Week 5 Prop Anomalies (mm) 06Feb2017

Week-5 Prcp Forecasts

Observed and Forecast Week 5 Prcp Anomalies (mm) 12Mar2017

Observed and Forecast Week 5 Prop Anomalies (mm) 25Nov2018

Observed and Forecast Week 5 T2m Anomalies (*C) on 23Mar2017

Week-5 T2m Forecasts

Observed and Forecast Week 6 Prop Anomalies (mm) 13Aug2017

Week-6 Prcp Forecasts

Observed and Forecast Week 6 Prcp Anomalies (mm) 07Apr2019

Observed and Forecast Week 6 Prcp Anomalies (mm) 24Apr2018

Observed and Forecast Week 6 T2m Anomalies (*C) on 15Mar2017

Observed and Forecast Week 6 T2m Anomalies (*C) on 06Sep2017

ved and Forecast Week 6 T2m Anomalies (°C) on 240ct2017

Observed and Forecast Week 6 T2m Anomalies (*C) on 11Jan2018

Observed and Forecast Week 6 T2m Anomalies (*C) on 05Apr2018

Week-6 2m Temperature Forecasts

Observed and Forecast Week 6 T2m Anomalies (*C) on 03Jan2019 -21 -12 -15 -12 -19 -06 -03 03 16 09 12 15 1.8 21

Observed and Forecast Week 6 T2m Anomalies (*C) on 07Jan2019

Summary

1. NN advantages

Flexible nonlinear tool & Easy to handle BIG DATA

2. Unique & beneficial NN architectures: account for

Non-Linear Impact, Pattern Relationship, Co-Variability

3. NN Significantly Improves CFS Week 1-6 P & T2m Fcsts

more sophisticated info hidden behind multiple dimensional big data can be extracted by NN

4. NN can perform more complicated corrections

by reversing incorrect forecast patterns, hardly done by traditional MLR

5. Forecast skills in Week 3-6 ranges have similar tendency

good forecasts in Week 3 tend to be good up to Week 6