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ABSTRACT

A long time series of monthly soil moisture data during the period of 19311993 over the entire U.S. continent
has been created with a one-layer soil moisture model. The model is based on the water budget in the soil and
uses monthly temperature and monthly precipitation as input. The data are for 344 U.S. climate divisions during
the period of 1931-1993. The main goals of this paper are 1) to improve our understanding of soil moisture
and its effects on the atmosphere and 2) to apply the calculated soil moisture toward long-range temperature
forecasts.

In this study, the model parameters are estimated using observed precipitation, temperature, and runoff in
Oklahoma (1960-1989) and applied to the entire United States. The comparison with the 8-yr (1984-1991)
observed soil moisture in Illinois indicates that the model gives a reasonable simulation of soil moisture with
both climatology and interannual variability.

The analyses of the calculated soil moisture show that the climatological soil moisture is high in the east and
low in the west (except the West Coast), which is determined by the climatological precipitation amounts. The
annual cycle of soil moisture, however, is determined largely by evaporation. Anomalies in soil moisture are
driven by precipitation anomalies, but their timescales are to first order determined by both climatological
temperature (through evaporation) and climatological precipitation. The soil moisture anomaly persistence is
higher where normal temperature and precipitation are low, which is the case in the west in summer. The spatial
scale of soil moisture anomalies has been analyzed and found to be larger than that of precipitation but smaller
than that of temperature.

Authors found that generally in the U.S. evaporation anomalies are much smaller in magnitude than precip-
itation anomalies. Furthermore, observed and calculated soil moisture anomalies have a broad frequency distri-
bution but not the strongly bimodal distribution indicative of water recycling.

Compared to antecedent precipitation, soil moisture is a better predictor for future monthly temperature. Soil
moisture can provide extra skill in predicting temperature in large areas of interior continent in summer, partic-
ularly at longer leads. The predictive skill of soil moisture is even higher when the predictand is daily maximum

temperature instead of daily mean temperature.

1. Introduction

a. Influences of soil moisture on temperature

The importance of soil mossture in long-range tem-
perature forecasts has been emphasized by several au-
thors including Namias (1952, 1962). The soil mois-
ture controls the partitioning between the sensible and
latent heat fluxes, and consequently influences the tem-
perature of the surface and the lower atmosphere. Fur-
ther feedback may occur through changed cloudiness,
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relative humidity, surface albedo, roughness, and up-
per-level atmospheric circulation. _
A series of numerical sensitivity experiments on the
atmospheric response to soil moisture anomalies have
been carried out [see Mintz (1984) and Yeh (1989)
for a review]. Model-simulated climates are sensitive
to soil moisture presumably because it affects evapo-
transpiration. Recently, two multiyear integrations
have been made at the National Centers for Environ-
mental Prediction (NCEP: formerly National Meteo-
rological Center) with NCEP’s Medium Range Fore-
cast (MRF) model. It was found (Huang and Van den
Dool 1993, hereafter referred to as HD) that precipi-
tation has a large impact on the next month’s near-
surface temperature in summer in the model with in-
teractive soil moisture (see their Figs. 3b and 3c).
Moreover, month to month-temperature persistence is
much higher when the soil moisture feedback is active.
Observational analyses of the effects of soil moisture
on temperature have been made by Walsh et al. (1985),
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Karl (1986), Van den Dool et al. (1986a), Georga-
kakos et al. (1995), and Cayan and Georgakakos
(1995), to mention only a few. Most of these obser-
vational studies lack explicit soil moisture measure-
ments. Therefore, the observational evidence is usually
indirect. Walsh et al. (1985) made a series of objective
specification experiments (Klein 1983) with monthly
700-mb height and surface temperature. They found
that the errors in the specifications have a significant
relation to soil moisture. During summer, the errors that
can be attributed to soil moisture are 0.3°-0.7°C; that
is, the surface is warmer than that anticipated from the
large-scale flow if the soil is dry. Karl (1986) calcu-
lated the relationship between temperature and soil
moisture indices. The results indicate that the soil mois-
ture may provide some skill in predicting monthly and
seasonal temperature during the spring and summer in
the interior U.S. continent.

The influences of soil moisture on temperature are
also suggested by several precipitation—temperature
data analyses (Van den Dool 1988, 1989; Lyons 1990;
HD 1993). In these studies, antecedent precipitation
acts presumably as a proxy for soil moisture. Huang
and Van den Dool summarized the evidence found in
their previous studies as follows. 1) The observed, usu-
ally negative, P—T correlation, with precipitation (P)
leading temperature (7') by a month, is much larger
than the lagged TP correlation. This rules out the pos-
sibility that P and T are correlated only because each
of them is correlated to some common slowly varying
cause. 2) The negative P-T correlation is present
mostly in the warmer months when the potentially large
latent heat flux is subject to large change as a result of
soil moisture variation. 3) The positive T—T correlation
(i.e., enhanced temperature persistence) in summer ap-
pears to be physically caused, to a large extent, by the
interactive soil moisture.

b. Existing soil moisture datasets

Systematically compiled observed quantitative soil
moisture data over large areas and multiyear periods
are lacking. In the United States, measured soil mois-
ture data with substantial record length are only avail-
able in a few locations (Hollinger and Isard 1994 ).

There are several calculated soil moisture indices for
monitoring drought—wetness over the United States
and elsewhere. Considering that drought is caused by
absence of rain, a simple minded approach is to use
easily available precipitation anomalies to compute an
index called precipitation anomaly classification
(PAC) to detect drought. One version of the index orig-
inally developed by the Australian Bureau of Meteorol-
ogy (Lee 1980) has been applied to the United States
by Janowiak et al. (1986). However, as we will see
later, the typical duration of a drought period is deter-
mined strongly by evaporation, and so more precise soil
moisture indices should be based on a full water
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budget. Among the most popular indices based on the
water budget is the Palmer Drought Severity index
(PDSI) (Palmer 1965). However, the calculation of
PDSI uses future temperature and precipitation, a so-
called look-ahead procedure. This procedure limits
their usefulness in prediction of future temperature.
The PDSI was developed using records from only cen-
tral Iowa and Kansas, so that their applicability to other
regions is not quite clear. Furthermore, the index (and
a host of other) gives only qualitative soil moisture data
and are discontinuous in time. The prediction of tem-
perature requires continuous quantitative soil moisture
data.

The next step is to use a physical model. We could
use comprehensive models (e.g., Sellers 1986), but it
will be impossible to create a long-term soil moisture
dataset over large areas because of a lack of input data
(primarily radiation). As an alternative, Mintz and Ser-
afini (1981) and Mintz and Walker (1993) computed
global soil moisture data with a bucket model driven
by easily available monthly mean surface temperature
and precipitation.

The principal goals of this study are as follows.

1) To create a long-term quantitative soil moisture
dataset for the United States using as input only the
observed historic temperature and precipitation at 344
climate divisions for 1931-1993. Our model is equally
simple and practical as the Mintz—Serafini model
(1981). But our model has a more physically reason-
able runoff formulation, and the model parameters can
be calibrated using observed runoff data.

2) To improve physical understanding by studying
the spatial distribution of soil moisture and its variation;
studying the timescale of soil moisture anomalies; ex-
amining if precipitation could possibly be locally re-
cycled to make soil moisture anomalies persist; and
studying the difference between using daily and
monthly data (precipitation and temperature) as model
input.

3) To apply the calculated soil moisture historical
data in predicting temperature statistically. We have
reasons to expect improved long-range temperature
forecasts primarily in spring and summer over conti-
nental areas on monthly to seasonal scales. Further-
more, because soil moisture affects atmospheric tem-
perature through evaporation, which is strongest in the
daytime, we expect soil moisture to have a stronger
impact on daily maximum temperature than on mini-
mum temperature ( Georgakakos et al. 1995). This hy-
pothesis will be tested in this study.

2. The soil moisture model and data

a. Model

Soil moisture is calculated based on the water bal-
ance in the soil. The components of the water balance
in the model are precipitation, evaporation, runoff (or
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streamflow divergence), and groundwater loss. We
model the soil moisture to the extent it participates in
land-surface processes, that is, usually in the upper 1-
2 m of soil. The soil moisture budget over an area A
can be expressed as

aw (1)

% - P(1) — E(1) — R(1) - G(»), (1)
where
W(t) the soil water content at time ¢
P(r) the mean areal precipitation over area A
E(z) the mean areal evapotranspiration over area A
R(t) the net streamflow divergence from area A
G(z) the net groundwater loss (through deep per-

colation) from area A.

The streamflow divergence R(¢) consists of a surface
runoff component S(¢) and a subsurface (base flow)
runoff component B(?):

R(t) = S(t) + B(1). (2)

Following practice in operational hydrologic fore-
casting (e.g., Georgakakos 1986), the surface runoff
and the baseflow are parameterized as follows:

W (1)

S(1) = P(2) [—]m

Wi (28)

04
B(t)y =—W(1), 2b
() T+ (1) (2b)
where W, is a measure of the capacity of soils to hold
water in millimeters, m is a parameter with values
greater than 1, « is the inverse of the response time of
the baseflow, and  is a dimensionless parameter that
determines the portion of the subsurface flow that be-
comes baseflow in the channels draining out from the
area of interest. The remaining portion is lost as unob-
served groundwater flow, which is then given as
o
G(t) =L w). (2¢)
- 1+ p
The evapotranspiration E(t) is estimated in this
model] as follows: -

E(t) = E, (3)

Wmax ’
where E, is the potential evapotranspiration rate in mil-
limeters per month. The potential evapotranspiration
depends mainly on the net radiative heating on the sur-
face. However, measurements or sufficiently accurate
calculation of the net radiation on the surface (needed
for aerodynamic formulas) are inadequate or absent
over large areas for long times. Term E, can also be
estimated from pan evaporation, but the observations
are lacking and the estimation has a number of prob-
lems (Sellers 1965). In this study, we calculate the
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potential evapotranspiration from the observed air tem-
perature and duration of sunlight using Thornthwaite’s
method (1948). The rationale is that air temperature
does, to a considerable extent, serve as a parameter of
the net radiation. This is a shortcut of replacing a com-
prehensive atmospheric model as well as some inter-
actions by prescribing observed temperature and pre-
cipitation.

Following Thornthwaite (1948), the formulas of E,
are expressed as

0 when T < 0°C
MLGQ
I
—415.85 + 32.25T — 0.437T?
when T = 26.5°C,

when 0 =T <26.5°C

P

(3a)

with
d h
L=3%1
12 TM 1.514
I=Y i, where i= <?> and i, =0

M=1
a=(6.75%10""1%) = (7.71 X 1075 I?)
+(1.79 X 1072 1) + 0.49, (3b)

where d is the number of days in the month, A the
number of hours of daylight in the middle day of the
month, and 7 the monthly mean surface air temperature
in each month of the year.

b. Parameter estimation from historical data

Parameter estimation (model calibration) was per-
formed using both manual and automated search—op-
timization procedures. The hydrologic literature is
replete with methods and applications of parameter-
estimation procedures to conceptual hydrologic rain-
fall—runoff models (e.g., reviews in Sorooshian 1991;
Rajaram and Georgakakos 1989). Parameter estima-
tion of conceptual models can be thought to be analo-
gous to experimental calibration of assumed functional
relationships in the laboratory, only with large-scale
data from long historical periods. The data is used to
obtain values for the parameters of the functional forms
of the model that represent hydrologic processes, such
as surface runoff, baseflow, etc.

Initial runs establish an initial set of parameters. The
automatic downhill simplex search method imple-
mented by Press et al. (1989) was used with modifi-
cations pertaining to the establishment of infeasible
regions for the parameters. The automated search pro-
cedure estimates parameters based on the changes in
the value of a quantifiable error criterion function for
runoff.
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FI1G. 1. (a) Observed (solid line) and calculated (dashed line) soil
moisture climatology (unit: mm) averaged over 1984—-1991 in 1lli-
nois as a function of month from January to December. (b) The time
series of observed and calculated soil moisture anomalies (departure
from 1984—-1991 average) in Illinois for May to September only. (c)
Observed (solid line) and calculated (dashed line) runoff climatology
(unit: mm) averaged over 1960—1989 in Oklahoma as a function of
month from January to December.

The automated search procedure may converge to
local optima or may lock near the boundary of the fea-
sible region. It is then necessary to start the search from
several initial parameter estimates and select the con-
vergence region with the lowest criterion value. Once
feasible parameter estimates -have been obtained that
possess the lowest error, runs of the model are made to
examine model skill in simulating hydrologically im-
portant features of the record (i.e., magnitude and tim-
ing of flood peaks, extended low flow periods, etc.).
Changes in parameter estimates may be necessary to
accommodate both a low error and a good reproduction
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of the hydrologically important features of the runoff
record. There is considerable judgement involved in the
parameter estimation procedure, which requires hydro-
logic expertise and familiarity with model applications.

¢. Data and numerical procedure

The atmospheric datasets used to drive the soil
model are monthly surface air temperature (7)) and
monthly total precipitation (P) at 344 U.S. climate di-
visions during the period 1931-1993. Daily station T
and P data at 138 cooperative stations over 1931-1991
are also used for some specialized questions that re-
quire the use of daily data.

The observed soil moisture data in Illinois, which is
the only available long-term verification dataset, are
used to show the model performance. The observed soil
moisture data are from 16 stations in Illinois for an 8-
yr period (1984-1991) at 11 layers of soil from the
top down to 2 m in the soil (Hollinger and Isard 1994).
The observed runoff data (1960—1989) from a 3° by
3° area in Oklahoma (from 34° to 37°N and 96° to
99°W) are used to calibrate the model parameters.

The ideal way to use the model for the entire United
States is to estimate the model parameters for various
U.S. regions of similar soil and land cover and then use
these parameters for each- region. In this paper, we ap-
ply the parameters estimated in Oklahoma to the entire
United States and leave the model with spatially vary-
ing parameters for future work. The model parameters
estimated using the Oklahoma data are W, = 760
mm, 4 = 5.8, « = 0.093 mo~', m = 4.886, with the
variables F, P, R, and G in units of millimeters per
month. The model integration starts from uniform 200
mm in January 1931. The spinup time is about 3—4
months.

Because of nonlinear surface runoff generation, the
integration step is varied so as not to allow the input
precipitation to exceed 2 mm per time step. This tech-
nique is also used in the operational NWS Sacramento
model (Peck 1974 ) to prevent unreasonable runoff. We
use the instantaneous' soil moisture estimated by the
model at the end of a month for most of the analyses
and to predict future temperature. However, when com-
paring with observed soil moisture (in Fig. 1), we use
monthly mean soil moisture.

3. Results
a. Analyses of the calculated soil moisture
1) MODEL PERFORMANCE

Since the only observed soil moisture is available in
Illinois, the model performance in simulating soil mois-

! The end of month instantaneous values are also very smooth in
time because the input driving data are monthly mean and because
the accumulation of precipitation and evaporation anomalies by (1)
works like a low-pass filter.
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ture can only be shown in Illinois. The comparison be-
tween simulated and observed runoff was made where
the calibration was done, which is for Oklahoma in this
study. :

We run the model starting from 1931, but the com-
parison to the observed soil moisture is made for the
period of 1984-1991 (verification period) only. We
also produce a spatial average for the entire state of
Illinois based on 16 stations with observations and nine
climate divisions with the model output.

After several experiments, we found that, as far as
climatology is concerned, the calculated soil moisture
(with W,,,, = 760 mm) agrees best with the observed
soil moisture in the top 1.3 meters of soil. The soil
moisture climatology (8-yr average) (unit: mm) as a
function of month is shown in Fig. la for the model
resulis (dashed line) and for observations (solid line).
The seasonal cycles are broadly similar for the model
and the observation, with the maximum in winter—
spring and the minimum in late summer. This suggests
that the soil moisture seasonal cycle basically follows
the temperature seasonal cycle, which is mostly
through evapotranspiration (i.e., solar radiation). The
slight difference in phase between the calculated and
the observed soil moisture is probably caused by using
temperature instead of net radiation to estimate the po-
tential evapotranspiration.

Figure 1b shows the time series of soil moisture
anomalies (departure from the 8-year climatology for
cach month; units: mm) from 1984 through 1991 for
warm months (May to September) only (some jumps
in the graph are due to connecting September to May
by a straight line). The correlation between the simu-
lated and observed soil moisture anomaly during May
to September during 1984-1991 is 0.84. Figures la
and 1b suggest that the model can simulate reasonably
the soil moisture climatology and soil moisture anom-
alies for Illinois, although the model parameters are not
locally calibrated. We consider this an independent ver-
ification of the validity of the model.

Figure 1c shows the modeled and observed runoff
climatology (1960-1989) in Oklahoma. The model
can catch the seasonal cycle and the magnitude of the
monthly runoff. We have to notice, however, that the
verification for runoff is not independent since the cal-
ibration and verification periods are the same.

The above results are from the model with monthly
precipitation as the model input. We will also examine
whether or not using daily precipitation makes for a
better simulation of observed soil moisture. Because of
nonlinearity, daily precipitation should be better in
principle. The daily data at cooperative stations (from
INCDC) are used, because, unfortunately, daily climate
division data for the entire United States are lacking. It
should be noted that using station data, precipitation in
particular, is probably much less representative than
climate division data. The comparison between daily
precipitation (daily temperature is also used to calcu-
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late the potential evapotranspiration ) and monthly pre-
cipitation is conducted at 12 cooperative stations in Il-
linois. The two model results (not shown here) are very
close and both differ from the observations. The results
do not show significant improvement by using daily
instead of monthly precipitation and temperature. This
is partly due to the fact that the length of time steps for
the integration of the model-governing equation is in-
put dependent (precipitation processed during each
computational time step does not exceed 2 mm). It may
also be that the present model is too insensitive or that
the monthly soil moisture is not overly sensitive to the
details of when precipitation was falling.

2) SPATIAL DISTRIBUTION OF THE MODEL-
CALCULATED SOIL MOISTURE

We have examined the spatial distributions of the
soil moisture climatology and interannual variation
over 1931-1993 in United States for the annual mean
and for each season. The spatial pattern of soil moisture
climatology is similar for each season. Figure 2a shows
the map for summer (May to August), which is the 4-
month ‘‘season’’ we are most interested in. Generally,
the soil moisture content is higher in the eastern half
of the continent than that in the western half (except
close to the west coast). This spatial pattern is virtually
the same as the distribution of annual mean precipita-
tion (not shown). The spatial distributions of the in-
terannual variation of the summer soil moisture, pre-
cipitation, and evaporation (plotted in Figs. 2b—d)
show similar patterns. The three variables have a large
variation in the east and a small variation in the west
in summer. Note that larger standard deviations of soil
moisture and evaporation in California in summer may
be due to the high variations in precipitation in winter.
The magnitude of interannual variation of evaporation
is generally smaller than that of precipitation by a factor
of 2 to 3 except in California.

Figure 3a shows the soil moisture autocorrelation in
summer with a 3-month lag; that is, the last day of May
is correlated with the last day of August based on 63-
yr data. Compared to monthly precipitation persistence
at the same lead (not shown, all zero essentially), the
month to month soil moisture persistence is much
higher. For example, the May to August autocorrelation
is up to 0.8 in Utah for soil moisture, while it is less
than 0.2 for precipitation everywhere. In summer, the
largest soil moisture anomaly persistence (>0.9) is in
California, the only U.S. climate zone where a preex-
isting soil moisture anomaly can be wiped out only
during a few winter months.

An important feature in Fig. 3a is that the soil mois-
ture anomaly persistence in summer is much higher in
the west than in the east. In other words, the same soil
moisture anomaly (dry or wet) generally persists
longer in the west than in the east. In order to under-
stand this spatial pattern, we go back to the model equa-
tions. After inserting (2) and (3) into (1), we get
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MJJA Mean Soil Moisture (1931-93)

HUANG ET AL.

1355

MJJA Precipitation SD (1931-93)
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FiG. 2. U.S. maps of (a) calculated soil moisture climatology (W/W,,., 100) for months MJJA over 1931-1993 at 344 U.S. climate divisions.
Areas with values lower than 20 (i.e., dry areas) are lightly shaded, and values higher than 50 (i.e., wet areas) are heavily shaded. The contour
interval is 10; (b) standard deviation of 4-month mean (MJJA) calculated soil moisture (W/W,,,, 100). Areas with values lower than 4 are
lightly shaded, and values higher than 6 are heavily shaded. The contour interval is 2; (c) standard deviation of 4-month mean precnpltanon
(mm mo™'). Areas with values lower than 5 are lightly shaded, and values higher than 25 are heavily shaded. The contour interval is 5; (d)
standard deviation of 4-month mean calculated evaporation (mm mo™"). Areas with values lower than 4 are shaded, and values higher than

8 are heavily shaded. The contour interval is 2.

aw w -<W

Wmax) —aW. (4)

Then the linearized anomaly (denoted as
from the mean) equation is

, a departure

aw . - W _( W\ W
—=P—-E — mP
dt i Wmax m (Wmax> Wmax
W " A A
- <Wmax> P —aW (4a)

or

aw .

- aP — cW approximately;
hence

W= W(0)e . (4b)

If precipitation (P) is assumed to be white noise,
which is a reasonable assumption, (4a) becomes a first-

order Markov process with evaporation and other
losses (—cW) being the restoring force. The decay
timescale (1/¢) of the soil moisture anomaly is then
proportional to W,,, and inversely proportlonal to E,
and P. Because the field capa01ty Whax 18 taken to be
spatially constant and E, is a function of temperature

“only, the timescale of the soil moisture anomaly in the

model is determined to good approximation by the cli-
matological mean temperature and precipitation. In the
western United States, the mean precipitation in sum-
mer is low. The mean temperature is relatively low in
Colorado, Wyoming, and Montana along the Rocky
Mountains. Areas with low temperature (see Fig. 3b)
and low precipitation indeed generally agree with areas
with higher soil moisture persistence. In winter, the
lower persistence of soil moisture anomalies in Cali-
fornia (not shown) is consistent with the high normal
precipitation.

The spatial pattern of the soil moisture persistence
from this model is similar to that obtained from the
output of an NCEP model multiyear integration (HD
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1993). This is an encouraging independent check for
the ability of our model because in the NCEP model
soil moisture is interactive with several other physical
processes, radiation and precipitation are calculated,
and the formulation of the soil moisture model is dif-
ferent from ours.

3) SPATIAL SIZE OF SOIL MOISTURE ANOMALIES

It is well known that the scale of temperature anom-
alies is usually much larger than that of precipitation.
Precipitation can be very spotty and intermittent. We
now need to characterize soil moisture in terms of the
typical spatial size of anomalies, and a concise way is
to calculate the spatial degrees of freedom (SDOF).
Following exactly the method of Van den Dool et al.
(1986b), we calculate, for month m, the pattern cor-
relation (see definition Al in the appendix) of soil
moisture anomalies (at the last day of month m) for all
possible pairs of nonmatching years in the 63-yr period
(1931-1993). Leaving out the doubles there are 1953

[or (63 X 62)/2] such correlations, which have, as’

Fig. 3. U.S. maps of (a) soil moisture lagged correlation (%) be-
tween May and August with heavier shading for values greater 70%
and lighter shading for values greater than 50%; (b) observed
monthly mean temperature (°C). Areas with heavier shading for val-
ues lower than 16°C and lighter shading for values lower than 18°C
are shaded and the interval is 2°C.
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FIG. 4. Spatial degrees of freedom as a function of months in 48
U.S. continental states for monthly mean temperature (thick solid
line), precipitation (dashed line), and soil moisture (thin solid line).
The data are from 344 U.S. climate divisions during 1931-1993. The
soil moisture is calculated from our model.

they should, zero mean,? and a standard deviation (SD)
that is further assumed to obey

1

SD = "SDOF = 2)17

(5)

From our calculated SD, we can thus solve for
SDOF. The results are shown in Fig. 4. For comparison
the SDOF for monthly climate division temperature
and precipitation are shown as well. It is clear that the
soil moisture anomalies are of a spatial scale somewhat
larger than precipitation, particularly in summer, but
always considerably smaller than temperature. All
three variables have the largest scale (low SDOF) in
winter and have the smallest scales (high SDOF) in
summer. For further interpretation, it should be noted
that SDOF is roughly equal to the number of EOFs
needed to explain 90% of the combined spatial—time
variance.

Compared to Van den Dool et al. (1986b), the es-
timate for SDOF for precipitation and temperature is
similar but numerically lower because here we use
smoother climate division data, while station data was
used in the previous study. With station data, the SDOF
for precipitation in summer is approaching the number
of stations used. This very undesirable property dis-
appears when using climate division data.

2 The mean correlation ro (ja, jb) for month m (averaged over all
possible nonmatching years ja, jb) is only zero if the anomalies are
expressed relative to a “‘climatological’’ mean not including year ja;
that is, the mean needs to be recalculated.
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4) LOCAL WATER RECYCLING?

The results in section 3a.2 indicated that the persist-
ence of the soil moisture anomalies is enhanced by the
low normal precipitation and low normal evaporation.
The lifetime of the soil moisture anomalies has been
speculated to be influenced by the so-called local water
recycling. Several authors (Entakhahi et al. 1992) have
argued that if precipitation is partly or largely due to
local evaporation, drought or flood can perpetuate it-
self.

We here take an ‘‘anomaly point of view’’ to discuss
this issue. From Figs. 2¢ and 2d we have found that the
standard deviation of evaporation is smaller than that
of precipitation by a factor of 2 to 3. Figure 5 shows
two randomly picked time series of soil moisture (W),
evaporation (E), and precipitation anomalies (P) during
1930-1940 at one climate division in Colorado
(Fig. 5a) and during 1960-1970 at one climate divi-
sion in Illinois (Fig. 5b). It is clear that W basically
responds to P but has much longer pers1stence because
W is the integral of P. We believe that W i 1s mainly
driven by P because (i) the magnitude of P is much
larger than £, and (ii) E is a restoring force, that is, it
is very strongly positively correlated to W (the U.S.
pattern correlation averaged in summer is about 0.88),
thus driving W back to chmatology (in agreement with
4b). If E was returned to the soil in the form of P, as
assumed in recycling, £ would not be the restoring
force it is observed to be. Although our calculations do
not address recycling directly, there is little evidence
to support the suggestion that P is determined, in a
substantial way and locally, by £.

Entekhabi et al. (1992) showed a bimodal probabil-
ity distribution of soil moisture obtained from a sto-
chastic water balance model to support the recycling
issue. Taking a bimodal distribution of W as a sure sign
of recycling, we searched our soil moisture datasets for
this evidence at randomly selected states in the interior
continent. We did not find obvious bimodality in the
frequency distribution of soil moisture anomalies dur-
ing summer 1984-1991 from either the observed soil
moisture in Illinois (shown in Fig. 6a) or the calculated
soil moisture in Illinois and Oklahoma (shown in Figs.
6b and 6¢). This is not to say that recycling does not
exist or that if it exists it is not important. After all, E

+1s small and yet plays a large role in determining the
W timescale. L1kew1se, recycling, even if small, could
enhance the W timescale. The broad shoulders of the
frequency distributions such as in Fig. 6 could be ar-
gued to be the result of superposing a unimodal and a
bimodal distributions.

b. Applications to long-rahge temperature forecasts

1) TEMPERATURE PREDICTION

Our previous results (HD 1993) indicate that ante-
cedent precipitation helps in forecasting temperature in
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Fic. 5. Time series of anomalies of precipitation (dashed line),
evaporation (dotted line), and soil moisture (solid line) at one climate
division in (a) Colorado for all months during 1931~1940; (b) Illinois
for all months during 1961-1970.

large parts of the interior United States. In this study,
we will compare the predictive skill of soil moisture to
that of precipitation for the temperature forecasts. To
this end, we calculate the lagged temporal correlations
for soil moisture—temperature (W-T') and for precip-
itation—temperature (P-T') at the 344 U.S. climate di-
visions during the period of 1931-1993 with lags from
1 to 6 months.

Figure 7 shows the 63-yr-averaged pattern correla-
tions (see definition A2 in the appendix) between pre-
cipitation and temperature ( P—T7": upper panel) and soil
moisture and temperature (W-~T: lower panel) as a
function of the predictand month and lags in the interior
United States. It is found that the W-T correlation is
always higher (i.e., more negative) than the P-T cor-
relation for any month and lag, particularly in spring—
summer. Therefore, soil moisture is a better (local)
predictor than precipitation for temperature forecasts.
Similar to the P—T correlation, the W-T correlation is
the highest when a warm month’s temperature is the
target. The best month in the year to predict T from
antecedent soil moisture is July, and rather importantly
this can be done with a considerabie lead. The temper-
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ature in all months from May through September can
be estimated by soil moisture conditions several
months earlier. The W-T correlations do have some
strange variations with August being less predictable
than July and September for no obvious reason. We
have also studied the W—T correlations with lags up to
2 years (not shown) and found significant correlation
out to 2 years. This perhaps explains the summer tem-
perature year to year persistence noted a long time ago
by Namias (1952), Madden and Shea (1978), and Van
den Dool et al. (1986b).

The lagged temporal W—T and P-T correlations for
May—July (shown in Fig. 8) are taken as a good ex-
ample to show the spatial distribution. The W-T cor-
relation is significantly negative in most of the U.S.
inland and is more negative than P—T correlation al-
most everywhere. The appearance of the P—T and W-
T maps is_very similar, the W-T values just being
larger. It appears that the soil model has filtered the P
time series into a better predictor (W). To some degree
the W-T correlation is highly negative in places where
W anomalies have high persistence (see Fig. 3a), such
as in Utah, Colorado, and Nebraska. The W-T corre-
lation from our model has a spatial pattern very similar
to that from the output of the MRF multiyear integra-
tion (see Fig. 3c in HD 1993).

2) CHOOSING THE PREDICTOR(S)

In the operational long-range temperature forecasts,
temperature persistence is a common tool. We have
investigated whether use of soil moisture as another
predictor increases the forecast skill in the temperature
forecast when previous temperature is used as a pre-
dictor as well. The degree of the success depends on
1) how much of the temperature persistence is caused
by soil moisture and 2) whether antecedent temperature
is perhaps a better proxy for the true state of soil mois-
ture than is our calculated soil moisture. Our investi-
gation has been made through a multiple regression
approach. The choice of predictors is soil moisture,
temperature, or both, depending on their predictive skill
in the past (based on cross-validation, see HD 1993).
Precipitation was not admitted as a predictor. We found
that soil moisture can provide extra skill in predicting
future temperature in a large area of the interior con-
tinent in warm months, especially at longer lags (such
as May — July shown in Fig. 9; ‘‘no skill’’ is defined
by the cross-validation correlation being lower than
0.2). The spatial pattern, the choice of predictors, and
the level of skill depend on month and lag.

Ideally and in a real world with perfect measure-
ments, we expect evaporation (say, averaged over the
last 10 days of a month) to be a better predictor (for
future 7) than soil moisture for short lags, because
evaporation represents both the atmosphere and soil
moisture and affects the future temperature in a more
direct way. Applied to (monthly) climate divisions,
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FiG. 6. Frequency distribution (%) of soil moisture anomalies dur-
ing June to August 1984-—1991: (a) observed in Illinois; (b) calcu-
lated in Illinois; (¢) calculated in Oklahoma.

however, the potential evaporation is set to be constant
in a month and the actual evaporation varies with soil
moisture only. With the present datasets at hand, E is
thus not better than W for predicting future 7. .

In the numerical experiments (e.g., Mintz 1984) and
probably also in the real world, soil moisture has some
impact on future precipitation by interacting with the
large-scale circulation and also by supplying some of
the moisture for recycling. However, the correlation
between the calculated soil moisture and future precip-
itation has been found to be very small at any lead
(slightly higher than precipitation persistence ). At this
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P-T pat cor (Interior Continent)
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FiG. 7. Pattern correlation (%) over the interior United States (all
climate divisions with 30° < lat < 45° and 80° < long < 115°) at
lags from 1 to 6 months as a function of season (a) P—T correlation
and (b) W-T correlation. The x axis is predictand’s month and y axis
is lead; for example, lead = 1 at month = 7 is for June—July case.
The contour interval is 5. The light shading is for —10% to —20%,
the medium shading is for —20% to —30%, and the darkest shading
is for —30% or less.

point, there is no hope for improving a regression-type
precipitation forecast by using antecedent soil mois-
ture.

3) COMPARISON BETWEEN Ty.« AND T AS THE
PREDICTAND

In most long-range temperature forecasts, monthly
or seasonal-averaged daily mean temperature (T) is the
predictand. When the soil moisture is the predictor,
however, the daily mean T may not be the best predic-
tand. The daily maximum temperature (7,,,) may be
a better target because the soil moisture affects the sur-
face temperature through evapotranspiration, which
mainly occurs during the daytime when the temperature
reaches its maximum.

To test this idea, we have compared the lagged cor-
relations between soil moisture and monthly mean tem-
perature (W-T) to the correlation between soil mois-
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ture and monthly mean daily maximum temperature
(W—Ta:). The monthly data was obtained from daily
cooperative station data because we, unfortunately, do
not have T, at our disposal for climate divisions. Fig-
ure 10 shows the pattern correlation in the interior con-
tinent for both W—T and W- T, correlations. Note first
that the correlations in Fig. 10a are quite a bit less than
in Fig. 7b because of using station data. It can also be
seen that the W-T,,,, correlation is indeed always more
negative than W-T correlation, hence increasing the
physical realism of our calculated soil moisture data.

4. Summary

A historical (1931-1993) soil moisture dataset at
the 344 U.S. climate divisions has been calculated by
a one-layer soil moisture model. The model is based on
the water budget in the soil. The model uses the
monthly mean temperature and monthly total precipi-
tation as input to calculate soil moisture, surface runoff,
evapotranspiration, baseflow, and groundwater loss to
deep layers. In this model, potential evapotranspiration
is calculated using observed surface air temperature

P, T COR (1931-93, CD, MAY/JUL)

w?%_’ A

e ',1 2

5N

o \ R

g e
1200 100w BOW
W, T COR (1931-93, CD, MAY/JUL)

e

35M =z

e :\\\

h s S T
1200 100W BOW

BT

FiG. 8. Temporal correlation (%) over the 344 U.S. climate divi-
sions (a) between May precipitation and July temperature; (b) be-
tween soil moisture of 31 May and July temperature. The data are
1931-1993. Solid lines are for positive correlation and dashed lines
for negative correlation. The contour interval is 10%.
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SCHEME PERFORMANCE
T OR W&T)
» JULY (1931-83)

PREDICTOR (W,
MAY 31

| No Skill

Fi16. 9. Geographical map of the winner of the three regression
schemes based on cross validation using 1931-1993 data for May—
July case. In medium-shaded area, soil moisture is the best predictor
for future temperature. In lighter-shaded area, combination of soil
moisture and temperature is the best predictor. In the dark-shaded
area, the temperature persistence is the best.

and duration of sunlight (astronomical). The model is
a compromise between physical complexity and the
practicality of having to rely on just observed precipi-
tation and temperature to drive the calculation when a
long (1931-1993) dataset for climate applications is
needed. Parameterizations used are typical of opera-
tional hydrologic models.

The model performance has been examined in this
paper by comparing the calculated soil moisture with
observations in Illinois, one of very few states that have
observed soil moisture. The comparison has shown that
the model gives a reasonable simulation of soil mois-
ture for both climatology and interannual variation. In
this study, the model parameters are constant in space
(calibrated based on Oklahoma runoff data).

This set of calculated soil moisture data has been
used to analyze features of soil moisture. We found that
the spatial pattern of mean soil moisture is determined
by normal precipitation, but the annual cycle of soil
moisture is determined by evaporation. Anomalies in
soil moisture are driven by precipitation anomalies, but
their timescales are determined by both mean evapo-
ration and mean precipitation. As expected, the soil
moisture has much longer persistence than precipita-
tion. In summer, the maximum persistence in the west
is primarily caused by the lower normal evaporation
and lower normal precipitation. The soil moisture
anomalies are of spatial size larger than precipitation
but smaller than temperature.

We have found three pieces of evidence that relate
to the so-called recycling issue. 1) The magnitude of
evaporation anomalies is too small to explain much of
the precipitation anomalies. 2) Term £ acts as a re-
storing force on W. 3) Neither observed nor calculated
soil moisture anomalies have an obviously bimodal fre-
quency distribution.
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During our model integration, the time step was var-
ied with total precipitation so that the precipitation is
less than or equal to 2 mm in each time step. We believe
this numerical technique is recommendable and is
probably the reason as to why the soil moisture simu-
lation shows only a small change when using daily (in-
stead of monthly) precipitation as the model input.

The skill of soil moisture in predicting future tem-
perature has been compared to precipitation as a pre-
dictor of temperature in summer season. We have cal-
culated the lagged correlations for soil moisture—tem-
perature and for precipitation—temperature for each
month of the year and for different lags from 1 to 6
months. The predictive skill of soil moisture is always
higher than that of precipitation. As with precipitation,
the soil moisture—temperature correlation is highest
during the warm months when the evaporation is high.

We have also examined the relative role of the soil
moisture when the previous temperature is used as a
predictor as well by using a multiple regression
method. It was found that the soil moisture can provide
extra skill in predicting temperature in large areas of
interior continent in summer particularly at lags well

~ W-T pat cor (Interlor Continent,STN)
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Fic. 10. As in Fig. 7 except using cooperative station data during
1931-1991: (a) W-T correlation; (b) W-T,,,x correlation.
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beyond one month. Furthermore, the predictive skill of
soil moisture is higher when the predictand is daily
maximum temperature instead of daily mean tempera-
ture.

In the future, we want to apply this dataset in the
operational long-range temperature forecasts at CPC/
NCEP, which would require the monthly climate di-
vision data to be updated in ‘‘real time’’ for such use.
Ideally we would like to use daily climate division data
since 1) W-T correlation is higher at climate divisions
(which is a spatial averaging of stations) than that at
stations, 2) the monthly mean daily maximum temper-
ature is a better predictand, and 3) for the nonlinearity
of precipitation it is more reasonable to use daily pre-
cipitation instead of monthly mean precipitation to
drive the soil-moisture model.

In the future, we will determine model parameters
for various U.S. regions of similar soil and land
cover based on the regional runoff data and then use
these parameters for each region. Moreover, we
hope to get more observed soil moisture data to ver-
ify our model results. The observed evaporation, if
available, could be used in verification of the model
as well.

We suggest in no way that any of the issues raised
are definitively settled. Results of using soil mois-
ture in temperature forecasts may keep improving
as the soil hydrology model improves. A severe lim-
itation is that we have used only observed temper-
ature and precipitation to drive the model. A pos-
sibly big step forward will be the so-called reanal-
ysis of soil moisture in a soil hydrology model
coupled interactively to an atmospheric model. The
observations driving such a system could then in-
clude global pressure, temperature, humidity, and
wind in the free atmosphere. NCEP has an ambitious
plan for reanalysis for the period of 1958 -present
(Kalnay et al. 1991). While radiation and clouds
were not observed directly for 1931-1993, they
would be calculated from the atmosphere model
equations through physical parameterizations. The
present soil moisture dataset would be a benchmark
upon which to improve by more ambitious reanal-
ysis.
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APPENDIX
Definition of a Pattern Correlation Coefficient

Let T(s, m, j) stand for monthly mean temperature
at station or climate division s (s = 1, N), month m,
and year j (j = 1, M). The definition of a pattern cor-
relation between year ja and year jb for month m is
expressed as

M =z

T(s, m, ja)T(s, m, jb)

1

PC(ja, jb) = —~
[

T2(s, m, ja)T*(s, m, jb)1'"?

i M=

(Al)

The PC(ja, jb) measures the degree of similarity of
standardized temperature anomaly patterns over the co-
terminous United States between year ja and year jb
for month m,

where
. ~_T(s,m,j)—T(s, m)
T(s,m9.])_ sd(s,m)
_ 1 ¥
T(s, m) = iV S T(s,m,j)

Jj=1

1 ¥ —
sd(s, m) = i Y (T(s,m,j) — T(s,m))*.
j=1
Similarly, a pattern correlation between two months
separated by T and summed over all M years is defined
as

1 Mo ,.
PC(m,T) = o Y T(s,m, )HNT(s,m+ T1,j)

s=1 j=

—_

(A2)

(or summing over part of the country s = nl, n2; nl
= 1,n2 = N).
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