ENSO: Recent Evolution, Current Status and Predictions

Update prepared by:
Climate Prediction Center / NCEP
28 April 2014
Outline

Summary
Recent Evolution and Current Conditions
Oceanic Niño Index (ONI)
Pacific SST Outlook
U.S. Seasonal Precipitation and Temperature Outlooks
Summary
ENSO Alert System Status: El Niño Watch

ENSO-neutral conditions continue.*

Equatorial sea surface temperatures (SST) were above-average near the International Date Line and across much of the eastern Pacific.

While ENSO-neutral is favored for Northern Hemisphere spring 2014, the chances of El Niño increase during the remainder of the year, exceeding 50% by summer.*

* Note: These statements are updated once a month in association with the ENSO Diagnostics Discussion, which can be found by clicking here.
During May-September 2013, well below-average SSTs were observed over the eastern half of the Pacific.

From January-February 2014, SSTs were mostly below average across the eastern equatorial Pacific.

In the past week, SST anomalies have increased and are slightly above average across most of the Pacific Ocean.

Near the coast of S. America, SSTs are near average.
Niño Region SST Departures (°C) Recent Evolution

The latest weekly SST departures are:

- Niño 4: 0.6°C
- Niño 3.4: 0.4°C
- Niño 3: 0.4°C
- Niño 1+2: 0.1°C
During the last four weeks, equatorial SSTs were above average around the International Date Line and between 145ºW and 95ºW.
During the last four weeks, equatorial SSTs were above average near the International Date Line, in portions of the eastern Pacific, and near Indonesia.
Weekly SST Departures during the Last Four Weeks

During the last four weeks, the SST anomalies remained positive near the International Date Line and in portions of the eastern Pacific.
Change in Weekly SST Departures over the Last Four Weeks

During the last four weeks, changes in equatorial SST anomalies were weakly positive in the east-central Pacific with a mix of negative and positive changes near the coast of South America.
Upper-Ocean Conditions in the Equatorial Pacific

The basin-wide equatorial upper ocean (0-300 m) heat content is greatest prior to and during the early stages of a Pacific warm (El Niño) episode (compare top 2 panels), and least prior to and during the early stages of a cold (La Niña) episode.

The slope of the oceanic thermocline is least (greatest) during warm (cold) episodes.

Recent values of the upper-ocean heat anomalies (positive) and thermocline slope index (near zero) reflect a progression toward El Niño.

The monthly thermocline slope index represents the difference in anomalous depth of the 20°C isotherm between the western Pacific (160°E-150°W) and the eastern Pacific (90°-140°W).
Subsurface temperature anomalies increased during June, August, and in October 2013. Toward the end of January 2014, temperature anomalies strongly increased. Recently, the positive anomalies have decreased, but remain elevated.
Recently, positive subsurface anomalies remain widespread across most of the Pacific basin, but have weakened in recent weeks.

Over recent months, a downwelling oceanic Kelvin wave was associated with the eastward shift of above-average temperatures.

The recent weakening of the above-average temperatures represents the upwelling phase of the Kelvin wave.
Tropical OLR and Wind Anomalies During the Last 30 Days

Negative OLR anomalies (enhanced convection and precipitation, blue shading) were prominent near the International Date Line and the Philippines.

Low-level (850-hPa) winds were near average across most of the Pacific Ocean.

Predominantly easterly wind anomalies are evident in the upper-level (200-hPa) winds across the equatorial Pacific Ocean.
Intraseasonal variability in the atmosphere (wind and pressure), which is often related to the Madden-Julian Oscillation (MJO), can significantly impact surface and subsurface conditions across the Pacific Ocean.

Related to this activity:

Significant weakening of the low-level easterly winds usually initiates an eastward-propagating oceanic Kelvin wave.
Weekly Heat Content Evolution in the Equatorial Pacific

Above-average heat content persisted from June-September 2013 across the equatorial Pacific (except in the far eastern basin).

Enhanced oceanic Kelvin wave activity has been observed since early August 2013.

Since late January 2014, the downwelling phase of a strong Kelvin wave has progressed eastward.

The recent relative weakening of the positive anomalies indicates the upwelling phase of a Kelvin wave is also in progress.

Oceanic Kelvin waves have alternating warm and cold phases. The warm phase is indicated by dashed lines. Downwelling and warming occur in the leading portion of a Kelvin wave, and upwelling and cooling occur in the trailing portion.
Low-level (850-hPa) Zonal (east-west) Wind Anomalies (m s⁻¹)

During the last halves of January and February 2014, strong westerly wind bursts occurred over the western equatorial Pacific.

In the last week, anomalous low-level westerly winds persisted near Indonesia, the western Pacific, and over the eastern Pacific.

Westerly Wind Anomalies (orange/red shading)
Easterly Wind Anomalies (blue shading)
Upper-level (200-hPa) Velocity Potential Anomalies

During early November, weak MJO activity was evident.

During late February and April 2014, eastward propagation in the velocity potential was evident.

Unfavorable for precipitation (brown shading)
Favorable for precipitation (green shading)
Outgoing Longwave Radiation (OLR) Anomalies

Until January/February 2014, below-average OLR was generally evident over the western Pacific and above-average OLR persisted near the Date Line.

During February and March 2014, above-average OLR persisted near western Indonesia, while below-average OLR was observed over the western or central equatorial Pacific.

During April, below-average OLR anomalies persisted over the west-central Pacific.

Drier-than-average Conditions (orange/red shading)
Wetter-than-average Conditions (blue shading)
The ONI is based on SST departures from average in the Niño 3.4 region, and is a principal measure for monitoring, assessing, and predicting ENSO. Defined as the three-month running-mean SST departures in the Niño 3.4 region. Departures are based on a set of improved homogeneous historical SST analyses (Extended Reconstructed SST - ERSST.v3b). The SST reconstruction methodology is described in Smith et al., 2008, J. Climate, vol. 21, 2283-2296.)

Used to place current events into a historical perspective

NOAA’s operational definitions of El Niño and La Niña are keyed to the ONI index.
NOAA Operational Definitions for El Niño and La Niña

El Niño: characterized by a positive ONI greater than or equal to +0.5°C.

La Niña: characterized by a negative ONI less than or equal to -0.5°C.

By historical standards, to be classified as a full-fledged El Niño or La Niña episode, these thresholds must be exceeded for a period of at least 5 consecutive overlapping 3-month seasons.

CPC considers El Niño or La Niña conditions to occur when the monthly Niño3.4 OISST departures meet or exceed +/- 0.5°C along with consistent atmospheric features. These anomalies must also be forecasted to persist for 3 consecutive months.
ONI (°C): Evolution since 1950

The most recent ONI value (January - March 2014) is -0.7°C.
Historical El Niño and La Niña Episodes Based on the ONI computed using ERSST.v3b

<table>
<thead>
<tr>
<th>El Niño</th>
<th>Highest ONI Value</th>
<th>La Niña</th>
<th>Lowest ONI Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>JJA 1951 - DJF 1951/52</td>
<td>1.2</td>
<td>ASO 1949 - JAS 1950</td>
<td>-1.4</td>
</tr>
<tr>
<td>DJF 1952/53 - JFM 1954</td>
<td>0.8</td>
<td>SON 1950 - JFM 1951</td>
<td>-0.8</td>
</tr>
<tr>
<td>MAM 1957 - JJA 1958</td>
<td>1.8</td>
<td>AMJ 1954 - NDJ 1956/57</td>
<td>-1.7</td>
</tr>
<tr>
<td>OND 1958 - FMA 1959</td>
<td>0.6</td>
<td>AMJ 1964 - DJF 1964/65</td>
<td>-0.8</td>
</tr>
<tr>
<td>AMJ 1965 - MAM 1966</td>
<td>1.9</td>
<td>AMJ 1973 - JJA 1974</td>
<td>-2.0</td>
</tr>
<tr>
<td>AMJ 1972 - FMA 1973</td>
<td>2.1</td>
<td>ASO 1983 - DJF 1983/84</td>
<td>-0.9</td>
</tr>
<tr>
<td>ASO 1976 - JFM 1977</td>
<td>0.8</td>
<td>SON 1984 - ASO 1985</td>
<td>-1.1</td>
</tr>
<tr>
<td>ASO 1977 - JFM 1978</td>
<td>0.8</td>
<td>AMJ 1988 - AMJ 1989</td>
<td>-1.9</td>
</tr>
<tr>
<td>AMJ 1982 - MJJ 1983</td>
<td>2.2</td>
<td>ASO 1995 - FMA 1996</td>
<td>-0.9</td>
</tr>
<tr>
<td>JAS 1986 - JFM 1988</td>
<td>1.6</td>
<td>JJA 1998 - FMA 2001</td>
<td>-1.7</td>
</tr>
<tr>
<td>AMJ 1991 - MJJ 1992</td>
<td>1.6</td>
<td>OND 2005 - FMA 2006</td>
<td>-0.9</td>
</tr>
<tr>
<td>AMJ 1997 - MAM 1998</td>
<td>2.4</td>
<td>OND 2008 - FMA 2009</td>
<td>-0.8</td>
</tr>
<tr>
<td>AMJ 2002 - FJM 2003</td>
<td>1.3</td>
<td>JJA 2010 - MAM 2011</td>
<td>-1.5</td>
</tr>
<tr>
<td>JJA 2004 - DJF 2004/05</td>
<td>0.7</td>
<td>ASO 2011 - FMA 2012</td>
<td>-1.0</td>
</tr>
<tr>
<td>ASO 2006 - DJF 2006/07</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JJA 2009 - MAM 2010</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE (Mar. 2012): The historical values of the ONI have slightly changed due to an update in the climatology. Please click [here](#) for more details on the methodology.
Historical El Niño and La Niña Episodes Based on the ONI computed using ERSST.v3b

Recent Pacific warm (red) and cold (blue) episodes based on a threshold of +/- 0.5 °C for the Oceanic Nino Index (ONI) [3 month running mean of ERSST.v3b SST anomalies in the Nino 3.4 region (5N-5S, 120-170W)]. For historical purposes El Niño and La Niña episodes are defined when the threshold is met for a minimum of 5 consecutive over-lapping seasons. The complete table going back to DJF 1950 can be found here.

<table>
<thead>
<tr>
<th>Year</th>
<th>DJF</th>
<th>JFM</th>
<th>FMA</th>
<th>MAM</th>
<th>AMJ</th>
<th>MJJ</th>
<th>JJA</th>
<th>JAS</th>
<th>ASO</th>
<th>SON</th>
<th>OND</th>
<th>NDJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>-0.2</td>
<td>0.0</td>
<td>0.1</td>
<td>0.3</td>
<td>0.5</td>
<td>0.7</td>
<td>0.8</td>
<td>0.8</td>
<td>0.9</td>
<td>1.2</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>2003</td>
<td>1.1</td>
<td>0.8</td>
<td>0.4</td>
<td>0.0</td>
<td>-0.2</td>
<td>-0.1</td>
<td>0.2</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>2004</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
<td>0.7</td>
<td>0.8</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>2005</td>
<td>0.6</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.0</td>
<td>-0.2</td>
<td>-0.5</td>
<td>-0.8</td>
</tr>
<tr>
<td>2006</td>
<td>-0.9</td>
<td>-0.7</td>
<td>-0.5</td>
<td>-0.3</td>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
<td>0.8</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2007</td>
<td>0.7</td>
<td>0.3</td>
<td>-0.1</td>
<td>-0.2</td>
<td>-0.3</td>
<td>-0.3</td>
<td>-0.4</td>
<td>-0.6</td>
<td>-0.8</td>
<td>-1.1</td>
<td>-1.2</td>
<td>-1.4</td>
</tr>
<tr>
<td>2008</td>
<td>-1.5</td>
<td>-1.5</td>
<td>-1.2</td>
<td>-0.9</td>
<td>-0.7</td>
<td>-0.5</td>
<td>-0.3</td>
<td>-0.2</td>
<td>-0.1</td>
<td>-0.2</td>
<td>-0.5</td>
<td>-0.7</td>
</tr>
<tr>
<td>2009</td>
<td>-0.8</td>
<td>-0.7</td>
<td>-0.5</td>
<td>-0.2</td>
<td>0.2</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.8</td>
<td>1.1</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>2010</td>
<td>1.6</td>
<td>1.3</td>
<td>1.0</td>
<td>0.6</td>
<td>0.1</td>
<td>-0.4</td>
<td>-0.9</td>
<td>-1.2</td>
<td>-1.4</td>
<td>-1.5</td>
<td>-1.5</td>
<td>-1.5</td>
</tr>
<tr>
<td>2011</td>
<td>-1.4</td>
<td>-1.2</td>
<td>-0.9</td>
<td>-0.6</td>
<td>-0.3</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.4</td>
<td>-0.6</td>
<td>-0.8</td>
<td>-1.0</td>
<td>-1.0</td>
</tr>
<tr>
<td>2012</td>
<td>-0.9</td>
<td>-0.6</td>
<td>-0.5</td>
<td>-0.3</td>
<td>-0.2</td>
<td>0.0</td>
<td>0.1</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.2</td>
<td>-0.3</td>
</tr>
<tr>
<td>2013</td>
<td>-0.6</td>
<td>-0.6</td>
<td>-0.4</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.3</td>
<td>-0.3</td>
<td>-0.3</td>
<td>-0.2</td>
<td>-0.3</td>
<td>-0.4</td>
<td>-0.4</td>
</tr>
<tr>
<td>2014</td>
<td>-0.6</td>
<td>-0.7</td>
<td></td>
</tr>
</tbody>
</table>
ENSO-neutral is favored for the Northern Hemisphere spring 2014, with chances of El Niño increasing during the rest of the year, exceeding 50% by summer.
Most models predict ENSO-neutral (-0.5°C to +0.5°C) to continue through the Northern Hemisphere spring (AMJ). After that, models predict either ENSO-neutral or El Niño (greater or equal to +0.5°C) during the rest of 2014.
The CFS.v2 ensemble mean (black dashed line) predicts El Niño starting in May 2014.
During late February through late April, an anomalous trough and below-average temperatures affected portions of central and eastern North America. Upstream, weaker anomalous ridging over western N. America contributed to above-average temperatures over those regions.
Atmospheric anomalies over the North Pacific & North America During the Last 60 Days

During late February through late April, an anomalous trough and below-average temperatures affected portions of central and eastern North America. Upstream, weaker anomalous ridging over western N. America contributed to above-average temperatures over those regions.
Atmospheric anomalies over the North Pacific & North America During the Last 60 Days

During late February through late April, an anomalous trough and below-average temperatures affected portions of central and eastern North America. Upstream, weaker anomalous ridging over western N. America contributed to above-average temperatures over those regions.
U.S. Temperature and Precipitation Departures During the Last 30 Days

End Date: 26 Apr 2014
U.S. Temperature and Precipitation Departures During the Last 90 Days

End Date: 26 Apr 2014
U. S. Seasonal Outlooks
May - July 2014

The seasonal outlooks combine the effects of long-term trends, soil moisture, and, when appropriate, ENSO.
ENSO Alert System Status: El Niño Watch

ENSO-neutral conditions continue.*

Equatorial sea surface temperatures (SST) were above-average near the International Date Line and across much of the eastern Pacific.

While ENSO-neutral is favored for Northern Hemisphere spring 2014, the chances of El Niño increase during the remainder of the year, exceeding 50% by summer.*

* Note: These statements are updated once a month in association with the ENSO Diagnostics Discussion, which can be found by clicking here.