ENSO: Recent Evolution, Current Status and Predictions

Update prepared by:
Climate Prediction Center / NCEP
8 February 2021
Outline

Summary
Recent Evolution and Current Conditions
Oceanic Niño Index (ONI)
Pacific SST Outlook
U.S. Seasonal Precipitation and Temperature Outlooks
Summary
La Niña conditions are present.*

Equatorial sea surface temperatures (SSTs) are below average from the west-central to eastern Pacific Ocean.

The tropical atmospheric circulation is consistent with La Niña.

La Niña is expected to continue through the Northern Hemisphere winter 2020-21 (~95% chance during January-March), with a potential transition to ENSO-neutral during the spring 2021 (55% chance during April-June).*

*Note: These statements are updated once a month (2nd Thursday of each month) in association with the ENSO Diagnostics Discussion, which can be found by clicking here.
During November 2019 through April 2020, above-average SSTs were present from the Date Line to the eastern Pacific Ocean.

Beginning in mid-May 2020, negative SST anomalies emerged in the eastern equatorial Pacific Ocean.

In the last couple of weeks, negative anomalies weakened across the eastern equatorial Pacific.
Niño Region SST Departures (°C) Recent Evolution

The latest weekly SST departures are:

- Niño 4 -1.1°C
- Niño 3.4 -0.7°C
- Niño 3 -0.3°C
- Niño 1+2 -0.1°C
In the last four weeks, equatorial SSTs were mostly below average from the west-central Pacific to 130°W. Equatorial SSTs are near average in most of the eastern Pacific Ocean.
During the last four weeks, equatorial SSTs were mostly below average from the west-central to the east-central Pacific Ocean and in the Indian Ocean.
During the last four weeks, below-average SSTs have persisted in the west-central and central equatorial Pacific Ocean, while weakening in the eastern equatorial Pacific Ocean.
During the last four weeks, the changes in equatorial SST anomalies were positive in the east-central and eastern Pacific Ocean.
Upper-Ocean Conditions in the Equatorial Pacific

The basin-wide equatorial upper ocean (0-300 m) heat content is greatest prior to and during the early stages of a Pacific warm (El Niño) episode (compare top 2 panels), and least prior to and during the early stages of a cold (La Niña) episode.

The slope of the oceanic thermocline is least (greatest) during warm (cold) episodes.

Recent values of the upper-ocean heat anomalies (below average) and thermocline slope index (above average) reflect La Niña.

The monthly thermocline slope index represents the difference in anomalous depth of the 20°C isotherm between the western Pacific (160°E-150°W) and the eastern Pacific (90°-140°W).
Subsurface temperature anomalies decreased from March-May 2020, before weakening in June. Starting in mid-July, negative anomalies strengthened and then persisted through early October. Negative anomalies strengthened again in late October, but then slightly weakened. Since mid-November, negative temperature anomalies have persisted.
In the last two months, negative subsurface temperature anomalies have persisted from the central to the eastern Pacific Ocean.

Meanwhile, positive subsurface temperature anomalies from ~25m to the surface have emerged in the eastern Pacific Ocean. Also, positive anomalies have remained mostly at depth near and west of the Date Line.
Positive OLR anomalies (suppressed convection and precipitation) extended from the western to the central Pacific Ocean. Negative OLR anomalies (enhanced convection and precipitation) were evident over Indonesia and the Philippines.

Low-level (850-hPa) easterly wind anomalies were evident from the western equatorial Pacific to 140°W.

Upper-level (200-hPa) westerly wind anomalies were observed over most of the equatorial Pacific Ocean. A cyclonic couplet straddles the equator over the east-central tropical Pacific Ocean.
Intraseasonal Variability

Intraseasonal variability in the atmosphere (wind and pressure), which is often related to the Madden-Julian Oscillation (MJO), can significantly impact surface and subsurface conditions across the Pacific Ocean.

Related to this activity:

Significant weakening of the low-level easterly winds usually initiates an eastward-propagating oceanic Kelvin wave.
Weekly Heat Content Evolution in the Equatorial Pacific

Significant equatorial oceanic Kelvin wave activity (dashed and dotted lines) has been present throughout the period shown.

During April-June and August-September 2020, negative subsurface temperature anomalies were associated with upwelling Kelvin waves.

Since August 2020, negative subsurface temperature anomalies have persisted in the eastern half of the Pacific Ocean.

Since early December 2020, negative anomalies have weakened in the eastern Pacific Ocean.

Equatorial oceanic Kelvin waves have alternating warm and cold phases. The warm phase is indicated by dashed lines. Downwelling and warming occur in the leading portion of a Kelvin wave, and upwelling and cooling occur in the trailing portion.
At times, the Madden Julian-Oscillation (MJO) has contributed to the eastward propagation of low-level wind anomalies.

Since late August, easterly wind anomalies have mostly persisted over most of the equatorial Pacific Ocean.
Upper-level (200-hPa) Velocity Potential Anomalies

From the beginning of the period until early January 2021, anomalous divergence (green shading) has persisted over Africa and the western Indian Ocean.

Since mid-August 2020, anomalous convergence (brown shading) has persisted over the eastern Pacific Ocean, while anomalous divergence has remained near Indonesia and the Indian Ocean.

Unfavorable for precipitation (brown shading)
Favorable for precipitation (green shading)

Note: Eastward propagation is not necessarily indicative of the Madden-Julian Oscillation (MJO).
Outgoing Longwave Radiation (OLR) Anomalies

Since late April 2020, positive OLR anomalies have been observed at the Date Line. OLR anomalies have strengthened since late November 2020.

Since mid-December 2020, negative OLR anomalies have been evident over Indonesia.

Drier-than-average Conditions (orange/red shading)
Wetter-than-average Conditions (blue shading)
The ONI is based on SST departures from average in the Niño 3.4 region, and is a principal measure for monitoring, assessing, and predicting ENSO.

Defined as the three-month running-mean SST departures in the Niño 3.4 region. Departures are based on a set of improved homogeneous historical SST analyses (Extended Reconstructed SST - ERSST.v5). The SST reconstruction methodology is described in Huang et al., 2017, J. Climate, vol. 30, 8179-8205.)

It is one index that helps to place current events into a historical perspective
El Niño: characterized by a positive ONI greater than or equal to +0.5°C.

La Niña: characterized by a negative ONI less than or equal to -0.5°C.

By historical standards, to be classified as a full-fledged El Niño or La Niña episode, these thresholds must be exceeded for a period of at least 5 consecutive overlapping 3-month seasons.

CPC considers El Niño or La Niña conditions to occur when the monthly Niño3.4 OISST departures meet or exceed +/- 0.5°C along with consistent atmospheric features. These anomalies must also be forecasted to persist for 3 consecutive months.
ONI (°C): Evolution since 1950

The most recent ONI value (November 2020 - January 2021) is -1.2°C.
Recent Pacific warm (red) and cold (blue) periods based on a threshold of +/- 0.5 °C for the Oceanic Nino Index (ONI) [3 month running mean of ERSST.v5 SST anomalies in the Nino 3.4 region (5N-5S, 120-170W)]. For historical purposes, periods of below and above normal SSTs are colored in blue and red when the threshold is met for a minimum of 5 consecutive overlapping seasons.

The ONI is one measure of the El Niño-Southern Oscillation, and other indices can confirm whether features consistent with a coupled ocean-atmosphere phenomenon accompanied these periods. The complete table going back to DJF 1950 can be found [here](#).

<table>
<thead>
<tr>
<th>Year</th>
<th>DJF</th>
<th>JFM</th>
<th>FMA</th>
<th>MAM</th>
<th>AMJ</th>
<th>MJJ</th>
<th>JJA</th>
<th>JAS</th>
<th>ASO</th>
<th>SON</th>
<th>OND</th>
<th>NDJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>-1.6</td>
<td>-1.5</td>
<td>-1.3</td>
<td>-1.0</td>
<td>-0.8</td>
<td>-0.6</td>
<td>-0.4</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.4</td>
<td>-0.6</td>
<td>-0.7</td>
</tr>
<tr>
<td>2009</td>
<td>-0.8</td>
<td>-0.8</td>
<td>-0.6</td>
<td>-0.3</td>
<td>0.0</td>
<td>0.3</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>1.0</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>2010</td>
<td>1.5</td>
<td>1.2</td>
<td>0.8</td>
<td>0.4</td>
<td>-0.2</td>
<td>-0.7</td>
<td>-1.0</td>
<td>-1.3</td>
<td>-1.6</td>
<td>-1.6</td>
<td>-1.6</td>
<td>-1.6</td>
</tr>
<tr>
<td>2011</td>
<td>-1.4</td>
<td>-1.2</td>
<td>-0.9</td>
<td>-0.7</td>
<td>-0.6</td>
<td>-0.4</td>
<td>-0.5</td>
<td>-0.6</td>
<td>-0.8</td>
<td>-1.0</td>
<td>-1.1</td>
<td>-1.0</td>
</tr>
<tr>
<td>2012</td>
<td>-0.9</td>
<td>-0.7</td>
<td>-0.6</td>
<td>-0.5</td>
<td>-0.3</td>
<td>0.0</td>
<td>0.2</td>
<td>0.4</td>
<td>0.4</td>
<td>0.3</td>
<td>0.1</td>
<td>-0.2</td>
</tr>
<tr>
<td>2013</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.3</td>
<td>-0.3</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.3</td>
<td>-0.3</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.3</td>
</tr>
<tr>
<td>2014</td>
<td>-0.4</td>
<td>-0.5</td>
<td>-0.3</td>
<td>0.0</td>
<td>0.2</td>
<td>0.2</td>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>2015</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.7</td>
<td>0.9</td>
<td>1.2</td>
<td>1.5</td>
<td>1.9</td>
<td>2.2</td>
<td>2.4</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>2016</td>
<td>2.5</td>
<td>2.1</td>
<td>1.6</td>
<td>0.9</td>
<td>0.4</td>
<td>-0.1</td>
<td>-0.4</td>
<td>-0.5</td>
<td>-0.6</td>
<td>-0.7</td>
<td>-0.7</td>
<td>-0.6</td>
</tr>
<tr>
<td>2017</td>
<td>-0.3</td>
<td>-0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.1</td>
<td>-0.1</td>
<td>-0.4</td>
<td>-0.7</td>
<td>-0.8</td>
<td>-1.0</td>
</tr>
<tr>
<td>2018</td>
<td>-0.9</td>
<td>-0.9</td>
<td>-0.7</td>
<td>-0.5</td>
<td>-0.2</td>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.5</td>
<td>0.8</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>2019</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>2020</td>
<td>0.5</td>
<td>0.5</td>
<td>0.4</td>
<td>0.2</td>
<td>-0.1</td>
<td>-0.3</td>
<td>-0.4</td>
<td>-0.6</td>
<td>-0.9</td>
<td>-1.2</td>
<td>-1.3</td>
<td>-1.2</td>
</tr>
</tbody>
</table>
The chances of La Niña are greater than 95% through January-March 2021, with a 55% chance of a transition to ENSO-neutral in April-June 2021.
The model averages predict La Niña to continue into the Northern Hemisphere spring 2021, returning to ENSO-neutral during summer and fall 2021.
The CFS.v2 ensemble mean (black dashed line) predicts La Niña will continue into fall 2021.
Atmospheric anomalies over the North Pacific and North America During the Last 60 Days

From early December 2020 to early February 2021, anomalous ridging and above-average temperatures were observed over eastern Canada.

From early January to early February 2021, below-average heights and temperatures were evident over much of the eastern U.S.

The pattern over the western U.S. has been notably variable since early December 2020.
Atmospheric anomalies over the North Pacific and North America During the Last 60 Days

From early December 2020 to early February 2021, anomalous ridging and above-average temperatures were observed over eastern Canada.

From early January to early February 2021, below-average heights and temperatures were evident over much of the eastern U.S.

The pattern over the western U.S. has been notably variable since early December 2020.
Atmospheric anomalies over the North Pacific and North America During the Last 60 Days

From early December 2020 to early February 2021, anomalous ridging and above-average temperatures were observed over eastern Canada.

From early January to early February 2021, below-average heights and temperatures were evident over much of the eastern U.S.

The pattern over the western U.S. has been notably variable since early December 2020.
U.S. Temperature and Precipitation Departures During the Last 30 Days

End Date: 6 February 2021
U.S. Temperature and Precipitation Departures During the Last 90 Days

End Date: 6 February 2021
The seasonal outlooks combine the effects of long-term trends, soil moisture, and, when appropriate, ENSO.
ENSO Alert System Status: **La Niña Advisory**

La Niña conditions are present.*

Equatorial sea surface temperatures (SSTs) are below average from the west-central to eastern Pacific Ocean.

The tropical atmospheric circulation is consistent with La Niña.

La Niña is expected to continue through the Northern Hemisphere winter 2020-21 (~95% chance during January-March), with a potential transition to ENSO-neutral during the spring 2021 (55% chance during April-June).*

* Note: These statements are updated once a month (2nd Thursday of each month) in association with the ENSO Diagnostics Discussion, which can be found by clicking [here](#).