Outline

Summary
Recent Evolution and Current Conditions
Oceanic Niño Index (ONI)
Pacific SST Outlook
U.S. Seasonal Precipitation and Temperature Outlooks
Summary
La Niña Advisory

La Niña conditions are present.*

Equatorial sea surface temperatures (SSTs) are below average from the west-central to eastern Pacific Ocean.

The tropical atmospheric circulation is consistent with La Niña.

La Niña is likely to continue through the Northern Hemisphere winter 2020-21 (~95% chance during January-March), with a potential transition during the spring 2021 (~50% chance of Neutral during April-June).*

* Note: These statements are updated once a month (2nd Thursday of each month) in association with the ENSO Diagnostics Discussion, which can be found by clicking here.
During November 2019 through April 2020, above-average SSTs were present from the Date Line to the eastern Pacific Ocean.

Beginning in mid-May 2020, negative SST anomalies emerged in the east-central and eastern Pacific Ocean.

In the last week, negative SST anomalies persisted across most of the equatorial Pacific Ocean.
Niño Region SST Departures (°C) Recent Evolution

The latest weekly SST departures are:

- Niño 4: -1.2°C
- Niño 3.4: -1.1°C
- Niño 3: -0.8°C
- Niño 1+2: -0.8°C
During the last four weeks, equatorial SSTs were below average from west of the Date Line to the eastern Pacific Ocean, and were above average in the far western Pacific Ocean.
During the last four weeks, equatorial SSTs were above average across the far western Pacific Ocean and the western Atlantic Ocean. SSTs were below average from the west-central to the eastern Pacific Ocean and in the eastern Atlantic Ocean.
During the last four weeks, below-average SSTs have persisted across the most of the equatorial Pacific Ocean.
During the last four weeks, the changes in equatorial SST anomalies were negative in the far eastern Pacific and around the Date Line.
Upper-Ocean Conditions in the Equatorial Pacific

The basin-wide equatorial upper ocean (0-300 m) heat content is greatest prior to and during the early stages of a Pacific warm (El Niño) episode (compare top 2 panels), and least prior to and during the early stages of a cold (La Niña) episode.

The slope of the oceanic thermocline is least (greatest) during warm (cold) episodes.

Recent values of the upper-ocean heat anomalies (below average) and thermocline slope index (above average) reflect La Niña.

The monthly thermocline slope index represents the difference in anomalous depth of the 20°C isotherm between the western Pacific (160°E-150°W) and the eastern Pacific (90°-140°W).
Subsurface temperature anomalies decreased from March-May 2020, before weakening in June. Starting in mid-July, negative anomalies strengthened and then persisted through early October. Negative anomalies strengthened again in October, but have slightly weakened since then.
In the last two months, negative subsurface temperature anomalies have persisted from the central to the eastern Pacific Ocean. Meanwhile, positive subsurface temperature anomalies have remained in the western Pacific Ocean and at depth near the Date Line.
Positive OLR anomalies (suppressed convection and precipitation) extended from the western to the central Pacific Ocean. Negative OLR anomalies (enhanced convection and precipitation) were evident over Indonesia, the Philippines, and northern Australia.

Low-level (850-hPa) easterly wind anomalies were evident from the western to east-central equatorial Pacific Ocean.

Upper-level (200-hPa) westerly wind anomalies were observed over most of the equatorial Pacific Ocean.
Intraseasonal variability in the atmosphere (wind and pressure), which is often related to the Madden-Julian Oscillation (MJO), can significantly impact surface and subsurface conditions across the Pacific Ocean.

Related to this activity:

Significant weakening of the low-level easterly winds usually initiates an eastward-propagating oceanic Kelvin wave.
Weekly Heat Content Evolution in the Equatorial Pacific

Significant equatorial oceanic Kelvin wave activity (dashed and dotted lines) has been present throughout the period shown.

During April-June and August-September 2020, negative subsurface temperature anomalies were associated with upwelling Kelvin waves.

Since August 2020, negative subsurface temperature anomalies have persisted in the eastern half of the Pacific Ocean.

In the last month, negative anomalies have strengthened between 170°W-130°W.

Equatorial oceanic Kelvin waves have alternating warm and cold phases. The warm phase is indicated by dashed lines. Downwelling and warming occur in the leading portion of a Kelvin wave, and upwelling and cooling occur in the trailing portion.
Low-level (850-hPa) Zonal (east-west) Wind Anomalies (m s⁻¹)

At times, the Madden Julian-Oscillation (MJO) has contributed to the eastward propagation of low-level wind anomalies.

Since late August, easterly wind anomalies have persisted over most of the equatorial Pacific Ocean.

Easterly wind anomalies have strengthened around the Date Line since late December 2020.
Upper-level (200-hPa) Velocity Potential Anomalies

Since the beginning of the period, anomalous divergence (green shading) has generally persisted over Africa and the western Indian Ocean.

From mid-May through July 2020, anomalous convergence (brown shading) was observed over the Date Line.

Since mid-August 2020, anomalous convergence has persisted over the eastern Pacific Ocean, while anomalous divergence has generally remained near Indonesia and the Indian Ocean.

Unfavorable for precipitation (brown shading)
Favorable for precipitation (green shading)

Note: Eastward propagation is not necessarily indicative of the Madden-Julian Oscillation (MJO).
Since late April 2020, positive OLR anomalies have been observed at the Date Line.

Since mid-December 2020, negative OLR anomalies have been evident over Indonesia.

Drier-than-average Conditions (orange/red shading)
Wetter-than-average Conditions (blue shading)
The ONI is based on SST departures from average in the Niño 3.4 region, and is a principal measure for monitoring, assessing, and predicting ENSO.

Defined as the three-month running-mean SST departures in the Niño 3.4 region. Departures are based on a set of improved homogeneous historical SST analyses (Extended Reconstructed SST - ERSST.v5). The SST reconstruction methodology is described in Huang et al., 2017, J. Climate, vol. 30, 8179-8205.)

It is one index that helps to place current events into a historical perspective
El Niño: characterized by a positive ONI greater than or equal to +0.5°C.

La Niña: characterized by a negative ONI less than or equal to -0.5°C.

By historical standards, to be classified as a full-fledged El Niño or La Niña episode, these thresholds must be exceeded for a period of at least 5 consecutive overlapping 3-month seasons.

CPC considers El Niño or La Niña conditions to occur when the monthly Niño3.4 OISST departures meet or exceed +/- 0.5°C along with consistent atmospheric features. These anomalies must also be forecasted to persist for 3 consecutive months.
ONI (ºC): Evolution since 1950

The most recent ONI value (October-December 2020) is -1.3ºC.
Historical El Niño and La Niña Episodes Based on the ONI computed using ERSST.v5

Recent Pacific warm (red) and cold (blue) periods based on a threshold of +/- 0.5 °C for the Oceanic Niño Index (ONI) [3 month running mean of ERSST.v5 SST anomalies in the Nino 3.4 region (5N-5S, 120-170W)]. For historical purposes, periods of below and above normal SSTs are colored in blue and red when the threshold is met for a minimum of 5 consecutive overlapping seasons.

The ONI is one measure of the El Niño-Southern Oscillation, and other indices can confirm whether features consistent with a coupled ocean-atmosphere phenomenon accompanied these periods. The complete table going back to DJF 1950 can be found [here](#).

<table>
<thead>
<tr>
<th>Year</th>
<th>DJF</th>
<th>JFM</th>
<th>FMA</th>
<th>MAM</th>
<th>AMJ</th>
<th>MJJ</th>
<th>JJA</th>
<th>JAS</th>
<th>ASO</th>
<th>SON</th>
<th>OND</th>
<th>NDJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>-1.6</td>
<td>-1.4</td>
<td>-1.2</td>
<td>-0.9</td>
<td>-0.8</td>
<td>-0.5</td>
<td>-0.4</td>
<td>-0.3</td>
<td>-0.3</td>
<td>-0.4</td>
<td>-0.6</td>
<td>-0.7</td>
</tr>
<tr>
<td>2009</td>
<td>-0.8</td>
<td>-0.7</td>
<td>-0.5</td>
<td>-0.2</td>
<td>0.1</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
<td>0.7</td>
<td>1.0</td>
<td>1.3</td>
<td>1.6</td>
</tr>
<tr>
<td>2010</td>
<td>1.5</td>
<td>1.3</td>
<td>0.9</td>
<td>0.4</td>
<td>-0.1</td>
<td>-0.6</td>
<td>-1.0</td>
<td>-1.4</td>
<td>-1.6</td>
<td>-1.7</td>
<td>-1.7</td>
<td>-1.6</td>
</tr>
<tr>
<td>2011</td>
<td>-1.4</td>
<td>-1.1</td>
<td>-0.8</td>
<td>-0.6</td>
<td>-0.5</td>
<td>-0.4</td>
<td>-0.5</td>
<td>-0.7</td>
<td>-0.9</td>
<td>-1.1</td>
<td>-1.1</td>
<td>-1.0</td>
</tr>
<tr>
<td>2012</td>
<td>-0.8</td>
<td>-0.6</td>
<td>-0.5</td>
<td>-0.4</td>
<td>-0.2</td>
<td>0.1</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.0</td>
<td>-0.2</td>
</tr>
<tr>
<td>2013</td>
<td>-0.4</td>
<td>-0.3</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.3</td>
<td>-0.3</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.3</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.3</td>
</tr>
<tr>
<td>2014</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.2</td>
<td>0.1</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.0</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>2015</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.8</td>
<td>1.0</td>
<td>1.2</td>
<td>1.5</td>
<td>1.8</td>
<td>2.1</td>
<td>2.4</td>
<td>2.5</td>
<td>2.6</td>
</tr>
<tr>
<td>2016</td>
<td>2.5</td>
<td>2.2</td>
<td>1.7</td>
<td>1.0</td>
<td>0.5</td>
<td>0.0</td>
<td>-0.3</td>
<td>-0.6</td>
<td>-0.7</td>
<td>-0.7</td>
<td>-0.7</td>
<td>-0.6</td>
</tr>
<tr>
<td>2017</td>
<td>-0.3</td>
<td>-0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.2</td>
<td>-0.1</td>
<td>-0.4</td>
<td>-0.7</td>
<td>-0.9</td>
<td>-1.0</td>
</tr>
<tr>
<td>2018</td>
<td>-0.9</td>
<td>-0.8</td>
<td>-0.6</td>
<td>-0.4</td>
<td>-0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.4</td>
<td>0.7</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>2019</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.6</td>
<td>0.5</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>2020</td>
<td>0.5</td>
<td>0.6</td>
<td>0.5</td>
<td>0.3</td>
<td>0.0</td>
<td>-0.2</td>
<td>-0.4</td>
<td>-0.6</td>
<td>-1.0</td>
<td>-1.2</td>
<td>-1.3</td>
<td></td>
</tr>
</tbody>
</table>
The chances of La Niña are greater than 95% through January-March 2021, with a ~65% chance of continuing through March-May 2021.
The model averages predict La Niña to continue into the Northern Hemisphere spring 2021.
The CFS.v2 ensemble mean (black dashed line) predicts La Niña will continue into spring 2021.
Atmospheric anomalies over the North Pacific and North America During the Last 60 Days

From late November to early January, anomalous ridging and generally above-average temperatures were observed over the northeastern United States and Canada.

From late November to late December, anomalous troughing and below-average temperatures were present over the southeastern U.S.
Atmospheric anomalies over the North Pacific and North America During the Last 60 Days

From late November to early January, anomalous ridging and generally above-average temperatures were observed over the northeastern United States and Canada.

From late November to late December, anomalous troughing and below-average temperatures were present over the southeastern U.S.
Atmospheric anomalies over the North Pacific and North America During the Last 60 Days

From late November to early January, anomalous ridging and generally above-average temperatures were observed over the northeastern United States and Canada.

From late November to late December, anomalous troughing and below-average temperatures were present over the southeastern U.S.
U.S. Temperature and Precipitation Departures During the Last 30 Days

End Date: 10 January 2021
End Date: 10 January 2021

U.S. Temperature and Precipitation Departures During the Last 90 Days
The seasonal outlooks combine the effects of long-term trends, soil moisture, and, when appropriate, ENSO.
Summary

ENSO Alert System Status: **La Niña Advisory**

La Niña conditions are present.*

Equatorial sea surface temperatures (SSTs) are below average from the west-central to eastern Pacific Ocean.

The tropical atmospheric circulation is consistent with La Niña.

La Niña is likely to continue through the Northern Hemisphere winter 2020-21 (~95% chance during January-March), with a potential transition during the spring 2021 (~50% chance of Neutral during April-June).*

* Note: These statements are updated once a month (2nd Thursday of each month) in association with the ENSO Diagnostics Discussion, which can be found by clicking [here](#).