Outline

Summary
Recent Evolution and Current Conditions
Oceanic Niño Index (ONI)
Pacific SST Outlook
U.S. Seasonal Precipitation and Temperature Outlooks
Summary
ENSO Alert System Status:  **La Niña Advisory**

La Niña is present.*

Equatorial sea surface temperatures (SSTs) are below average across most of the Pacific Ocean.

The tropical Pacific atmosphere is consistent with La Niña.

Though La Niña is favored to continue, the odds for La Niña decrease into the late Northern Hemisphere summer (58% chance in August-October 2022) before slightly increasing through the Northern Hemisphere fall and early winter 2022 (61% chance).*

* Note: These statements are updated once a month (2\textsuperscript{nd} Thursday of each month) in association with the ENSO Diagnostics Discussion, which can be found by clicking [here](#).
Recent Evolution of Equatorial Pacific SST Departures (°C)

From March to July 2021, equatorial SSTs gradually returned to average over most of the Pacific Ocean.

During January 2022, below-average equatorial SSTs weakened across the Pacific Ocean.

Recently, below-average SSTs persisted across most of the equatorial Pacific Ocean.
Niño Region SST Departures (°C) Recent Evolution

The latest weekly SST departures are:

- Niño 4  -0.7°C
- Niño 3.4 -1.1°C
- Niño 3   -1.0°C
- Niño 1+2 -1.5°C
SST Departures (°C) in the Tropical Pacific During the Last Four Weeks

In the last four weeks, equatorial SSTs were below average across most of the Pacific Ocean.
During the last four weeks, equatorial SSTs were below average across most of the Pacific Ocean. Equatorial SSTs were above average near Indonesia and the western Atlantic Ocean.
Weekly SST Departures during the Last Four Weeks

During the last 4 weeks, negative SST anomalies have persisted across most of the equatorial Pacific Ocean.
During the last four weeks, mostly positive changes in SST anomalies were observed in the eastern equatorial Pacific Ocean.
Upper-Ocean Conditions in the Equatorial Pacific

The basin-wide equatorial upper ocean (0-300 m) heat content is greatest prior to and during the early stages of a Pacific warm (El Niño) episode (compare top 2 panels), and least prior to and during the early stages of a cold (La Niña) episode.

The slope of the oceanic thermocline is least (greatest) during warm (cold) episodes.

Recent values of the upper-ocean heat anomalies (below average) and thermocline slope index (above average) reflect La Niña.

*The monthly thermocline slope index represents the difference in anomalous depth of the 20°C isotherm between the western Pacific (160°E-150°W) and the eastern Pacific (90°-140°W).*
Central and Eastern Pacific Upper-Ocean (0-300 m) Weekly Average Temperature Anomalies

From mid-March to early July 2021, subsurface temperature was above average. Negative temperature anomalies returned in July 2021 and persisted through mid-January 2022. During February through mid-March, subsurface temperature anomalies decreased. Since then, anomalies have been gradually weakening, but remain negative.
Sub-Surface Temperature Departures in the Equatorial Pacific

During the last two months, negative subsurface temperature anomalies have persisted in the central and eastern equatorial Pacific Ocean.

Negative subsurface temperature anomalies prevailed near the surface across most of the equatorial Pacific Ocean. Positive anomalies were observed in small regions near the surface in the eastern Pacific, and in a larger region in the western and central Pacific, at depth.
Tropical OLR and Wind Anomalies During the Last 30 Days

Positive OLR anomalies (suppressed convection and precipitation) were located over the central and western Pacific Ocean. Negative OLR anomalies (enhanced convection and precipitation) were observed over the Philippines and parts of Indonesia.

Low-level (850-hPa) easterly wind anomalies were evident over the western to east-central equatorial Pacific Ocean.

Upper-level (200-hPa) westerly wind anomalies and an anomalous cyclonic couplet were observed over the central and east-central tropical Pacific Ocean.
Intraseasonal Variability

Intraseasonal variability in the atmosphere (wind and pressure), which is often related to the Madden-Julian Oscillation (MJO), can significantly impact surface and subsurface conditions across the Pacific Ocean.

Related to this activity:

Significant weakening of the low-level easterly winds usually initiates an eastward-propagating oceanic Kelvin wave.
Weekly Heat Content Evolution in the Equatorial Pacific

Significant equatorial oceanic Kelvin wave activity (dashed and dotted lines) has been present throughout the period shown.

In July 2021, September 2021, and November 2021 negative subsurface temperature anomalies shifted eastward associated with three upwelling Kelvin waves. From mid-December 2021 through February 2022, a downwelling Kelvin wave shifted eastward.

Since February 2022, an upwelling Kelvin wave has shifted eastward into the eastern Pacific Ocean, and below-average subsurface temperatures have persisted in the eastern Pacific.

Equatorial oceanic Kelvin waves have alternating warm and cold phases. The warm phase is indicated by dashed lines. Downwelling and warming occur in the leading portion of a Kelvin wave, and upwelling and cooling occur in the trailing portion.
At times, the Madden Julian-Oscillation (MJO) has contributed to the eastward propagation of low-level wind anomalies.

Since the beginning of the period, easterly wind anomalies have generally dominated over the central and east-central Pacific, except for breaks during late December-to-January 2022, late March 2022, and in mid-May 2022.
Upper-level (200-hPa) Velocity Potential Anomalies

During most of the period, anomalous divergence (green shading) generally remained over Indonesia or the western Pacific, while anomalous convergence (brown shading) persisted over the eastern Pacific Ocean.

Unfavorable for precipitation (brown shading)
Favorable for precipitation (green shading)

Note: Eastward propagation is not necessarily indicative of the Madden-Julian Oscillation (MJO).
Since late July 2021, positive OLR anomalies were evident over the western and/or central Pacific Ocean. Negative OLR anomalies were evident over Indonesia from early November 2021 through early January 2022, during February to early March 2022, from mid-March to early April 2022, and during the first half of May 2022.
The ONI is based on SST departures from average in the Niño 3.4 region, and is a principal measure for monitoring, assessing, and predicting ENSO.

Defined as the three-month running-mean SST departures in the Niño 3.4 region. Departures are based on a set of improved homogeneous historical SST analyses (Extended Reconstructed SST - ERSST.v5). The SST reconstruction methodology is described in Huang et al., 2017, J. Climate, vol. 30, 8179-8205.)

It is one index that helps to place current events into a historical perspective.

Note: a different SST dataset is used for weekly SST monitoring (slides #4-9) and is using OISSTv2.1 (Huang et al., 2021).
El Niño: characterized by a positive ONI greater than or equal to +0.5°C.

La Niña: characterized by a negative ONI less than or equal to -0.5°C.

By historical standards, to be classified as a full-fledged El Niño or La Niña episode, these thresholds must be exceeded for a period of at least 5 consecutive overlapping 3-month seasons.

CPC considers El Niño or La Niña conditions to occur when the monthly Niño3.4 OISST departures meet or exceed +/- 0.5°C along with consistent atmospheric features. These anomalies must also be forecasted to persist for 3 consecutive months.
ONI (°C): Evolution since 1950

The most recent ONI value (February - April 2022) is -1.0°C.
**Historical El Niño and La Niña Episodes Based on the ONI computed using ERSST.v5**

Recent Pacific warm (red) and cold (blue) periods based on a threshold of +/- 0.5 °C for the Oceanic Niño Index (ONI) [3 month running mean of ERSST.v5 SST anomalies in the Nino 3.4 region (5N-5S, 120-170W)]. For historical purposes, periods of below and above normal SSTs are colored in blue and red when the threshold is met for a minimum of 5 consecutive overlapping seasons.

The ONI is one measure of the El Niño-Southern Oscillation, and other indices can confirm whether features consistent with a coupled ocean-atmosphere phenomenon accompanied these periods. The complete table going back to DJF 1950 can be found [here](#).

<table>
<thead>
<tr>
<th>Year</th>
<th>DJF</th>
<th>JFM</th>
<th>FMA</th>
<th>MAM</th>
<th>AMJ</th>
<th>MJJ</th>
<th>JJA</th>
<th>JAS</th>
<th>ASO</th>
<th>SON</th>
<th>OND</th>
<th>NDJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>1.5</td>
<td>1.2</td>
<td>0.8</td>
<td>0.4</td>
<td>-0.2</td>
<td>-0.7</td>
<td>-1.0</td>
<td>-1.3</td>
<td>-1.6</td>
<td>-1.6</td>
<td>-1.6</td>
<td>-1.6</td>
</tr>
<tr>
<td>2011</td>
<td>-1.4</td>
<td>-1.2</td>
<td>-0.9</td>
<td>-0.7</td>
<td>-0.6</td>
<td>-0.4</td>
<td>-0.5</td>
<td>-0.6</td>
<td>-0.8</td>
<td>-1.0</td>
<td>-1.1</td>
<td>-1.0</td>
</tr>
<tr>
<td>2012</td>
<td>-0.9</td>
<td>-0.7</td>
<td>-0.6</td>
<td>-0.5</td>
<td>-0.3</td>
<td>0.0</td>
<td>0.2</td>
<td>0.4</td>
<td>0.4</td>
<td>0.3</td>
<td>0.1</td>
<td>-0.2</td>
</tr>
<tr>
<td>2013</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.3</td>
<td>-0.3</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.3</td>
<td>-0.3</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.3</td>
</tr>
<tr>
<td>2014</td>
<td>-0.4</td>
<td>-0.5</td>
<td>-0.3</td>
<td>0.0</td>
<td>0.2</td>
<td>0.2</td>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>2015</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.7</td>
<td>0.9</td>
<td>1.2</td>
<td>1.5</td>
<td>1.9</td>
<td>2.2</td>
<td>2.4</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>2016</td>
<td>2.5</td>
<td>2.1</td>
<td>1.6</td>
<td>0.9</td>
<td>0.4</td>
<td>-0.1</td>
<td>-0.4</td>
<td>-0.5</td>
<td>-0.6</td>
<td>-0.7</td>
<td>-0.7</td>
<td>-0.6</td>
</tr>
<tr>
<td>2017</td>
<td>-0.3</td>
<td>-0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.1</td>
<td>-0.1</td>
<td>-0.4</td>
<td>-0.7</td>
<td>-0.8</td>
<td>-1.0</td>
</tr>
<tr>
<td>2018</td>
<td>-0.9</td>
<td>-0.9</td>
<td>-0.7</td>
<td>-0.5</td>
<td>-0.2</td>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.5</td>
<td>0.8</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>2019</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>2020</td>
<td>0.5</td>
<td>0.5</td>
<td>0.4</td>
<td>0.2</td>
<td>-0.1</td>
<td>-0.3</td>
<td>-0.4</td>
<td>-0.6</td>
<td>-0.9</td>
<td>-1.2</td>
<td>-1.3</td>
<td>-1.2</td>
</tr>
<tr>
<td>2021</td>
<td>-1.0</td>
<td>-0.9</td>
<td>-0.8</td>
<td>-0.7</td>
<td>-0.5</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.5</td>
<td>-0.7</td>
<td>-0.8</td>
<td>-1.0</td>
<td>-1.0</td>
</tr>
<tr>
<td>2022</td>
<td>-1.0</td>
<td>-0.9</td>
<td>-1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Though La Niña is favored to continue, the odds for La Niña decrease into the late Northern Hemisphere summer (58% chance in August-October 2022) before slightly increasing through the Northern Hemisphere fall and early winter 2022 (61% chance).
La Niña is expected to weaken, but persist through the Northern Hemisphere summer and into early winter 2022-23.
The CFS.v2 ensemble mean (black dashed line) indicates a transition to ENSO-neutral during the Northern Hemisphere summer, with borderline La Niña conditions favored during the fall and winter.
Atmospheric anomalies over the North Pacific and North America During the Last 60 Days

From late March to late April, below-average heights and temperatures dominated the Great Lakes region and northern tier of the U.S., while above-average heights and temperature prevailed over parts of the southern U.S.

Since late April, below-average heights and temperatures were observed in the northwestern U.S., while above-average heights and temperature were present in the central and eastern U.S.
Atmospheric anomalies over the North Pacific and North America During the Last 60 Days

From late March to late April, below-average heights and temperatures dominated the Great Lakes region and northern tier of the U.S., while above-average heights and temperature prevailed over parts of the southern U.S.

Since late April, below-average heights and temperatures were observed in the northwestern U.S., while above-average heights and temperature were present in the central and eastern U.S.
Atmospheric anomalies over the North Pacific and North America During the Last 60 Days

From late March to late April, below-average heights and temperatures dominated the Great Lakes region and northern tier of the U.S., while above-average heights and temperature prevailed over parts of the southern U.S.

Since late April, below-average heights and temperatures were observed in the northwestern U.S., while above-average heights and temperature were present in the central and eastern U.S.
U.S. Temperature and Precipitation Departures During the Last 30 Days

End Date: 21 May 2022
U.S. Temperature and Precipitation Departures During the Last 90 Days

End Date: 21 May 2022
The seasonal outlooks combine the effects of long-term trends, soil moisture, and, when appropriate, ENSO.
La Niña is present.*

Equatorial sea surface temperatures (SSTs) are below average across most of the Pacific Ocean.

The tropical Pacific atmosphere is consistent with La Niña.

Though La Niña is favored to continue, the odds for La Niña decrease into the late Northern Hemisphere summer (58% chance in August-October 2022) before slightly increasing through the Northern Hemisphere fall and early winter 2022 (61% chance).*

* Note: These statements are updated once a month (2nd Thursday of each month) in association with the ENSO Diagnostics Discussion, which can be found by clicking here.