ENSO: Recent Evolution, Current Status and Predictions

Update prepared by:
Climate Prediction Center / NCEP
31 August 2020
Outline

Summary
Recent Evolution and Current Conditions
Oceanic Niño Index (ONI)
Pacific SST Outlook
U.S. Seasonal Precipitation and Temperature Outlooks
Summary
Summary

ENSO Alert System Status: La Niña Watch

ENSO-neutral conditions are present.*

Equatorial sea surface temperatures (SSTs) are near-to-below average across the central to eastern Pacific Ocean.

The tropical atmospheric circulation is consistent with ENSO-neutral.

There is a ~60% chance of La Niña development during Northern Hemisphere fall 2020 and continuing through winter 2020-21 (~55% chance).*

* Note: These statements are updated once a month (2nd Thursday of each month) in association with the ENSO Diagnostics Discussion, which can be found by clicking here.
From July-September 2019, below-average SSTs expanded westward into the east-central Pacific.

Beginning in mid-September 2019, above-average SSTs expanded from the Date Line into the eastern Pacific Ocean.

Since early May 2020, equatorial SSTs were near-to-below average from the central to the eastern Pacific Ocean.
Niño Region SST Departures (°C) Recent Evolution

The latest weekly SST departures are:

Niño 4 -0.1°C
Niño 3.4 -0.7°C
Niño 3 -0.7°C
Niño 1+2 -0.6°C
During the last four weeks, equatorial SSTs were mostly below average from the Date Line to the eastern Pacific, and were above average in the western Pacific.
During the last four weeks, equatorial SSTs were above average across the western Pacific Ocean to the central Indian Ocean and also in the western Atlantic Ocean. SSTs were below average from the central to the eastern Pacific and in the central Atlantic.
Weekly SST Departures during the Last Four Weeks

During the last four weeks, near-to-below-average SSTs have persisted in the central to eastern equatorial Pacific.
During the last four weeks, the changes in equatorial SST anomalies were negative between 130-100ºW, with positive changes in other regions of the central and eastern Pacific.
The basin-wide equatorial upper ocean (0-300 m) heat content is greatest prior to and during the early stages of a Pacific warm (El Niño) episode (compare top 2 panels), and least prior to and during the early stages of a cold (La Niña) episode.

The slope of the oceanic thermocline is least (greatest) during warm (cold) episodes.

Recent values of the upper-ocean heat anomalies (near average) and thermocline slope index (near average) reflect ENSO-neutral.

The monthly thermocline slope index represents the difference in anomalous depth of the 20°C isotherm between the western Pacific (160°E-150°W) and the eastern Pacific (90°-140°W).
Subsurface temperature anomalies were positive from October 2019- March 2020. In March, positive anomalies weakened and returned to zero. During April and early May, negative anomalies strengthened. From mid-May to early July, anomalies weakened to near zero. Since mid-July, negative anomalies have strengthened.
Sub-Surface Temperature Departures in the Equatorial Pacific

In the last two months, negative subsurface temperature anomalies have strengthened in the east-central Pacific Ocean.

Meanwhile, positive subsurface temperature anomalies have strengthened near and west of the Date Line.
Positive OLR anomalies (suppressed convection and precipitation) extended from the western Pacific to ~170°W.

Low-level (850-hPa) wind anomalies were easterly over the western tropical Pacific Ocean and were cross-equatorial over the east-central Pacific.

Upper-level (200-hPa) winds were mostly near average over the equatorial Pacific.
Intraseasonal Variability

Intraseasonal variability in the atmosphere (wind and pressure), which is often related to the Madden-Julian Oscillation (MJO), can significantly impact surface and subsurface conditions across the Pacific Ocean.

Related to this activity:

Significant weakening of the low-level easterly winds usually initiates an eastward-propagating oceanic Kelvin wave.
Weekly Heat Content Evolution in the Equatorial Pacific

Significant equatorial oceanic Kelvin wave activity (dashed and dotted lines) has been present throughout the period shown.

From December 2019 to February 2020, downwelling Kelvin waves (dashed line) resulted in above-average subsurface temperatures across the central and east-central equatorial Pacific.

From April-June 2020, negative subsurface temperature anomalies expanded eastward in association with an upwelling Kelvin wave.

During July-August 2020, negative anomalies strengthened in the east-central Pacific Ocean.

Equatorial oceanic Kelvin waves have alternating warm and cold phases. The warm phase is indicated by dashed lines. Downwelling and warming occur in the leading portion of a Kelvin wave, and upwelling and cooling occur in the trailing portion.
At times, the Madden Julian Oscillation (MJO) has contributed to the eastward propagation of low-level wind anomalies. From mid-April to mid-June 2020, easterly wind anomalies persisted over the eastern equatorial Pacific. In the last couple of weeks, westerly wind anomalies shifted eastward from the western to eastern Pacific Ocean.
Upper-level (200-hPa) Velocity Potential Anomalies

Eastward propagation of anomalies has, at times, been evident.

Since the beginning of the period, anomalous divergence (green shading) has generally persisted over Africa and the western Indian Ocean.

From mid-May through July 2020, anomalous convergence (brown shading) persisted over the Date Line.

In the last week, anomalous divergence shifted into the Indian Ocean, while anomalous convergence shifted into the central Pacific.

Unfavorable for precipitation (brown shading)
Favorable for precipitation (green shading)

Note: Eastward propagation is not necessarily indicative of the Madden-Julian Oscillation (MJO).
Outgoing Longwave Radiation (OLR) Anomalies

From July 2019 through mid-April 2020, positive OLR anomalies persisted over Indonesia.

Since mid-March 2020, positive OLR anomalies were observed at the Date Line and/or over the western Pacific Ocean.

Drier-than-average Conditions (orange/red shading)
Wetter-than-average Conditions (blue shading)
The ONI is based on SST departures from average in the Niño 3.4 region, and is a principal measure for monitoring, assessing, and predicting ENSO.

Defined as the three-month running-mean SST departures in the Niño 3.4 region. Departures are based on a set of improved homogeneous historical SST analyses (Extended Reconstructed SST - ERSST.v5). The SST reconstruction methodology is described in Huang et al., 2017, J. Climate, vol. 30, 8179-8205.)

It is one index that helps to place current events into a historical perspective.
El Niño: characterized by a positive ONI greater than or equal to +0.5°C.

La Niña: characterized by a negative ONI less than or equal to -0.5°C.

By historical standards, to be classified as a full-fledged El Niño or La Niña episode, these thresholds must be exceeded for a period of at least 5 consecutive overlapping 3-month seasons.

CPC considers El Niño or La Niña conditions to occur when the monthly Niño3.4 OISST departures meet or exceed +/- 0.5°C along with consistent atmospheric features. These anomalies must also be forecasted to persist for 3 consecutive months.
The most recent ONI value (May - July 2020) is -0.2°C.
Historical El Niño and La Niña Episodes Based on the ONI computed using ERSST.v5

Recent Pacific warm (red) and cold (blue) periods based on a threshold of +/- 0.5 °C for the Oceanic Nino Index (ONI) [3 month running mean of ERSST.v5 SST anomalies in the Nino 3.4 region (5N-5S, 120-170W)]. For historical purposes, periods of below and above normal SSTs are colored in blue and red when the threshold is met for a minimum of 5 consecutive overlapping seasons.

The ONI is one measure of the El Niño-Southern Oscillation, and other indices can confirm whether features consistent with a coupled ocean-atmosphere phenomenon accompanied these periods. The complete table going back to DJF 1950 can be found here.

<table>
<thead>
<tr>
<th>Year</th>
<th>DJF</th>
<th>JFM</th>
<th>FMA</th>
<th>MAM</th>
<th>AMJ</th>
<th>MJJ</th>
<th>JJA</th>
<th>JAS</th>
<th>ASO</th>
<th>SON</th>
<th>OND</th>
<th>NDJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>-1.6</td>
<td>-1.4</td>
<td>-1.2</td>
<td>-0.9</td>
<td>-0.8</td>
<td>-0.5</td>
<td>-0.4</td>
<td>-0.3</td>
<td>-0.3</td>
<td>-0.4</td>
<td>-0.6</td>
<td>-0.7</td>
</tr>
<tr>
<td>2009</td>
<td>-0.8</td>
<td>-0.7</td>
<td>-0.5</td>
<td>-0.2</td>
<td>0.1</td>
<td>0.4</td>
<td>0.5</td>
<td>0.7</td>
<td>0.7</td>
<td>1.0</td>
<td>1.3</td>
<td>1.6</td>
</tr>
<tr>
<td>2010</td>
<td>1.5</td>
<td>1.3</td>
<td>0.9</td>
<td>0.4</td>
<td>-0.1</td>
<td>-0.6</td>
<td>-1.0</td>
<td>-1.6</td>
<td>-1.7</td>
<td>-1.7</td>
<td>-1.6</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>-1.4</td>
<td>-1.1</td>
<td>-0.8</td>
<td>-0.6</td>
<td>-0.5</td>
<td>-0.4</td>
<td>-0.5</td>
<td>-0.7</td>
<td>-0.9</td>
<td>-1.1</td>
<td>-1.1</td>
<td>-1.0</td>
</tr>
<tr>
<td>2012</td>
<td>-0.8</td>
<td>-0.6</td>
<td>-0.5</td>
<td>-0.4</td>
<td>-0.2</td>
<td>0.1</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.0</td>
<td>-0.2</td>
</tr>
<tr>
<td>2013</td>
<td>-0.4</td>
<td>-0.3</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.3</td>
<td>-0.3</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.3</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.3</td>
</tr>
<tr>
<td>2014</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.2</td>
<td>0.1</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.0</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>2015</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.8</td>
<td>1.0</td>
<td>1.2</td>
<td>1.5</td>
<td>1.8</td>
<td>2.1</td>
<td>2.4</td>
<td>2.5</td>
<td>2.6</td>
</tr>
<tr>
<td>2016</td>
<td>2.5</td>
<td>2.2</td>
<td>1.7</td>
<td>1.0</td>
<td>0.5</td>
<td>0.0</td>
<td>-0.3</td>
<td>-0.6</td>
<td>-0.7</td>
<td>-0.7</td>
<td>-0.7</td>
<td>-0.6</td>
</tr>
<tr>
<td>2017</td>
<td>-0.3</td>
<td>-0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.2</td>
<td>-0.1</td>
<td>-0.4</td>
<td>-0.7</td>
<td>-0.9</td>
<td>-1.0</td>
</tr>
<tr>
<td>2018</td>
<td>-0.9</td>
<td>-0.8</td>
<td>-0.6</td>
<td>-0.4</td>
<td>-0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.4</td>
<td>0.7</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>2019</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.6</td>
<td>0.5</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>2020</td>
<td>0.5</td>
<td>0.6</td>
<td>0.5</td>
<td>0.3</td>
<td>0.0</td>
<td>-0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
La Niña is favored (~55% chance) beginning in August-October 2020 and continuing through Northern Hemisphere winter 2020-21.
The averages of the models predict a borderline or weak La Niña through the Northern Hemisphere winter 2020-21.
The CFS.v2 ensemble mean (black dashed line) predicts La Niña to emerge by Northern Hemisphere fall 2020 and continue through winter 2020-21.
Atmospheric anomalies over the North Pacific and North America During the Last 60 Days

From late June to mid August, above-average heights and temperatures have generally persisted over eastern Canada and/or the northeastern U.S.

During late July-late August, near-to-below heights and temperatures persisted over the south-central U.S.
Atmospheric anomalies over the North Pacific and North America During the Last 60 Days

From late June to mid August, above-average heights and temperatures have generally persisted over eastern Canada and/or the northeastern U.S.

During late July-late August, near-to-below heights and temperatures persisted over the south-central U.S.
Atmospheric anomalies over the North Pacific and North America During the Last 60 Days

From late June to mid August, above-average heights and temperatures have generally persisted over eastern Canada and/or the northeastern U.S.

During late July-late August, near-to-below heights and temperatures persisted over the south-central U.S.
U.S. Temperature and Precipitation Departures During the Last 30 Days

End Date: 29 August 2020
U.S. Temperature and Precipitation Departures During the Last 90 Days

End Date: 29 August 2020
The seasonal outlooks combine the effects of long-term trends, soil moisture, and, when appropriate, ENSO.
Summary

ENSO Alert System Status: **La Niña Watch**

ENSO-neutral conditions are present.*

Equatorial sea surface temperatures (SSTs) are near-to-below average across the central to eastern Pacific Ocean.

The tropical atmospheric circulation is consistent with ENSO-neutral.

There is a ~60% chance of La Niña development during Northern Hemisphere fall 2020 and continuing through winter 2020-21 (~55% chance).*

* Note: These statements are updated once a month (2nd Thursday of each month) in association with the ENSO Diagnostics Discussion, which can be found by clicking [here](#).