Is Unequal Weighting Significantly Better than Equal Weighting for Multi-Model Forecasting?

Timothy DelSole (COLA, GMU)
Xiaosong Yang (GFDL)
Michael Tippett (IRI)
Huug van den Dool (CPC)
Liwei Jia (COLA)

October 5, 2011
A linear multi-model combination is

\[y(t) = x_1(t) \beta_1 + x_2(t) \beta_2 + \cdots + x_M(t) \beta_M + \mu + \epsilon(t) \]
Potential Strategies for Specifying Weights

- **Linear Regression** “Super-ensemble” (Krishnamurti et al. 1999)
 - overfitting becomes a problem for large number of models M
 - weights vary substantially on short space scales

- **Ridge regression** (Peña and van den Dool 2008)

- **Multi-Model Mean** ($\beta_m = 1/M$)

- **Bayesian** (Rajagopalan et al. 2002)
 - weighting coefficients become noisy as more models included
 - neighboring grid points have very different coefficients

- **Bayesian** (DelSole 2007)
 - Nested cross validation could not beat multi-model average
Objective

Many studies show that the multi-model mean ($\beta_m = 1/M$) gives the best, or close to the best, forecast.

Multi-model mean is a special case of equal weights:

$$\beta_1 = \beta_2 = \cdots = \beta_M = \alpha/M$$

We want to test whether a multi-model combination based on unequal weights has significantly smaller errors than a combination based on equal weights.
Test Hypothesis of Equal Weights

\[y(t) = x_1(t)\beta_1 + x_2(t)\beta_2 + \cdots + x_M(t)\beta_M + \mu + \epsilon(t) \]

\[H_{SMMM} : \quad \beta_1 = \beta_2 = \cdots = \beta_M = \alpha / M \]

where “SMMM” stands for “scaled multi-model mean.”

The statistic for testing this hypothesis is

\[F = \frac{SSE_{SMMM} - SSE_{GLM}}{SSE_{GLM}} \frac{N - M - 1}{M - 1} \]

\(SSE_{SMMM} \): sum square error of regression model under \(H_{SMMM} \)

\(SSE_{GLM} \): sum square error of model with least squares weights

Large \(F \) value favors a rejection of the hypothesis.
Rejection of the Hypothesis of Equal Weights

The hypothesis is

$$H_{SMMM} : \beta_1 = \beta_2 = \cdots = \beta_M = \alpha/M$$

All that is required to reject H_{SMMM} is

$$\beta_i \neq \beta_j \text{ for at least one } i \neq j$$

This could happen in a variety of ways:

- one model has no skill ($\beta_m = 0$ for some m).
- some subset of models have no skill.
How Much Smaller Variance Does GLM Need to Explain to Reject Hypothesis of Equal Weights?

\(R^2_{GLM} \): Fraction of variance explained by GLM.

\(R^2_{SMMM} \): Fraction of variance explained by SMMM.

A relative measure of the difference in variances is:

\[
\delta = \frac{R^2_{GLM} - R^2_{SMMM}}{1 - R^2_{SMMM}}.
\]

\[
F = \frac{\delta}{1 - \delta} \frac{N - M - 1}{M - 1}
\]
Different curves corresponding to different number of models (M).
Schematic of the Proposed Decision Procedure

\[y_n = \beta_1 x_{n1} + \beta_2 x_{n2} + \cdots + \beta_M x_{nM} + \mu + \epsilon_n, \]

TEST \(\beta_1 = \beta_2 = \cdots = \beta_M = \frac{\alpha}{M} \)

\[y_n = \alpha \frac{1}{M} (x_{n1} + x_{n2} + \cdots + x_{nM}) + \mu + \epsilon. \]

Test \(\alpha = 0 \)

<table>
<thead>
<tr>
<th>Accept (\alpha = 1)</th>
<th>Reject (\alpha = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accept (\alpha = 0)</td>
<td>Ambiguous</td>
</tr>
<tr>
<td>Reject (\alpha = 0)</td>
<td>MMM</td>
</tr>
</tbody>
</table>

Test \(\alpha = 1 \)

Relevant Clusters:
- MMM
- SMMM
Test Hypothesis that Weights Vanish Simultaneously

\[y(t) = \frac{\alpha}{M} (x_1(t) + x_2(t) + \cdots + x_M(t)) + \mu + \epsilon(t) \]

\[H_{\text{CLIM}} : \alpha = 0 \]

where “CLIM” stands for “climatology.”

The statistic for testing this hypothesis is

\[F = \frac{SSE_{\text{CLIM}} - SSE_{\text{SMMM}}}{SSE_{\text{SMMM}}} \frac{N - 2}{1} \]

\(SSE_{\text{CLIM}}: \) sum square error of regression model under \(H_{\text{CLIM}} \)
All that is required to reject H_{CLIM} is

$$\beta_i \neq 0 \quad \text{for at least one } i$$

This could happen in a variety of ways:

- only one model has skill ($\beta_m \neq 0$ for some m).
- all models should be equally weighted ($\alpha = 1$).
Test Hypothesis that All Weights Equal 1/M

\[y(t) = \frac{\alpha}{M} (x_1(t) + x_2(t) + \cdots + x_M(t)) + \mu + \epsilon(t) \]

\[H_{MMM} : \alpha = 1 \]

where “MMM” stands for “multi-model mean.”

The statistic for testing this hypothesis is

\[F = \frac{SSE_{MMM} - SSE_{SMMM}}{SSE_{SMMM}} \frac{N - 2}{1} \]

SSE_{MMM}: sum square error of regression model under \(H_{MMM} \)
Application to Seasonal Hindcasts

- ENSEMBLES data set (Weisheimer et al., 2009)
 - UK Met
 - Météo France
 - ECMWF
 - Leibniz Institute of Marine Sciences at Kiel University
 - Euro-mediterranean Centre for Climate Change in Bologna
- 9 member ensemble
- Consider only hindcasts initialized 1 May and 1 November
- 46 year period 1960-2005
- NDJ and MJJ mean 2m temperature and precipitation
- 2m temperature verified against NCEP/NCAR reanalysis
- Precipitation verified against NCEP/CPC (Chen et al. 2002)
Selected Strategies for 2m Temperature

▶ Equal weights can not be rejected over 3/4 of the globe.
▶ Multi-model mean is the dominant choice.
Selected Strategies for Precipitation

Equal weights can not be rejected over 90% of the land.
Vanishing weights is the dominant choice.
Apply tests to hindcasts of 3-month average NINO3.4
28-29 years of data (1982-2010).
5-15 ensemble members, depending on lead
Test for each initial month and lead.
For short lead time, unequal weights is the dominant choice.
We proposed statistical test for whether a multi-model combination with unequal weights has significantly smaller errors than a combination with equal weights.

If hypothesis of equal weights is rejected, this test gives no information about the best strategy for unequal weighting.

Equal weights could not be rejected over three-quarters of the globe for T2m, and 90% for land precipitation.

For equal weighting, multi-model mean was the dominant choice for T2m, and vanishing weights for precipitation.

For IRI plume, unequal weighting was selected mostly for short leads, presumably because models are distinguishable at high skill.

For IRI plume, climatology is not selected.