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1. INTRODUCTION 

 
In 1998, the Climate Prediction Center (CPC) 

developed the Rainfall Estimator (RFE) (Herman et. al. 
1997) in response to the need for higher resolution 
operational daily rainfall estimates to support the 
humanitarian aid programs of USAID / Famine Early 
Warning Systems Network (FEWS-NET).  The RFE has 
continued to provide an accurate monitoring of large-
scale and regional climatic and hydrological trends.  It is 
a unique product compared to other satellite rainfall 
estimators because of its high, 0.1° gridded spatial 
resolution, and its ability to blend gauge and satellite 
information on a near-real time basis to provide daily 
(06Z-06Z) rainfall estimates over the African continent.  
In 2001, CPC implemented an advanced RFE algorithm 
(version 2.0, hereafter referred to as RFE2) based on 
the methods of (Xie and Arkin, 1996).  The RFE2 
exhibited improvement over its predecessor by reducing 
bias, and increasing both estimation accuracy and 
computational efficiency (Love et al. 2004).  Although 
the RFE2 product has served as the principal rainfall 
estimator for USAID / FEWS-NET operations, the 
brevity of the dataset record (2001-present) does not 
allow users to derive meaningful rainfall anomalies to 
assess the current state and evolution of the climate 
over Africa.  In 2004, the original Africa Rainfall 
Climatology (ARC1) was developed based on the same 
algorithm employed in the RFE2 algorithm (Xie and 
Arkin, 1996).  Of the four main inputs used in the RFE2, 
the ARC1 incorporated only gauge and IR because of 
their availability and consistency over time.  A historical 
reprocessing of gauge and IR data from 1995-2005 was 
performed by (Love et. al. 2004), which resulted in daily, 
high-resolution precipitation estimate dataset from 1995-
present.   

However, due to the need for a higher number of 
years as well as inconsistencies in the original 
reprocessing, the ARC1 dataset no longer responds to 
current needs for operational climate monitoring.    This 
has prompted us to utilize a new, long-term precipitation 
dataset for operational monitoring and climate analysis. 
The recent acquisition of historical, recalibrated IR 
imagery and daily summary gauge data has enabled 
reconstruction of the ARC climatology dataset from 
1983 – present.  A new, reconstructed Africa Rainfall 
Climatology (ARC2) offers a number of advantages 
compared to other long-term climatological rainfall  
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datasets that are widely used.   First, high resolution 
historical rainfall estimates on a daily basis would help 
not only to monitor precipitation associated with synoptic 
and mesoscale disturbances, but also to undertake 
studies of extreme events, wet and dry spells, number 
of rain days (i.e. rainfall frequency), and onset of the 
rainfall seasons.  Second, a 0.1° (~10km) spatial 
resolution allows users to see rainfall phenomenon on 
local scales that cannot be captured by coarser climate 
datasets.  For the FEWS-NET program, this local scale 
resolution has also been instrumental in assessing 
impacts of rainfall on agriculture and water resource 
management.  Third, the ARC2 maintains the same two 
inputs that remain continuous and homogeneous over 
time.  This straight-forward estimation approach is 
expected to minimize the possibility of introducing bias 
associated with new satellite sensors.  Lastly, because 
the same algorithm as the operational RFE2 is used, 
ARC2 precipitation estimates are also available in near 
real-time, allowing the dataset to be routinely updated 
on a daily basis.  All of these features make the new 
ARC2 dataset unique.   
 
2. INPUT DATA 
 

The operational daily precipitation estimate method 
(RFE2) incorporates gauge data, geostationary IR, and 
polar orbiting microwave SSM/I and AMSU-B satellite 
data.  The primary differences between the RFE2 and 
ARC1/ARC2 products are:  1) the ARC method uses a 
subset of the inputs used in the RFE2, that is, only 
gauge data and GPI estimates derived from 
geostationary IR are ingested, and, 2) the GPI estimates 
use a three-hourly temporal sampling of IR 
temperatures as opposed to the half-hourly sampling 
used in the RFE2.   Both gauge and geostationary IR 
data possess a higher availability and reliability than 
passive microwave data from 1983-present.  This 
feature was considered most desirable in constructing a 
stable and consistent rainfall climatology, despite any 
potential loss in estimation accuracy.  A cross validation 
exercise between the RFE2 and ARC methods, (Love 
et. al., 2004) found that both the gauge and IR inputs, 
exclusively, maintained a relatively high correlation and 
low bias with station gauge observations. 

The first input source used to develop the ARC2 
were 24-hour in-situ accumulated rainfall observations 
recorded from the Global Telecommunications System 
(GTS) gauge network.   GTS data over Africa consist of 
a global array of stations reporting 24 hour (06Z-06Z) 
summaries of meteorological observations such as  



 
Figure 1: Spatial mean of annual ARC2 rainfall 
(mm/day) at a 0.1° resolution over Africa from 1983-
2010.  

 
 
temperature max/mins, winds, precipitation, etc.  For the 
ARC2, we combined the existing GTS gauge database 
at CPC with historical daily GTS data extending back to 
1983.  The historical GTS data from 1983-1994 were 
acquired from the archives at UCAR in daily summary 
file format.  These daily summary files were reformatted 
to match the currently assimilated GTS format ingested 
by the RFE2 algorithm in order to build a daily GTS 
gauge record from 1983-present.  Out of an 
approximate 7500 GTS gauges that exist globally, less 
than 1200 stations typically report in Africa on a daily 
basis.  This accounts for about a 1:23,000 km

2
 gauge to 

area ratio across the African continent.   Despite the 
paucity of GTS stations and their relatively poor 
distribution across Africa, this gauge data is still 
"ground-truth" and remains instrumental in constructing 
a daily, historical precipitation record.  And while the 
lack of gauge data over Africa is less beneficial when 
constructing historical precipitation estimates, the near 
real-time availability of the GTS offers a desired 
timeliness when generating rainfall anomaly fields on an 
operational basis.  Each day, GTS gauge observations 
are interpolated to 0.1° by 0.1° grid over Africa using the 
methods of (Shepard, 1968).  The second input source 
are full-disk, Meteosat geostationary Infra-Red (IR) 
imagery centered at 0° longitude using the 10.5-12.5 

historical three-hourly IR imagery for Meteosat First 
Generation (MFG) satellites 2 through 7 was collected 
from EUMETSAT via ftp transmission at CPC.  From 
2006 onward, pre-calibrated Meteosat Second 
Generation (MSG) IR data has been continuously 
forwarded to CPC for operations on a daily basis.  The 
advancement of geostationary calibration methods 
associated with MSG data led to non-negligible 
discrepancies between the MFG and MSG raw IR 
imagery.   This warranted careful treatment of the 
calibration of MFG raw IR imagery to ensure uniformity  

 
Figure 2: Annual cycle of ARC2 rainfall (mm/day) over 
Africa domain. 
 
 
with the total IR input record from 1983-present.  The 
recalibrated MFG IR data from 1983 to 2005 is what 
mainly distinguishes the new ARC2 from the original 
ARC1 dataset.   
 
3. METHODS 

 
The methodology used to develop ARC2 consisted 

of compiling 23 years of daily GTS gauge data and 
three-hourly IR data from 1983 to 2005, similar to (Love 
et. al. 2004) in the initial reprocessing of the ARC1 
dataset (1995-2005).  In ARC2, however, much of the 
work was devoted to correctly calibrating all MFG IR 
data from 1983-2005, and then perform the daily 
reprocessing using the operational RFE2 algorithm for 
this period. 
 
3.1 IR Calibration and GPI 
 

Open Meteosat Transition Program (OpenMTP 1.5) files 
from EUMETSAT’s UMARF satellite data archive were 
selected as the best available IR format to cover the 
main reconstruction period from 1983-2005.  In order to 
preprocess the raw three-hourly IR data, calibration 
coefficient and space count values were first required to 
convert the raw digital data counts to brightness 
temperatures for all MFG satellites.  The calibration 
relation is expressed as: 
 

R = CC (Cnt – SC) 

where (R) equals the radiance, and (CC), (Cnt) and (SC) 
correspond to the calibration coefficient, digital Meteosat 
counts, and space counts, respectively.  An analytic 
relationship derived from Planck’s law was applied to 
explain the relationship between radiance (R) and 
brightness temperatures (Tb).  
 

Tb = B / ( ln(R) – A ) 
 

EUMETSAT provided semi-daily CC and SC data 
on a separate online source (EUMETSAT, 2011).  In 
determining the values of constants A and B, radiance  



 
Figure 3: Time series of monthly areal averaged ARC2 rainfall (mm/day) compared to ARC1, GPCP and CMAP from 
1983-2009.  

 
 

and brightness temperature reference tables for each 
Meteosat satellite from 2 to 7 also provided from 
EUMETSAT were used. Once all MFG IR data were 
fully calibrated, the GOES Precipitation Index (GPI) 
algorithm was used to convert three-hourly brightness 
temperature images to daily rainfall estimates.   GPI 
rainfall is derived from the fractional coverage of cloud-
top IR temperatures less than 235°K over a 24-hour 
period, which is then multiplied by an empirical rain rate 
constant of 3.0mm/hour (Arkin and Meisner, 1987).  
Historical daily GPI estimates were computed from 06Z-
06Z in order to be concurrent with the daily GTS gauge 
totals for merging.    
 
3.2 Two-Step Merging Methodology 
 

The two-step merging process is the essence of the 
RFE2 and ARC2 products, as it is here that all inputs 
are blended and final rainfall estimates are produced.  
As outlined in (Xie and Arkin, 1996), the first step aims 
to reduce the random error associated with the satellite 
input data.  For the RFE2, this is performed by linearly 
combining GPI, SSM/I, and AMSU-B data through a 
maximum likelihood method.  Weighting coefficients for 
each satellite input are calculated from their random 
errors which are determined by comparing the 
estimated precipitation to the actual rain gauge values 
on a daily basis.  These coefficients are inversely 
proportional to the random error of each satellite input, 
which grants greater leverage to accurate satellite 
estimates.  However, the exclusion of passive 
microwave inputs (i.e. SSM/I and AMSU-B) leads to 
only one weighting coefficient for the GPI in the ARC2.   

Because the first step contains bias from the 
original inputs, the second step is designated to remove 
the bias by blending the first-step output with the gauge 
data through Reynolds (1988) methodology.  
Specifically, the bias corrected satellite output was used 
to define the spatial distribution and extent of rainfall, 
while the gauge data was used to determine the 
magnitude of the precipitation fields.  Values of gridded 

precipitation were calculated by solving a Poisson’s 
equation, in which the forcing term and boundary 
conditions were determined from the first-step output 
and gauge data, respectively.  By doing so, the final 
rainfall estimate for any particular grid point retains a 
station’s reported value when in close proximity to that 
station, and greater reliance is placed upon the satellite 
estimate as distance increases from the station.   
 
4. RESULTS 
 

The new, operational ARC2 dataset consists of 
daily, gridded 0.1° X 0.1° rainfall estimates with a spatial 
domain of 40°S to 40°N in latitude, and 20°W to 55°E in 
longitude encompassing the African continent from 1 
January, 1983 to present and forward into the future.  
Figure 1 illustrates the spatial distribution of mean 
annual ARC2 rainfall on 0.1° grid over Africa from 1983-
2010.  Mean precipitation maximums greater than 
6mm/day are observed along the coastal Gulf of Guinea 
region, the central African Congo, and over areas 
surrounding Madagascar in the southwestern Indian 
Ocean basin.  Mean precipitation minimums less than 1 
mm/day are seen across the subtropics, which 
encompasses the Sahara desert in the northern 
hemisphere, St. Helena’s High in the southern Atlantic, 
and the semi-arid Kalahari region across continental 
southwestern Africa.  Figure 2 is a time series of ARC2 
annual cycle of daily rainfall over Africa.  Both inter-
annual and intra-seasonal variability are present and 
embedded with extreme rainfall events over the 28-year 
record. Climatologically, the annual rainfall maximum 
over Africa typically develops during the Mar-May 
season, when convection is extremely active within the 
Intertropical Convergence Zone (ITCZ) in the Gulf of 
Guinea region, the Congo rain forest region, and 
equatorial eastern Africa.  This maximum is followed by 
the annual minimum during the months of May through 
October when rainfall shifts to the northern tropical belt 
region (0° to 20°N) between the Sahara desert and 
central Africa to coincide with the West African  



 
Figure 4: Annual Cycle of mean monthly rainfall for 
comparison products.  

 
 

monsoon.  After September, the gradual increase in 
annual mean precipitation is associated with the onset 
of the rains in central Africa, southern Africa, and 
equatorial eastern Africa.  During this time, the 
distribution of rainfall is quite robust across much of 
continental southern hemisphere and the southwestern 
Indian Ocean basin until approximately April.  
 
4.1 Product Inter-Comparison  

 
In the following, we compare ARC2 with ARC1, and 

with three historical long-term precipitation datasets 
including, the GPCP version 2.1 (GPCP) combined 
precipitation dataset (Huffman et. al. 1997); (Adler et. al. 
2003); (Huffman and Bolvin, 2009), the CPC enhanced 
version (CMAP) merged analysis of precipitation (Xie 
and Arkin, 1997), and the 50-year (PREC/L) monthly 
global analysis of gauge observations (Chen et. al. 
2002).  A long-term time series depicting areal averaged 
monthly and yearly rainfall, as well as a monthly annual 
cycle of precipitation for the domain spanning 40°S to 
40°N  and 20°W to 55°E between the ARC2, ARC1, 
GPCP and CMAP products are illustrated in Figures 3a-
c.  First, in comparing the new ARC2 with the original 
ARC1, the reconstructed ARC2 shows much 
improvement over its predecessor with respect to 
maintaining homogeneity over a long-term record.   A 
large dry bias is evident in the original ARC1 monthly 
rainfall areal average from 1998-2000 that is not seen in 
the ARC2, GPCP and CMAP data.  This erroneous 
feature is likely attributed to the treatment of historical 

MFG imagery performed in the original reprocessing.  
Comparisons of mean monthly GPCP and CMAP 
rainfall exhibit impressive agreement with the ARC2 
from 1983-2009.  Figure 3 also shows that the ARC2 
closely follows GPCP and CMAP in terms of year-to-
year mean changes in precipitation, with the exception 
that the ARC2 exhibited on average slightly less rainfall.    
However, this discrepancy becomes more transparent 
when comparing the annual cycles of precipitation 
between the comparison datasets in Figure 4.   While 
the annual mean curves are very similar between all 
products, ARC2 maintains a greater decrease in mean 
rainfall after approximately June.  By October, the ARC2 
annual mean rainfall becomes more comparable with 
the GPCP and CMAP products relative to the upward 
seasonal trend and in total magnitude.   The ARC1 
annual cycle also follows this pattern, but remains drier 
overall.   

From 1983 to 2009, the long-term mean spatial 
distributions of ARC2, GPCP, CMAP and PREC/L were 
compared.  After the ARC2 data was averaged to a 2.5° 
grid, the new ARC2 agrees with the spatial means of the 
GPCP, CMAP and PREC/L products.  Despite some 
slight variations relative to the magnitude of mean 
rainfall over coastal areas in the Gulf of Guinea region 
and southwestern Indian Ocean, the overall distribution 
of the mean rainfall is largely consistent.  Another set of 
time series analyses was again performed using land 
only rainfall over Africa to compare with the gauge only 
PREC/L dataset (figures not shown).   The ARC2 does 
well in capturing the inter-annual variability of rainfall 
similar to the GPCP, CMAP and PREC/L data from 
1983-2009.  However, two key differences are 
repeatedly observed between the ARC2 and the GPCP, 
CMAP and PREC/L datasets: (1) the ARC2 appears 
consistently drier during the northern hemisphere 
summer from 1983-2009, and (2) the rainfall magnitude 
in ARC2 remains less overall every year.   Table 1 
shows the annual and seasonal mean precipitation 
values, as well as, the cross data correlation coefficients 
for all products.  ARC2 has high correlations of 0.86, 
0.86, and 0.82 with GPCP, CMAP and PREC/L 
datasets, respectively; however, a noticeable spread in 
the seasonal means is evident.  This reflects the finding 
that the June-September timeframe is when the ARC2 
disagrees with the other products the most.  To 
diagnose the source region of the disagreement, spatial

 

 
 
 

Table 1: Product inter-comparison of annual and seasonal means (left), and correlation matrix of monthly mean  
rainfall (right) from 1983-2009. Land only values denoted in parentheses.  



 
 
Figure 5a-d: Scatter plots of mean monthly rainfall (mm/day) averaged over a 2.5° unified grid between GRID and (a) 
GPCP, (b), CMAP, (c) PREC/L, and (d) ARC2 during June-September from 1997-2004.  
 
 
analyses of three-month mean seasonal rainfall were 
then examined between the ARC2, GPCP and CMAP 
data.  Spatially, the greatest differences in mean July-
September rainfall were predominately found across the 
Gulf of Guinea region.  We focus on the Gulf of Guinea 
region in the diagnosis of the summer rainfall 
discrepancy between the ARC and the other three 
datasets.       

Monthly rainfall means derived from daily gauge 
measurements at several stations in the Gulf of Guinea 
region of Africa were used to validate the rainfall 
estimate datasets.  This Gulf of Guinea gauge data 
(GRID) is independent from the GTS observations in the 
region and was obtained from various meteorological 
services in Africa.  The development of the GRID gauge 
dataset consisted of 248 rain gauges covering the Gulf 
of Guinea and lower Sahel region of West Africa.  GRID 
rainfall were computed over unified 2.5° grid and 
compared with the respective rainfall estimates for the 
32 summer months of June-September from 1997-2004. 
Scatterplot analyses and validation metrics between the 
GRID data and the ARC2, GPCP, CMAP and PREC/L 
data are illustrated in Figures 5a-d.   All products 
showed reasonable agreement with the independent 
gauge data, however validation scores determined that 
the GPCP, CMAP and PREC/L products overall 
outperformed the ARC2 rainfall estimates.  While all 
products showed a tendency to underestimate high 
rainfall amounts observed in the GRID data, the ARC2 
yielded the highest root mean squared error and 
qualitative bias during the 32 month validation period 
compared to the other products.  This validation 
suggested that the summer dry bias in the ARC2 
dataset is systematic and can possibly be linked to the 
sparse GTS gauge data that is being ingested on an 
operational basis.  An examination of the daily GTS 
reporting rates over the Gulf of Guinea region revealed 
that GTS stations in The Gambia, Guinea-Bissau, 
Guinea, Sierra Leone, and Nigeria reported only 30% of 
the time from 1983 to 2009.  During the 32-month 
validation period with the GRID data, the lowest 
reporting rates were 6% in Guinea-Bissau and Sierra 
Leone, which ranked amongst the lowest compared to 
all other countries in Africa.  A clear linkage between 

GTS reporting percentages and validation scores from 
the ARC2 and GRID data was found. Areas with low 
GTS reporting rates were collocated over areas with 
high RMSE, and areas with low correlations between 
the ARC2 and GRID data.  Conversely, areas with 
higher reporting rates over 70% further north in the 
Sahel were associated with lower RMSE, and higher 
correlations.   A histogram was generated to derive the 
relationship between GTS reporting rates and the 
corresponding absolute error seen in the validation 
between the ARC2 and GRID data.  The analysis 
showed that as GTS reports decrease throughout parts 
of the Gulf of Guinea region, the mean absolute error 
observed with the ARC2 increases.  This inverse 
relationship suggests that the unavailability of gauge 
data in the Gulf of Guinea region greatly influences the 
estimation performance in the new ARC2 dataset, and 
likely explains the observed summer dryness compared 
to the other long-term precipitation datasets.     
 
4.2 Operational Climate Monitoring  

One main advantage of the new ARC2 dataset is 
that it is readily applicable to operational climate 
monitoring.  The daily availability of the ARC2 has 
allowed the generation of numerous operational 
products which provide important insight into the 
evolution of rainfall totals and anomalies at weekly, 
dekadal, monthly, and seasonal timescales, critical to 
decision making in agriculture, water resources, and 
food security.  Many of these products are tailored to 
time scales that encompass agricultural cycles related 
to food security.   It is here that the ARC2 has proved 
most useful to planning and emergency response.  
Figure 6 shows the operational ARC2 estimates, climate 
means and anomalies that were observed during the 
Southern Africa monsoon (Oct-May) season of 2008-
2009.  Based on the anomaly distribution and time 
series analyses, heavy precipitation accumulations over 
continental southwestern Africa (700-1000mm) resulted 
in an above-average (100-200% of normal) monsoon 
season over many parts of southern Angola, northern 
Namibia and the Caprivi Strip region.   Meanwhile, many 
local areas along coastal southeastern Africa  



 
Figure 6a-c: Map of ARC2 total rainfall anomaly (mm), and observed and accumulative ARC2 rainfall time series of 
(b) Ondangwa, Nambia, and (c) Maputo, Mozambique for the southern Africa rains season from Oct 1, 2008 to May 
31, 2009.  

 
 

experienced moderate rainfall deficits (100-300mm) for 
the season.  

The daily evolution of ARC2 rainfall in Ondangwa in 
northern Namibia from October of 2008 to May of 2009 
depicted a normal start in their monsoon rains.  
However, the onset of an early season dry spell resulted 
in three consecutive weeks of no rainfall beginning from 
late December into mid-January.  This dryness occurred 
when monsoon rains were expected to be at their 
maximum after crops had been planted for the season, 
and led to a rapid weakening of moisture surpluses.  
Following this dry spell, Ondangwa and much of 
northern Namibia observed the return of the rains but 
remained anomalously wet for five consecutive weeks 
(Fig. 6b).  This heavy rainfall reportedly led to elevated 
water levels along the Okavango River Basin, resulting 
in numerous localized flooding events, displaced 
people, and damages to both crops and infrastructure in 
northern Namibia.  The ARC2 was able to detect both 
the timing and severity of anomalous dry and wet spell 
events which had negatively impacted agricultural 
activities in the region.   On the other side of the 
continent, time series analysis of ARC2 rainfall in 
Maputo, Mozambique also showed a normal start of the 
Oct-May monsoon (Fig. 6c).  However, intermittent and 
low rainfall totals since November led to large 
cumulative moisture deficits.  Although southern 
Mozambique normally experiences less frequent rains 
compared to other areas further north, the evolution of 

precipitation was considerably anomalous during the 
2008-2009 season.  Only 4 days of rain were observed 
over a three month period from February to April (a “rain 
day” defined as a day where rainfall was greater than or 
equal to 1mm).   According to the ARC2, the total 
number of rain days for this period was tied for the 
lowest compared to all years from 1983-2010. Both the 
total seasonal rainfall anomaly and poor temporal 
distribution of rainfall was expected to impede the 
development of crops, and led to a reduction of 
agricultural yields in the region by the end of the 
season.   

Combined with the RFE2, GFS forecast data, and 
other weather and agricultural products; the daily ARC2 
rainfall analyses are predominantly used to generate a 
weekly regional hazards outlook for USAID / FEWS-
NET.  This weekly product outlines, discusses and 
illustrates important weather and climate phenomena 
which are likely to impact agricultural development in 
Africa.    The regional hazard outlook is CPC’s main 
contribution to decision making in food security in 
collaboration with USAID / FEWS-NET.  It is also 
distributed to a global list of users.  

 
5. CONCLUSIONS 

This paper described a new, operational rainfall 
climatology from 1983-present.  Historical gauge and IR 
data were collected, and was reprocessed using the 



operational RFE2 algorithm at CPC.  The ARC2 data is 
from 1983-present, and is available on a daily basis.   

A comparison between the ARC1 and ARC2 data 
showed that the new ARC eliminated a large bias from 
1998-2000 which significantly improved data quality and 
long-term stability.  The improved consistency over an 
extended dataset record was the primary motivation for 
developing the ARC2 at CPC.   Comparisons between 
the ARC2 and the GPCP, CMAP and PREC/L long-term 
precipitation datasets showed that the mean spatial 
distribution, annual cycle, and inter-annual variability of 
rainfall in the ARC2 are quite consistent with the four 
datasets.  However, ARC2 exhibits a summer dry bias 
that is believed to be associated with inconsistent GTS 
reports over the Gulf of Guinea region.  A validation 
between the independent gauge and the ARC2, GPCP, 
CMAP and PREC/L products showed reasonable 
agreement with the GRID data, with a tendency to 
underestimate rainfall compared to independent gauge 
observations.  The historical evaluation of GTS input 
data over Africa showed that the daily reporting 
percentage of GTS gauges vary considerably from 
country to country, with the lowest reporting rates less 
than 30% found in countries located in the Gulf of 
Guinea region.  As such, the summer dry bias 
associated with the ARC2 is likely attributed to the 
decreased availability of in-situ measurements that 
regularly occur in this part of Africa.  This is evidenced 
in two ways: (1) time series of both the RFE2 and the 
ARC1 dataset developed by (Love et. al., 2004) exhibit 
the same summer differences between the 
GPCP/CMAP datasets, and (2) the unavailability of daily 
GTS data appears to be a regular occurrence in the Gulf 
of Guinea region where summer monsoonal rainfall 
typically reaches its maximum.   To reinforce this point, 
validation analyses yielded much better agreement with 
independent gauge data over areas where GTS 
reporting rates were significantly higher (i.e. Sahel), with 
marginally more accurate estimates than GPCP and 
CMAP (analysis not shown).  With GTS stations in the 
Sahel region reporting 80% more of the tine than the 
Gulf of Guinea region, this suggests that the availability 
of gauge data plays a pivotal role in the ARC2’s 
estimation capability, and likely explains why the ARC2 
generally yields less rainfall estimates than 
GPCP/CMAP every summer from 1983-present.   From 
these validations, we conclude that the observed 
summer disagreements are inherently linked to the 
unavailability of GTS data on a real-time basis, which is 
not an issue for GPCP and CMAP due to the delay in 
their processing and the fact that they are monthly 
datasets.   

The value of the ARC2 is its availability in real time, 
convenient not only for climate studies but also for real 
time climate monitoring.  A continuous, daily rainfall 
climatology at a high resolution will help users better 
understand the fine scale evolution and character of 
monsoonal precipitation over many remote regions of 
Africa.  ARC2 can also be used to diagnose wet and dry 
spells, onset, peak and departure of seasonal 
precipitation across Africa.  As evidenced in the case 
study over southern Africa’s monsoon season of 2008-

2009, these attributes are important for improved 
decision making parameters in food security that 
monthly datasets cannot provide.   ARC2 is already 
being used in the assessment of the impacts of rainfall 
anomalies on agriculture in Africa.  It will continue to be 
a valuable tool for water requirement analyses for local 
scale crops, drought monitoring and other various 
socioeconomic indices.  The extended record of the new 
ARC climatology provides nearly 30 years of daily 
precipitation estimates.  Using consistent and reliable 
data as inputs for the ARC2 is essential to the continuity 
and homogeneity of this long-term record.  The 
simplicity of this process minimizes the possibility of 
introducing errors and/or other bias associated with new 
rainfall inputs moving forward.  ARC2 will be of 
particular relevance and importance in the context of 
understanding climate variability and change.   
 
6. REFERENCES 

 

Adler R.F.,  Huffman G.J.,  Chang A.,  Ferraro F.,  Xie 
P.,  Janowiak J.,  Rudolf B.,  Schneider U.,  Curtis 
S.,  Bolvin D.,  Gruber A.,  Susskind J.,  Arkin P.A.,  
Nelkin E.  2003.  The Version-2 Global Precipitation 
Climatology Project (GPCP) monthly precipitation 
analysis (1979-present).  Journal of 
Hydrometeorology, 4, 1147-1167.  

Arkin P.A.,  Meisner BN.  1987. The relationship 
between large-scale convective rainfall and cold 
cloud over the western hemisphere during 1982-84.  
Monthly Weather Review, 115, 51-74.   

Arkin PA, Xie P. 1994.  The Global Precipitation 
Climatology Project: First Algorithm 
Intercomparison Project.  Bulletin of the American 
Meteorological Society, 75, 401-419.  

Chen M,  Xie P,  Janowiak J,  Arkin PA. 2002. Global 
Land Precipitation: A 50-year Analysis based on 
gauge observations.  Journal of Hydrometeorology, 
3, 249-266.   

Chen M,  Shi W,  Xie P,  Silva V,  Kousky VE,  Higgins 
WR,  Janowiak J.  2008.  Assessing objective 
techniques for gauge-based analysis of global daily 
precipitation.  Journal of Geophysical Research, 
113, D04110.   

EUMETSAT, 2000. The Meteosat Archive: Format 
Guide No.1, Basic Imagery OpenMTP format.  
Revision 2.1, Meteorological Archive and Retrieval 

Facility. Darmstadt, Germany.  
EUMETSAT, 2001. The Meteosat Archive: User 

Handbook 2.6. EUM TD 06.  Meteorological Archive 
and Retrieval Facility. Darmstadt, Germany. 
http://www.eumetsat.int/idcplg?IdcService=GET_FI
LE&dDocName=PDF_TD06_MARF&RevisionSelec
tionMethod=LatestReleased.  

EUMETSAT, 2010. Personal Communication (In an 
email response to UMARF User Support).   

EUMETSAT, 2011: Meteosat First Generation 
Calibration Coefficients and Conversion Methods.   
http://www.eumetsat.int/Home/Main/DataProducts/
Calibration/MFGCalibration/index.htm?l=en  

 

http://www.eumetsat.int/idcplg?IdcService=GET_FILE&dDocName=PDF_TD06_MARF&RevisionSelectionMethod=LatestReleased
http://www.eumetsat.int/idcplg?IdcService=GET_FILE&dDocName=PDF_TD06_MARF&RevisionSelectionMethod=LatestReleased
http://www.eumetsat.int/idcplg?IdcService=GET_FILE&dDocName=PDF_TD06_MARF&RevisionSelectionMethod=LatestReleased
http://www.eumetsat.int/Home/Main/DataProducts/Calibration/MFGCalibration/index.htm?l=en
http://www.eumetsat.int/Home/Main/DataProducts/Calibration/MFGCalibration/index.htm?l=en


Ferraro RR, Marks GF. 1995.  The Development of 
SSM/I Rain Rate Retrieval Algorithms Using 
Ground Based Radar Measurements.   Journal of 
Atmospheric and Oceanic Technology, 12, 775-
780.   

Ferraro RR, Grody NC, Weng F, Basist A. 1996. An 
Eight-Year (1987-1994) Time Series of Rainfall, 
Clouds, Water Vapor, Snow Cover, and Sea Ice 
Derived from SSM/I Measurements.  Bulletin of the 
American Meteorological Society, 77, 891-906.   

Joyce R, Arkin PA. 1997. Improving Estimates of 
Tropical and Subtropical Precipitation Using the 
GOES Precipitation Index.  Journal of Atmospheric 
and Oceanic Technology, 14, 997-1011.  

Love TB,  Kumar V,  Xie P,  Thiaw W. 2004.  A 20-year 
daily Africa precipitation climatology using satellite 
and gauge data. Proceedings of the 84

th
 AMS 

Annual Meeting, P5.4. Conference on Applied 
Meteorology.  11-15 January 2004, Seattle, WA.   

Herman A, Kumar V, Arkin PA,  Kousky JV. 1997. 
Objectively determined 10-day African rainfall 
estimates created for famine early warning.  
International Journal of Remote Sensing, 18, 2147-

2159.  
Huffman GJ,  Adler RF, Arkin PA, Chang A, Ferraro R, 

Gruber A, Janowiak J, McNab A, Rudolf B, 
Schneider U.  1997. The Global Precipitation 
Climatology Project (GPCP) combined precipitation 
dataset. Bulletin of the American Meteorological 
Society, 78, 5-20.   

Huffman GJ,  Adler RF, Bolvin DT, Guojun G, Nelkin EJ, 
Bowman KP, Hong Y, Stocker EF, Wolf DB.  2007. 
The TRMM Mulisatellite Precipitation Analysis 
(TMPA): Quasi-Global, Multiyear, Combined-
Sensor Precipitaiton Estimates at Fine Scales. 
Journal of Hydrometeorology, 8, 38-55.   

Huffman GJ,  Bolvin DT.  2009. GPCP Version 2.1 
Combined Precipitation Data Set Documentation. 
Laboratory for Atmospheres, NASA Goddard Space 
Flight Center and Science Systems and 
Applications, Inc.  

Shepard D. 1968. A two-dimensional interpolation 
function for irregularly spaced data.  23

rd
 National 

Conference of American Computing Machinery, 

Princeton, NJ.  
Reynolds RW. 1988. A real-time global sea surface 

temperature analysis.  Journal of Climate, 1, 75-86.   

Xie P, Arkin PA. 1995.  An Intercomparison of Gauge 
Observations and Satellite Estimates of Monthly 
Precipitation.  Journal of Applied Meteorology, 34, 

1143-1160.  
Xie P, Arkin PA. 1996. Analyses of global monthly 

precipitation using gauge observations, satellite 
estimates, and numerical model predictions.  
Journal of Climate, 9, 840-858.   

Xie P, Arkin PA. 1997. Global Precipitation: a 17-year 
monthly analysis based on gauge observations, 
satellite estimates, and numerical model outputs.  
Bulletin of the American Meteorological Society, 78, 

2537-2558.  
 

World Meteorological Organization: Operational 
Information Service 

http://www.wmo.int/pages/prog/www/TEM/GTS/index_e
n.html 

Zhao L, Ferraro R, Moore D.  2000.  Validation of 
NOAA-15 AMSU-A Rain Rate Algorithms. 10

th
 

Conference on Satellite Meteorology, 192-195 
 
 
  

 
 

http://www.wmo.int/pages/prog/www/TEM/GTS/index_en.html
http://www.wmo.int/pages/prog/www/TEM/GTS/index_en.html

