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ABSTRACT

This paper describes a new gridded, daily 29-yr precipitation estimation dataset centered over Africa at 0.18
spatial resolution. Called the African Rainfall Climatology, version 2 (ARC2), it is a revision of the first

version of theARC. Consistent with the operational Rainfall Estimation, version 2, algorithm (RFE2),ARC2

uses inputs from two sources: 1) 3-hourly geostationary infrared (IR) data centered over Africa from the

European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) and 2) quality-

controlled Global Telecommunication System (GTS) gauge observations reporting 24-h rainfall accumulations

over Africa. The main difference with ARC1 resides in the recalibration of all Meteosat First Generation

(MFG) IR data (1983–2005). Results show that ARC2 is a major improvement over ARC1. It is consistent with

other long-term datasets, such as the Global Precipitation Climatology Project (GPCP) and Climate Prediction

Center (CPC) Merged Analysis of Precipitation (CMAP), with correlation coefficients of 0.86 over a 27-yr

period. However, a marginal summer dry bias that occurs over West and East Africa is examined. Daily vali-

dation with independent gauge data shows RMSEs of 11.3, 13.4, and 14, respectively, for ARC2, Tropical

Rainfall Measuring Mission Multisatellite Precipitation Analysis 3B42, version 6 (3B42v6), and the CPC

morphing technique (CMORPH) for theWest African summer season. The ARC2RMSE is slightly higher for

Ethiopia than those of CMORPH and 3B42v6. Both daily and monthly validations suggested that ARC2 un-

derestimations may be attributed to the unavailability of daily GTS gauge reports in real time, and deficiencies

in the satellite estimate associated with precipitation processes over coastal and orographic areas. However,

ARC2 is expected to provide users with real-time monitoring of the daily evolution of precipitation, which is

instrumental in improved decision making in famine early warning systems.

1. Introduction

Since the advent of remote sensing, many satellite

rainfall estimate datasets have been developed to gen-

erate a more comprehensive level of global rainfall

coverage. Often, the algorithms used consist of com-

bining data from in situ rain gauge networks, and remote

sensing satellite data from both geostationary and polar-

orbiting platforms such as the Tropical Rainfall Mea-

suringMission (TRMM;Huffman et al. 2007), theGlobal

Precipitation Climatology Project (GPCP;Huffman et al.

1997), and the Climate Prediction Center (CPC) Merged

Analysis of Precipitation (CMAP; Xie and Arkin 1997).

In 1998, the CPC developed the Rainfall Estimator

(RFE; Herman et al. 1997) in response to the need for

higher-resolution operational daily rainfall estimates to

support the humanitarian aid programs of the U.S.

Agency for International Development (USAID)/

Famine Early Warning Systems Network (FEWS-NET).

TheRFEhas continued to provide an accuratemonitoring

of large-scale and regional climatic and hydrometeoro-

logical trends. It is a unique product relative to other

satellite rainfall estimators because of its high, 0.18 gridded
spatial resolution, and its ability to blend gauge and

satellite information on a near-real-time basis to pro-

vide daily (0600–0600 UTC) rainfall estimates over the

African continent. In 2001, CPC implemented an ad-

vancedRFEalgorithm (version 2.0, hereinafter referred to

as RFE2) based on the methods of Xie and Arkin (1996).
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The RFE2 exhibited improvement over its predecessor by

reducing bias, and increasing both estimation accuracy

and computational efficiency (Love et al. 2004). The input

data for theRFE2 comes from four operational sources: 1)

daily Global Telecommunications System (GTS) rain

gauge data, 2) the Geostationary Operational Environ-

mental Satellite (GOES) precipitation index (GPI) cal-

culated from cloud-top infrared (IR) temperatures on a

half-hourly basis (Arkin and Meisner 1987), 3) Special

Sensor Microwave Imager (SSM/I)-based estimates

(Ferraro and Marks 1995; Ferraro et al. 1996), and 4)

Advanced Microwave Sounding Unit (AMSU)-based

rainfall estimates (Zhao et al. 2000).

Although the RFE2 product has served as the prin-

cipal rainfall estimator for USAID/FEWS-NET opera-

tions, the brevity of the dataset record (2001–present)

does not allow users to derive meaningful rainfall

anomalies to assess the current state and evolution of the

climate over Africa. Consequently, the original Africa

Rainfall Climatology (ARC1) was developed based on

the same algorithm employed in the RFE2 algorithm

(Xie andArkin 1996). The usefulness ofARChas been in

its ability to provide daily snapshots of precipitation

anomalies over various time scales (e.g., weekly,monthly,

seasonal, etc.), which helps to facilitate operational cli-

mate monitoring at CPC, a process by which we identify

and regularly analyze anomalous precipitation trends on

a near-real-time basis. This process is critical to decision

making in agriculture, water resources, and food security

over Africa. Of the four main inputs used in the RFE2,

the ARC1 incorporated only gauge and IR data because

of their availability and consistency over time. A historical

reprocessing of gauge and IR data from 1995 to 2005 was

performed by Love et al. (2004), which resulted in a daily,

high-resolution precipitation estimate dataset from 1995

to the present. However, due to inconsistencies in the

original reprocessing that led to a large bias in the

original ARC1 data, this dataset no longer responds to

current needs for operational climate monitoring. Fur-

thermore, a higher number of years was needed to make

the ARC1 climatological record more stable. This has

prompted us to utilize a new, long-term precipitation

dataset for operational monitoring and climate analysis.

The recent acquisition of historical, recalibrated IR

imagery and daily summary gauge data has enabled our

reconstruction of the ARC climatology dataset from

1983 to the present. A new, reconstructed Africa

Rainfall Climatology (ARC2) offers a number of ad-

vantages relative to other long-term climatological

rainfall datasets that are widely used. First, high-resolu-

tion historical rainfall estimates on a real-time, daily basis

would help not only to monitor precipitation associated

with synoptic and mesoscale disturbances, but also to

undertake studies of extreme events, wet and dry spells,

the number of rain days (i.e., rainfall frequency), and the

onset of the rainfall seasons. This will further enhance our

understanding of the mechanisms associated with climate

variability on shorter time scales. Second, a 0.18 (;10 km)

spatial resolution allows users to see rainfall phenomena

on local scales that cannot be captured by coarser climate

datasets. For the FEWS-NET program, this local-scale

resolution has also been instrumental in assessing the im-

pacts of rainfall on agriculture and water resource man-

agement. Third, the ARC2 maintains the same two inputs

that remain continuous and homogeneous over time. This

historical consistency is attributed to a single algorithm,

requiring the use of calibrated IR satellite imagery with

quality-controlled gauge observations. This straightfor-

ward estimation approach differs from other satellite

products where there are often asynchronous rainfall in-

puts throughout a long-term historical dataset record.

Specifically, the utilization of two uniform inputs is ex-

pected to minimize the possibility of introducing bias as-

sociated with new satellite sensors. This homogeneity is

also expected to elucidate long-term climatic trends in

daily precipitation. Finally, because the same algorithm as

the operational RFE2 is used, ARC2 precipitation esti-

mates are also available in near–real time, allowing the

dataset to be routinely updated on a daily basis. All of

these features make the new ARC2 dataset unique.

The objective of this paper is to report on a new gridded,

daily 28-yr precipitation climatology dataset centered over

Africa. This climatology was developed from the daily

reprocessing of quality-controlled historical IR and gauge

data using the operational RFE2 algorithm. Section 2 de-

scribes the input data and their respective sources that

were selected for the new ARC2. Section 3 reports on the

calibration of historical IR imagery as well as the two-step

merging methodology as described by (Xie and Arkin

1996). Section 4 shows the results of the completedARC2,

and compares the ARC2 with the original ARC1, as well

as other long-term gauge- and satellite-derived climato-

logical precipitation datasets over a 27-yr period (1983–

2009). Independent gauge data in the Gulf of Guinea re-

gion of Africa are also presented in a validation between

the ARC2 and the other long-term precipitation datasets

from 1997 to 2004, followed by a discussion on how the

ARC2 is used in operational climatemonitoring forAfrica

at CPC. Section 5 provides a summary of our analysis re-

sults and final remarks of the new ARC2 dataset.

2. Inputs

The operational daily precipitation estimate method

(RFE2) incorporates gauge data, geostationary IR data,

and polar-orbiting microwave SSM/I and AMSU-B
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satellite data. The primary differences between the

RFE2 and ARC1–ARC2 products are 1) the ARC

method uses a subset of the inputs used in the RFE2,

that is, only gauge data and GPI estimates derived from

geostationary IR are ingested, and 2) the GPI estimates

use a 3-hourly temporal sampling of IR temperatures as

opposed to the half-hourly sampling used in the RFE2.

While passive microwave information has proven very

useful in other satellite rainfall estimation products,

continuous daily records do not exist as long as for the

IR imagery. Specifically, the earliest available SSM/I

and AMSU-B rainfall retrieval records extend back to

1987 and 1998, respectively, and despite their improve-

ments during the last several years, they are still un-

dergoing quality control and calibration checks to

ensure better estimate accuracy and homogeneity

(Semunegus et al. 2010; Vila et al. 2007). A key goal in

developing the ARC2 was to maintain the ingestion of

daily data that exhibit the least amount of heterogeneity,

whose input lengths also remain concurrent over a long-

term historical record. Both gauge and geostationary IR

data possess a higher level of availability, as well as

better spatial coverage and reliability than passive mi-

crowave data from 1983 to the present. This feature was

considered most desirable in constructing a stable and

consistent rainfall climatology dataset, despite any po-

tential loss in estimation accuracy. In a cross-validation

exercise between the RFE2 and ARC methods, Love

et al. (2004) found that both the gauge and IR inputs,

exclusively, maintained a relatively high correlation and

low bias with station gauge observations. However, it is

noted that the exclusion of microwave rainfall retrievals

tends to lead to a failure in capturing locally heavy

precipitation events (Love et al. 2004). Table 1 lists

correlation coefficients between in situ observations and

rainfall estimates using a variety of input combinations.

While a slightly lower correlation was obtained using

gauge and IR data than all four inputs, these results were

encouraging due to the smallest amount of bias yielded

over all combinations. A preliminary reprocessing of

historical IR data from 1983 to 1989 also suggested that

reducing the daily IR sampling from half-hourly to

3-hourly intervals in calculating the GPI estimates led to

no significant differences in the final rainfall estimates.

Thus, for computer efficiency, we acquired 8 three-

hourly IR images instead of the 48 half-hourly IR images

that were available.

The first input source used to develop the ARC2 was

24-h in situ accumulated rainfall observations recorded

from the GTS gauge network. GTS data over Africa

consist of a global array of stations reporting 24-h (0600–

0600 UTC) summaries of meteorological observations

such as temperature maximums and minimums, winds,

precipitation, etc. For the ARC2, we combined the ex-

isting GTS gauge database at CPC with historical daily

GTS data extending back to 1983. The historical GTS

data from 1983 to 1994 were acquired from the archives

at the University Corporation for Atmospheric Re-

search (UCAR) in daily summary file format. These

daily summary files were reformatted to match the

currently assimilated GTS format ingested by the RFE2

algorithm in order to build a daily GTS gauge record

from 1983 to the present. Out of an approximate

7500 GTS gauges that exist globally, less than 1200 sta-

tions typically report in Africa on a daily basis. This

accounts for about a 1:23 000 km2 gauge-to-area ratio

across the African continent. Despite the paucity of

GTS stations and their relatively poor distribution

across Africa, these gauge data are still ‘‘ground truth’’

and remain instrumental in constructing a daily, histor-

ical precipitation record. And while the lack of gauge

data over Africa is less beneficial when constructing

historical precipitation estimates, the near-real-time

availability of the GTS offers a desired timeliness when

generating rainfall anomaly fields on an operational

basis. Each day, GTS gauge observations are in-

terpolated onto a 0.18 3 0.18 grid over Africa using the

methods of Shepard (1968).

The second input source is full-disk, Meteosat geo-

stationary IR imagery centered at 08 longitude using the
10.5–12.5-mm-wavelength window channel. From 1983

to 2005, historical 3-hourly IR imagery forMeteosat First

Generation Satellites 2–7 (MFG-2–7) was collected from

the European Organisation for the Exploitation of

Meteorological Satellites (EUMETSAT) via ftp trans-

mission at CPC. From 2006 onward, precalibrated Me-

teosat Second Generation (MSG) IR data have been

continuously forwarded to CPC for operations on a daily

basis. The advancement of geostationary calibration

methods associated with MSG data led to nonnegligible

discrepancies between the MFG and MSG raw IR im-

agery. This warranted careful treatment of the calibra-

tion of MFG raw IR imagery to ensure uniformity with

the total IR input record from 1983 to the present. The

TABLE 1. Monthly accumulated rainfall as estimated from the

RFE2 algorithm, compared with station gauge observations in the

Sahel during December 1999 (Love et al. 2004).

Data Bias (mm day21) Correlation

GPI only 2.26 0.35

SSM/I only 20.24 0.32

AMSU only 20.15 0.09

GPI 1 SSM/I 1 AMSU 1 GTS

(RFE inputs)

20.15 0.50

GPI 1 GTS (ARC inputs) 20.04 0.48
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recalibrated MFG IR data from 1983 to 2005 are what

mainly distinguishes the new ARC2 from the previous

ARC1 dataset. Themethodology used to calibrateMFG

IR data from 1983 to 2005, as well as the conversion to

rainfall estimates (i.e., GPI), are discussed in the fol-

lowing section.

3. Methodology

The methodology used to develop ARC2 consisted of

compiling 23 yr of daily GTS gauge data and three-

hourly IR data from 1983 to 2005, similar to Love et al.

(2004) in the initial reprocessing of the ARC1 dataset

(1995–2005). In ARC2, however, much of the work was

devoted to correctly calibrating all MFG IR data from

1983 to 2005, and then perform the daily reprocessing us-

ing the operational RFE2 algorithm for this period.

From 2006 to present, the daily ARC1 rainfall data that

were generated using precalibrated MSG IR data at CPC

were simply appended to the end of ARC2 dataset. As

a result, the ARC1 and ARC2 rainfall estimates are

identical from 2006 to present. The details of the MFG

calibration methods are explained in the IR calibration

subsection, followed by a brief description of the RFE2

algorithm, which as discussed above is based on Xie and

Arkin (1996).

a. IR calibration and GPI

Open Meteosat Transition Program (OpenMTP 1.5)

files from EUMETSAT’s satellite data archive were

selected as the best available IR format to cover the

main reconstruction period from 1983 to 2005. To pre-

process the raw 3-hourly IR data, calibration coefficient

and space count values were first required to convert the

raw digital data counts to brightness temperatures for all

MFG satellites. The calibration relation is expressed as

R5CC(Cnt2 SC),

where R equals the radiance and CC, Cnt, and SC cor-

respond to the calibration coefficient, digital Meteosat

counts, and space counts, respectively. An analytic re-

lationship derived from Planck’s law was applied to

explain the relationship between radiance R and bright-

ness temperatures Tb:

Tb5B/(lnR2A) .

EUMETSAT provided semidaily CC and SC data on

a separate online source (EUMETSAT 2011a). Radiance

and brightness temperature reference tables forMeteosat-

2–7 individually were also provided (EUMETSAT 2010,

personal communication). From these reference tables,

however, a logarithmic fittingmodel was needed to fill in

the gaps between radiance and the corresponding

brightness temperature. Each model applied yielded the

least amount of error based on the reference tables for

eachMeteosat satellite. A continuous array of corrected

radiance and brightness temperature pairs allowed the

derivation of constantsA andB so that each radiance value

had a calibrated brightness temperature. Once metadata

were obtained, a georeferencing routine (EUMETSAT

2011b) was then implemented to synthesize 3-hourly

brightness temperatures on a 0.18 3 0.18 grid covering the

African continent.

Once all MFG IR data were fully calibrated, the GPI

algorithm was used to convert 3-hourly brightness

temperature images to daily rainfall estimates. GPI

rainfall is derived from the fractional coverage of cloud-

top IR temperatures less than 235 K over a 24-h period,

which is then multiplied by an empirical rain-rate con-

stant of 3.0 mm h21 (Arkin andMeisner 1987). Because

IR data are measured from geostationary satellite plat-

forms, the greatest advantage of the GPI method is that

it succeeds in capturing the large-scale spatial distribu-

tion of precipitation. While the GPI uses cloud-top

temperatures as a proxy for determining rain rate,

studies have shown that the GPI method yields good

results in the tropics and warm-season extratropics

(Arkin and Xie 1994; Xie and Arkin 1995; Joyce and

Arkin 1997). This is particularly useful considering that

deep convection is the primary driver for precipitation

over Africa. However, these studies also identify the

GPI’s weakness in estimating rainfall over land areas

during cold seasons, emphasizing the need to combine

the GPI with in situ data to increase performance. These

historical daily GPI estimates were computed from 0600

to 0600 UTC in order to be concurrent with the daily

GTS gauge totals for merging.

b. Two-step merging methodology

The two-step merging process is the essence of the

RFE2 andARC2 products, as it is here that all inputs are

blended and final rainfall estimates are produced. As

outlined in Xie and Arkin (1996), the first step aims to

reduce the random error associated with the satellite

input data. For the RFE2, this is performed by linearly

combining GPI, SSM/I, and AMSU-B data through

a maximum likelihood method. Weighting coefficients

for each satellite input source are calculated from their

random errors, which are determined by comparing the

estimated precipitation with the actual rain gauge values

on a daily basis. These coefficients are inversely pro-

portional to the random error of each satellite input,

which grants greater leverage to accurate satellite esti-

mates. However, the exclusion of passive microwave
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inputs (i.e., SSM/I and AMSU-B) leads to only one

weighting coefficient for the GPI in the ARC2.

Because the first step contains bias from the original

inputs, the second step is designated to remove the bias

by blending the first-step output with the gauge data

through the methodology of Reynolds (1988). Specifi-

cally, the bias-corrected satellite output was used to

define the spatial distribution and extent of rainfall,

while the gauge data were used to determine the mag-

nitude of the precipitation fields. Values of gridded

precipitation were calculated by solving a Poisson’s

equation, in which the forcing term and boundary con-

ditions were determined from the first-step output and

gauge data, respectively. By doing so, the final rainfall

estimate for any particular grid point retains a station’s

reported value when in close proximity to that station,

and greater reliance is placed upon the satellite estimate

as distance increases from the station. For quality con-

trol purposes, some restrictions were applied following

this two-step merging process: 1) satellite grid estimates

that exceed a 300-mm threshold are replaced by satellite-

only (nonmerged) estimates, 2) at least four 3-hourly IR

images are required to compute the daily GPI satellite

estimates, and 3) at least 200 GTS stations reporting over

Africa are required to compute the daily rain gauge

analysis. If either criterion 2 or 3 is not met, the algorithm

will not process for any given day, resulting in missing

data. These conditions were also applied in the historical

reprocessing of the ARC2.

4. Results and discussion

The new, operational ARC2 dataset consists of daily,

gridded 0.18 3 0.18 rainfall estimates with a spatial do-

main of 408S–408N and 208W–558E, encompassing the

African continent from 1 January 1983 to the present

and forward into the future. Figure 1a illustrates the

spatial distribution of mean annual ARC2 rainfall on

a 0.18 grid over Africa from 1983 to 2010. Mean pre-

cipitation maxima greater than 6 mm day21 are ob-

served along the coastal Gulf of Guinea region, the

central African Congo, and over areas surrounding

Madagascar in the southwestern Indian Ocean basin.

Mean precipitation minima of less than 1 mm day21 are

seen across the subtropics, which encompasses the Sa-

hara Desert in the Northern Hemisphere, St. Helena’s

high in the southern Atlantic Ocean, and the semiarid

Kalahari region across continental southwestern Africa.

Figure 1b displays a time series of the ARC2 daily annual

cycle. Climatologically, the annual rainfall maximum

over Africa typically develops during March–May, when

convection is extremely active within the intertropical

convergence zone (ITCZ) in the Gulf of Guinea region,

the Congo rain forest region, and equatorial eastern

Africa. This maximum is followed by the annual mini-

mum during the months of May–October when rainfall

shifts to the northern tropical belt region (08–208N) be-

tween the Sahara Desert and central Africa to coincide

with the West African monsoon. After September, the

gradual increase in annual mean precipitation is asso-

ciated with the onset of the rains in central Africa,

southern Africa, and equatorial eastern Africa. During

this time, the distribution of rainfall is quite robust

across much of the continental Southern Hemisphere

and the southwestern Indian Ocean basin until approx-

imately April.

a. Intercomparison of long-term monthly products

In the following, we compare ARC2 with ARC1, and

with three historical long-term precipitation datasets

including version 2.1 of the GPCP combined pre-

cipitation dataset (Huffman et al. 1997; Adler et al. 2003;

Huffman andBolvin 2009), CMAP (Xie andArkin 1997),

FIG. 1. (a) Spatial mean of annual ARC2 rainfall (mm day21) at

0.18 resolution over Africa from 1983 to 2010 and (b) daily annual

cycle of ARC2 rainfall (mm day21) over the African domain

(408S–408N and 208W–558E) from 1983 to 2010.

592 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 52



and the 50-yr monthly global analysis of gauge obser-

vations [NOAA Precipitation Reconstruction over Land

(PREC/L); Chen et al. 2002]. The latter three datasets

were chosen because of their historical record length,

a much higher number of stations used in the gauge inputs

[Community Atmosphere Model, Global Historical Cli-

matology Network, and Global Precipitation Climatology

Centre (GPCC)], and the fact they have been widely used

in research. For example, over 2000 stations are used on

average in the GPCC dataset (Rudolf et al. 1994) over the

African continent, although there is a significant reduction

in this number over the last 10 yr. With the exception of

ARC1 covering 1995–present, all comparative analyses

consisted of monthly precipitation means covering

408S–408N and 208W–558E from 1983 to 2009. Daily

ARC1 and ARC2 data were averaged into monthly

values due to the unavailability of the long-term datasets

on a daily time scale. Comparisons with the PREC/L

gauge-based analysis used an ocean mask to assess land-

only precipitation across the African continent.

A long-term time series depicting areal-averaged

mean yearly rainfall, as well as a monthly annual cycle of

precipitation for the domain spanning 408S–408N and

208W–558E between the ARC2, ARC1, GPCP, and

CMAP products are illustrated in Figs. 2a,b. First, in

comparing the new ARC2 with the original ARC1, the

reconstructed ARC2 shows much improvement over its

predecessor with respect to maintaining homogeneity

over a long-term record. A large dry bias is evident in

the original ARC1 monthly rainfall areal average from

1998 to 2000 that is not seen in the ARC2, GPCP, and

CMAP data. This erroneous feature is likely attributed

to the treatment of historical MFG imagery performed

in the reprocessing of ARC1. Comparisons of mean

annual GPCP and CMAP rainfall exhibit impressive

agreement with the ARC2 from 1983 to 2009. Figure 2b

also shows that the ARC2 closely follows GPCP and

CMAP in terms of year-to-year mean changes in pre-

cipitation, with the exception that the ARC2 exhibited

on average slightly less rainfall. This dryness becomes

more evident when comparing the annual cycle of pre-

cipitation between the datasets in Fig. 2a. While the

annual mean curves are very similar between all prod-

ucts, ARC2 maintains a greater decrease in mean rain-

fall after approximately June. By October, the ARC2

annual mean rainfall becomes more comparable with

the GPCP and CMAP products relative to the upward

seasonal trend and in total magnitude. The ARC1 an-

nual cycle also follows this pattern, but remains drier

overall. A second set of time series analyses was per-

formed again using land-only rainfall over Africa to

comparewith the gauge-only PREC/L dataset (Figs. 2c,d).

The ARC2 does well in capturing the interannual

variability of rainfall similar to the GPCP, CMAP, and

PREC/L data from 1983 to 2009. However, two key

differences are again observed between the ARC2 and

the GPCP, CMAP, and PREC/L datasets: 1) the ARC2

appears consistently drier during the Northern Hemi-

sphere summer from 1983 to 2009 and 2) the rainfall

magnitude in ARC2 remains consistently less relative

to all other products on a year-to-year basis.

From 1983 to 2009, the long-term mean spatial dis-

tributions of ARC2, GPCP, CMAP, and PREC/L are

compared and illustrated in Figs. 3a–d. After the ARC2

data were averaged onto a 2.58 grid, they agree with the

spatial means of the GPCP, CMAP, and PREC/L

products. Despite some slight variations relative to the

magnitude ofmean rainfall over coastal areas in theGulf

of Guinea region and southwestern Indian Ocean, the

overall distribution of the mean rainfall is largely consis-

tent over Africa. Table 2 shows the annual and seasonal

mean precipitation values, as well as the cross data cor-

relation coefficients for all products (values in parentheses

denote land-only rainfall). ARC2 maintains high corre-

lations of 0.86, 0.86, and 0.82 with the GPCP, CMAP, and

PREC/L datasets, respectively. However, a noticeable

spread in the seasonal means is evident. This reflects the

finding that the June–September time frame is when the

ARC2 disagrees with the other products the most.

To diagnose the source region of the disagreement,

spatial analyses of 3-month mean seasonal rainfall were

then examined between the ARC2, GPCP, and CMAP

data. Figures 4a,b show that the greatest differences in

mean July–September rainfall occur across the Gulf of

Guinea region in Ethiopia and along the eastern coast of

Madagascar. Because rainfall is at a minimum over

Madagascar during the Northern Hemisphere sum-

mertime, we focus on validating rainfall estimates over

the Gulf of Guinea region and over Ethiopia in order to

diagnose the summer season discrepancy. In East Af-

rica, the sparse distribution of GTS gauges especially in

the higher elevations of Ethiopia has a negative impact

on the performance of merged rainfall estimate prod-

ucts. In addition, it is noted that underestimations in

these two regions have been reported in previous liter-

ature (Dinku et al. 2007; Herman et al. 1997). Specifi-

cally, the fixed brightness temperature threshold used

in the GPI generally fails to capture warm-cloud pre-

cipitation processes over coastal and orographic regions

of Africa. However, because this effect may be miti-

gated by local calibration associated with GTS data, we

also focus on the availability of gauge reports.

b. Monthly validation and GTS reporting

Monthly rainfall means derived from monthly gauge

measurements at several stations in the Gulf of Guinea
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region of Africa were also used to validate the rainfall

estimate datasets. These Gulf of Guinea gauge data are

independent from the GTS observations in the region

and were obtained from various meteorological services

in Africa. They are hereinafter referred to as Guinean

Rainfall Independent Data (GRID). The development

of the GRID gauge dataset featured 248 rain gauges

covering the Gulf of Guinea and the lower Sahel region

of West Africa. GRID rainfall were computed over

a unified 2.58 grid and compared with the respective

rainfall estimates for the 32 summer months of June–

September from 1997 to 2004. This 8-yr period was used

because it was the largest overlapping period available

for validation. The goal of performing this monthly

validation was to determine if summer disagreements

between the ARC2 and GPCP, CMAP, and PREC/L

were either one of the following: 1) an artifact that was

introduced during the reprocessing of historical ARC2

or 2) a systematic dry bias in the ARC2 dataset.

Scatterplot analyses and validation metrics between

the GRID data and the ARC2, GPCP, CMAP, and

PREC/L data are illustrated in Figs. 5a–d. All products

showed reasonable agreement with the independent

gauge data; however, validation scores determined that

the GPCP, CMAP, and PREC/L products overall out-

performed the ARC2 rainfall estimates. While all

products showed a tendency to underestimate high

rainfall amounts observed in the GRID data, the ARC2

yielded the highest root-mean-square error (RMSE)

and qualitative bias (perfect bias score 5 1) during

the 32-month validation period relative to the other

products. This validation suggested that the summer dry

bias in the ARC2 dataset is systematic over the 8-yr

period.

Remarkable variations in the GTS daily reporting

rates across the African continent from 1983 to 2009

were found. A closer look at the daily GTS reporting

rates over the Gulf of Guinea region revealed that GTS

stations in The Gambia, Guinea-Bissau, Guinea, Sierra

Leone, and Nigeria reported only 30% of the time from

1983 to 2009. Throughout East Africa, GTS reporting

rates were generally higher, with Ethiopia ranging

FIG. 2. Time series of (a) monthly annual cycle of rainfall, (b) annual means of areal-averaged rainfall, (c) monthly

annual cycle of land-only rainfall, and (d) annual means of areal-averaged land-only rainfall for ARC2, ARC1,

GPCP, CMAP, and PREC/L over Africa (408S–408N and 208W–558E) from 1983 to 2009.
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between 40% and 70% of the time from 1983 to 2009.

During the 32-month validation period, the lowest re-

porting rates were 6% inGuinea-Bissau and Sierra Leone,

which ranked among the lowest relative to all other

countries in Africa. The linkage between GTS reporting

percentages and validation scores associated with the

ARC2 and GRID data are illustrated in Figs. 6a–c. Areas

in the lower Gulf of Guinea region with low GTS re-

porting rates are clearly collocated over areas with high

RMSE, and areas with low correlations between the

ARC2 and GRID data. Conversely, areas with higher

reporting rates over 70% farther north in the Sahel are

associated with lower RMSEs, and higher correlations.

A histogram was generated to derive the relationship

between GTS reporting rates and the corresponding

absolute error seen in the validation between the ARC2

and GRID data. Figure 7 shows that as GTS reports

decrease throughout parts of the Gulf of Guinea region,

the mean absolute error observed with the ARC2 in-

creases. This inverse relationship suggests that the un-

availability of gauge data in the Gulf of Guinea region

may play a major role in the estimation performance

in the new ARC2 dataset, and may also explain the

observed summer dryness relative to the other long-

term precipitation datasets on a monthly scale.

c. Daily validation

In the following we compare daily ARC2 with other

daily satellite precipitation products that resemble more

closely the spatial and temporal resolutions of the

ARC2. We have selected the TRMM Multisatellite

Precipitation Analysis 3B42, version 6 (3B42v6), rainfall

FIG. 3. Spatial mean of annual (a) ARC2, (b) GPCP, (c) CMAP, and (d) PREC/L rainfall (mm day21) at 2.58
resolution over Africa from 1983 to 2009.
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estimates (Huffman et al. 2007, 2010) and the CPC’s

morphing technique (CMORPH) rainfall estimator

(Joyce et al. 2004) from 2003 to 2010. Both of these

products differ from the ARC2, as they utilize esti-

mation techniques that ingest IR and microwave data

on an intradaily basis. Specifically, the 3B42v6 uses

calibrated microwave data to generate IR precipitation

estimates while incorporating non-real-time gauge

adjustments. Precipitation estimates from CMORPH

are solely microwave based but use motion fields from

IR data to interpolate between rainfall fields and do not

include any gauge input. These 3-hourly products are

quasi global at 0.258 resolution, and were summed to

daily totals to match the ARC2’s 0600–0600 UTC 24-h

estimate period. Similar to the monthly validation in the

previous section, our methods consisted of the pairing

between gauge data on a daily, unified 0.258 daily reso-

lution grid and the respective daily pixels for all three

high-resolution satellite rainfall products. We first

present daily validation results using GTS gauge data

during 2010 followed by validation results using non-

GTS gauge measurements from West Africa and

Ethiopia. Independent daily gauge data collected from

133 stations in the Sahel region of West Africa were

acquired for the summer months (June–September)

from 2008 to 2010 (366 days), and from 30 stations in

Ethiopia from 2003 to 2007 (610 days). These daily in-

dependent gauge datasets are hereinafter referred to

as WAGA and EGA, respectively.

Using GTS gauge data in 2010, daily RMSE and

correlation scores were computed for each product, and

were evaluated over a seasonal and annual basis, as well

as over the continent and common regions of Africa.

The pairing of RMSE and correlation scores for each

scenario is illustrated in the form of a scatterplot. From

Fig. 8, ARC2 clearly shows higher validation scores than

3B42v6 and CMORPH for all regions and time scales.

The 3B42v6 and CMORPH perform the poorest over

West Africa during the April–June (AMJ) and July–

September (JAS) seasons, with RMSE scores nearly

twice that observed with ARC2.

For daily validation using non-GTS gauge measure-

ments, the ARC2 validates reasonably well over the

Sahel region ofWest Africa. As illustrated in Figs. 9a–d,

the ARC2 yielded the lowest bias and RMSE scores

and second highest correlation (0.46) relative to the

3B42v6 and CMORPH products. Although CMORPH

exhibits the highest correlation when validated against

WAGA data, scatterplot analysis in Fig. 9d shows that

CMORPH generally overestimates precipitation in

West Africa, and possesses the highest bias and RMSE

scores. These validations over West Africa are also

consistent with the findings of Jobard et al. (2011),

where it is also noted that the GPI, by itself, has out-

performed 3B42v6 and CMORPH rainfall estimates

over the West African monsoon region. In Ethiopia,

however, validation results for the ARC2 are not as

impressive. As seen from Figs. 9f–h, CMORPH showed

the highest correlations and lowest bias, whereas the

ARC2 yielded the lowest correlation (0.31) and highest

RMSE score from 2003 to 2007. The ARC2’s tendency

to underestimate rainfall is enhanced when topograph-

ical data are used in the validation. After masking sta-

tions with elevations below 2500 m in the EGA dataset,

validation results for the ARC2 showed a consider-

able increase in the bias scores, whereas 3B42v6 and

CMORPH bias scores remained the approximately

the same. These results suggest some sensitivity in the

estimation performance of the ARC2 over complex

topography.

TABLE 2. Product intercomparison of (top) annual and seasonal means and (bottom) product correlation matrix of monthly mean

rainfall (n = 324) from 1983 to 2009. Land-only values are denoted in parentheses.

Annual DJF MAM JJA SON

ARC2 1.57 (1.55) 1.77 (1.85) 1.88 (1.71) 1.18 (1.15) 1.45 (1.50)

ARC1 (1995–2009) 1.47 (1.34) 1.70 (1.54) 1.77 (1.38) 1.10 (1.11) 1.32 (1.35)

RFE2 (2001–09) 1.51 (1.44) 1.70 (1.62) 1.73 (1.42) 1.20 (1.25) 1.40 (1.48)

GPCP 1.64 (1.72) 1.78 (1.93) 1.79 (1.73) 1.44 (1.50) 1.57 (1.72)

CMAP 1.63 (1.62) 1.76 (1.80) 1.81 (1.63) 1.44 (1.47) 1.50 (1.59)

PREC/L (1.68) (1.86) (1.71) (1.50) (1.66)

ARC2 ARC1 (1995–2009) RFE (2001–09) GPCP CMAP PREC/L

ARC2 — 0.83 (0.78) 0.97 (0.84) 0.86 (0.85) 0.86 (0.79) (0.82)

ARC1 (1995–2009) 0.83 (0.78) — 0.95 (0.81) 0.73 (0.71) 0.74 (0.71) (0.71)

RFE2 (2001–09) 0.97 (0.84) 0.95 (0.81) — 0.90 (0.90) 0.90 (0.90) (0.87)

GPCP 0.86 (0.85) 0.73 (0.71) 0.90 (0.90) — 0.94 (0.93) (0.91)

CMAP 0.86 (0.79) 0.74 (0.71) 0.90 0.94 (0.93) — (0.89)

PREC/L (0.82) (0.71) (0.87) (0.91) (0.89) —
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From these validation results over Ethiopia, we can

make the following observations: 1) CMORPH and

3B42v6 outperform the ARC2 in this region, despite the

fact that these products do not ingest any real-time

gauge data for local calibration in the final rainfall esti-

mates, and 2) GTS gauge reporting rates in Ethiopia are

much higher than for the Gulf of Guinea region. These

facts suggest that lower precipitation over Ethiopia is

likely the result of the RFE2 and ARC2’s inability to

adequately capture warm-cloud precipitation processes

over complex topography, as supported by the findings

of Dinku et al. (2007). Although this would imply that

the ARC2 estimates can be improved, examinations of

attributing differences between various precipitation

processes would require experimentation and modifi-

cation of the RFE–ARC algorithm. This work may be

performed in the future but is outside the scope of this

paper.

5. Operational climate monitoring

One main advantage of the new ARC2 dataset is that

it is readily applicable to operational climate monitor-

ing. The daily availability of the ARC2 has allowed the

generation of numerous products that provide impor-

tant insight into the evolution of rainfall totals and

anomalies at weekly, dekadal (10 day), monthly, and

seasonal time scales, all of which are critical to decision

making in agriculture, water resources, and food secu-

rity.ManyARC2 anomaly-based products are tailored to

time scales that encompass agricultural cycles related to

food security, including its hydrological aspects. It is here

that the ARC2 has proved most useful in planning for

emergency response.

The following case studies in the greater Horn of

Africa and southernAfrica show how theARC2 is used in

operational climate monitoring for food security. For

comparisons on a daily operational basis, we have in-

cluded daily gaugemeasurements (GTS and independent)

and TRMM 3B42RT (real time) rainfall estimates

(Huffman et al. 2010) due to their availability in opera-

tional monitoring, and for 3B42v6 climatological data

(1998–present), whichmay be used to generate anomalies.

Although CMORPH is considered as an operational

product, its record length was considered insufficient

(2003–present) to generate anomaly fields and was not

used. Validation with gauge data consisted of a point to

the closest pixel analysis. For monthly comparisons, we

again used the GPCP and CMAP products.

The first regional case study examines the East Afri-

can drought of 2010–11, which has been characterized by

the international community as the ‘‘worst in the last 60

years,’’ triggering famine and resulting in the displace-

ment of thousands of people. The onset of the drought

began after a failed October–December (OND) rainfall

season in 2010 throughout Somalia, Ethiopia, and

Kenya, followed by very poor March–May (belg) 2011

rains in the region. Figures 10a,b illustrate the spatial

distribution of ARC2 and 3B42RT seasonal rainfall

anomalies for OND. At the end of 2010, both products

showed reasonable spatial agreement in East Africa,

with the greatest precipitation deficits (100–300 mm)

concentrated across the pastoral areas of eastern Kenya

and southern Somalia. Time series analyses depicting

the evolution of daily rainfall in Mandera, Kenya, be-

tween ARC2 and 3B42RT (Figs. 10c,d) showed that this

FIG. 4. Maps of differenced mean seasonal (JAS) rainfall

(mm day21) of (a) ARC2 2GPCP and (b) ARC2 2 CMAP over

Africa (408S–408N and 208W–558E) from 1983 to 2009.
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area received only 2 days of rainfall in the amount of

18 mm for the entire season. This meager amount ac-

counted for approximately 15% of the average rainfall

according to both the ARC2 and 3B42 daily climatol-

ogies for OND. Comparison with GTS gauge measure-

ments in Mandera showed a higher amount, with 3 days

of rain totaling 54 mm, which equated to ;40% of the

OND gauge average. Based on this, both operational

products underestimated the frequency and magnitude

of the seasonal rains in late 2010; however, both were

able to capture the total absence of rainfall from mid-

November to December that reportedly led to livestock

losses and depleted water resources in eastern Kenya

according to FEWS-NET. Farther west in the major

maize-producing area of Nyahururu, Kenya, both the

ARC2 and 3B42RT differ with respect the observed and

climatological rainfall totals, as well as the evolution of

seasonal rainfall (Figs. 10e,f). At the start of the season,

the 3B42RT depicted favorably above-average rainfall

throughout October, followed by periods of suppressed

rainfall leading to moderate seasonal rainfall deficits. A

different seasonal evolution pattern was observed with

ARC2, which showed a late start to the season, followed

by light and inconsistent precipitation throughout the

remainder of the season. Validation with an independent

(non-GTS) gauge in Nyahururu showed better agree-

ment with ARC2 than 3B42RT, with total OND pre-

cipitation amounts of 79, 51, and 155 mm for the gauge,

ARC2, and 3B42RT, respectively. The 3B42RT dataset

had overestimated October rainfall by nearly twice as

much, with a considerably higher local climatological

mean for OND.

FIG. 5. Scatterplots of mean dekadal rainfall (mm day21) averaged over a 2.58 unified grid between GRID and

(a) GPCP, (b) CMAP, (c) PREC/L, and (d) ARC2 during JAS from 1997 to 2004.
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The second regional study examines the southern

African monsoon season of 2008–09. Based on the spa-

tial distribution of ARC2 and 3B42RT anomalies in

Figs. 11a,b, heavy precipitation accumulations over

continental southwestern Africa resulted in an above-

average (100%–200% of normal) monsoon season over

many rain-fed agricultural parts of southern Angola,

northern Namibia, and the Caprivi Strip region. Daily

evolutions of ARC2 and 3B42RT seasonal rainfall in

Ondangwa innorthernNamibia exhibited great agreement

from October 2008 to May 2009 (Figs. 11c,d). Both de-

picted a normal start in their monsoon rains followed by

the onset of an early season dry spell with three con-

secutive weeks of no rainfall beginning in lateDecember

into mid-January. This dryness occurred when monsoon

rains were expected to be at their maximum after crops

had been planted for the season, and led to a rapid

weakening of moisture surpluses. After this dry spell,

Ondangwa observed the return of the heavy, persistent

rainfall resulting in anomalously wet conditions for five

consecutive weeks. The heavy rainfall reportedly led to

elevated water levels along the Okavango River basin,

resulting in numerous localized flooding events, displaced

people, and damage to both crops and infrastructure in

northern Namibia. Validation with local gauge data were

consistent with the timing and severity of anomalous dry

and wet spell events, which had negatively impacted ag-

ricultural activities in the region.

On the other side of the continent, much of south-

eastern Africa experienced more nearly neutral condi-

tions for the season. In Blantyre, Malawi, time series

analyses of both ARC2 and 3B42RT rainfall (Figs. 11e,f)

showed a normal start of the rainy season. During the

middle of the season, intermittent and low rainfall totals

throughout February and early March resulted in

anomalous dryness in southern Malawi, as there were

concerns over developing moisture stress for crops. By

April, however, there is a noticeable divergence in the

products, with increased rainfall returning in May for

3B42RT, and little rainfall estimated by ARC2. As

a result, above-average conditions were depicted by

3B42RT, and below-average conditions were depicted

byARC2 for the entire season. Although the departures

from the seasonal average were marginal between both

products, the total observed and accumulative rainfall

amounts were quite different. Validation with local

gauge data in Blantyre showed better correspondence

with ARC2 in terms of seasonal totals, climatology, and

in capturing the number of high rainfall days over the

course of the season. The 3B42RT dataset had over-

estimated both the seasonal rainfall total by nearly

200 mm and had a wetter climatology by over 100 mm

relative to the local gauge data.

Extending from the southern Africa case study, Fig. 12

illustrates the evolution of ARC2 rainfall anomalies

during the peak of the 2008–09 southern Africa mon-

soon [i.e., December–February (DJF)] on a dekadal

time scale. In mid-December 2008, widespread rainfall

surpluses developed over the Zambezi River basin, en-

compassing southern Zambia, northern Zimbabwe, and

centralMozambique. Typically, the persistence of heavy

rainfall in this region results in flooding along the

Zambezi River, displacing many local populations.

FIG. 6. (a) Analysis of GTS reporting rate percentages computed

over a 2.58 unified grid compared with the GRID spatial distribu-

tion of (b) RMSE and (c) correlation statistics between ARC2 and

GRID during JAS from 1997 to 2004.
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However, drier than average rainfall in late January

through the end of February helped mitigate flood

concerns for many areas along the Zambezi River.

In comparing ARC2 with GPCP and CMAP from

December to February, all three anomaly products

showed excellent agreement on monthly and seasonal

time scales (Fig. 13). In February 2009, a rainfall

anomaly dipole was observed between all datasets, with

positive rainfall anomalies throughout the southwest,

and negative rainfall anomalies encompassing much

of the southeastern portion of the continent. The nega-

tive anomalies in the southeast during February offset

the positive anomalies that were observed earlier in

December, resulting in large rainfall surpluses through-

out southern Angola and northern Namibia for the entire

December–February period.

Combined with RFE2, GFS forecast data, and other

weather and agricultural products, the daily ARC2

rainfall analyses are predominantly used to generate

a weekly regional hazards outlook for USAID/FEWS-

NET. This weekly product outlines, discusses, and il-

lustrates important weather and climate phenomena,

which are likely to impact agricultural development in

Africa. The regional hazard outlook is CPC’s main

contribution to decision making in food security in col-

laboration with USAID/FEWS-NET. It is also distrib-

uted to a global list of users.

6. Conclusions

This paper describes a new, operational rainfall cli-

matology from 1983 to the present. Historical gauge and

IR data were collected and were reprocessed using the

operational RFE2 algorithm at CPC. The ARC2 data

are from 1983 to the present and are available on a daily

basis.

A comparison between ARC1 and ARC2 data

showed that the new ARC eliminated a large bias from

1998 to 2000, which significantly improved data quality

and long-term stability. The improved consistency over

an extended dataset record was the primary motivation

for developing ARC2 at CPC. Comparisons between

the ARC2 and the GPCP, CMAP, and PREC/L long-

term monthly precipitation datasets showed that the

mean spatial distribution, annual cycle, and interannual

variability of rainfall in ARC2 are quite consistent with

the four datasets.However, ARC2 exhibits a dry bias that

is consistently seen during the Northern Hemisphere

summer. The monthly validation between the indepe-

ndent (non GTS) gauge and the ARC2, GPCP, CMAP,

and PREC/L products shows reasonable agreement with

theGRIDdata, with a tendency to underestimate rainfall

relative to independent gauge observations with a bias

score of 0.76. The historical evaluation of GTS input data

over Africa shows that the daily reporting percentage of

GTS gauges varies considerably from country to country,

with the lowest reporting rates of less than 30% found in

countries located in the Gulf of Guinea region. This

FIG. 7. Histogram of binned GTS reporting percentages and the

corresponding areas of mean absolute error between ARC2 and

GRID during JAS from 1997 to 2004.

FIG. 8. Scatterplot of daily correlation (x axis) and RMSE

(y axis) scores between 2010 GTS gauge measurements and ARC2

(red), 3B42v6 (green), and CMORPH (blue) rainfall estimates,

where A 5 all Africa (408S–408N, 208W–558E), E 5 East Africa

(128S–188N, 268–528E), W 5 West Africa (38–188N, 188W–208E),
S 5 southern Africa (358–58S, 108–528E), and 1 5 JFM (90 days),

2 5 AMJ (91 days), 3 5 JAS (92 days), 4 5 OND (92 days), and

5 5 entire year (365 days).

600 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 52



FIG. 9. Map of (a) WAGA gauge distribution, and daily validation scatterplots for (b) ARC2, (c) 3B42v6,

(d) CMORPH, and (e) map of the EGA gauge distribution, as well as daily validation scatterplots for (f) ARC2,

(g) 3B42v6, and (h) CMORPH.
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suggests that the absence of daily gauge data in the Gulf

of Guinea region may explain the reoccurring summer

dry bias observed in the newARC2 dataset, as the lack of

in situ measurements would impede any local adjustment

of the satellite estimate. The unavailability of gauge data

is not an issue for GPCP and CMAP due to the delay in

their processing and the fact that they are monthly

datasets.

Daily validation results suggest that there are

strengths and weaknesses associated with the daily

rainfall estimation products over various regions and

seasons of Africa. Using independent gauges from the

FIG. 10. Map of (a) ARC2 rainfall anomaly (mm), (b) 3B42RT total rainfall anomaly (mm), and observed and

accumulative (c) ARC2 and (d) 3B42RT rainfall time series from Mandera, and (e) ARC2 and (f) 3B42RT rainfall

time series from Nyahururu, for the East African rainy season (1 Oct–31 Dec 2010).
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West African Sahel (WAGA), it has been shown that

ARC2 outperforms the 3B42v6 and CMORPH daily

rainfall estimators. ARC2 yields the lowest amount of

bias and RMSE (1 and 11.3), as the 3B42v6 and

CMORPH products show a predominant tendency to

overestimate rainfall in this region with bias scores of

1.06 and 1.46, respectively, and RMSE scores of 13.43

and 14.08, respectively. With GTS stations in the Sahel

region reporting 80% more of the time than the Gulf of

Guinea region, this also reinforces the point that the

availability of gauge data may play a pivotal role in the

ARC2’s estimation performance. However, validation

results over Ethiopia showed that ARC2 tends to un-

derestimate more precipitation than the 3B42v6 and

FIG. 11. Map of (a) ARC2 rainfall anomaly (mm), (b) 3B42RT total rainfall anomaly (mm), and observed and

accumulative (c) ARC2, as well as (d) 3B42RT rainfall time series from Ondangwa, and (e) ARC2 and (f) 3B42RT

rainfall time series of Blantyre, for the southern Africa rainy season (1 Oct 2008–31 May 2009).
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CMORPH products with the highest bias and RMSE

score of 0.55 and 10.65, respectively. Bias and error

scores were also higher when elevation was taken into

consideration. Unlike ARC2, 3B42v6 uses microwave

data to calibrate the IR estimates, while CMORPHdoes

not use IR rainfall retrievals in its final rainfall estimates.

Neither 3B42v6 nor CMORPH uses real-time gauge

adjustments; this suggests that underestimations in

ARC2 over Ethiopia are likely the result of the constant

brightness temperature threshold used in the IR rainfall

retrieval in the RFE–ARC2 algorithm (i.e., GPI). From

these validations, we conclude that the observed sum-

mer dry biases are associated with the unavailability of

GTS data and deficiencies in the IR-based estimates to

capture warm-cloud precipitation over coastal and oro-

graphic areas. These findings have been reported pre-

viously in the literature (Dinku et al. 2007; Herman et al.

1997).

Despite these shortcomings, the value of ARC2 is in

its availability in real time, which makes it convenient

not only for climate studies but also for real-time climate

monitoring. The fact that it is continuous, with a daily

rainfall climatology at a high resolution, will help users

better understand the finescale evolution and character

of monsoonal precipitation overmany remote regions of

Africa. As evidenced in the case studies discussed in

section 5, ARC2 can be used to diagnose wet and dry

spells and capture extreme rainfall events, as well as the

FIG. 12. Spatial analyses of dekadal ARC2 anomalies and their evolution from (top left) December 2008

to (bottom right) February 2009 over southern Africa.

604 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 52



onset, peak, and departure of seasonal precipitation

across Africa. These attributes are important for im-

proved decision-making parameters related to food se-

curity that monthly and other daily datasets cannot

provide.

ARC2 is already being used in the assessment of the

impacts of rainfall anomalies on agriculture in Africa. It

will continue to be a valuable tool for water requirement

analyses for local-scale crops, drought monitoring, and

other various socioeconomic indices. The extended

FIG. 13. Spatial analyses of (top three rows)monthly and (bottom row) seasonal (left) ARC2,

(middle) GPCP, and (right) CMAP anomalies (mm day21) from December 2008 to February

2009 over southern Africa.
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record of the new ARC climatology provides nearly

30 yr of daily precipitation estimates. Using consistent

and reliable data as inputs for the ARC2 is essential to

the continuity and homogeneity of this long-term re-

cord. The simplicity of this process minimizes the pos-

sibility of introducing errors and/or other biases

associated with new rainfall inputs moving forward.

ARC2 will be of particular relevance and importance

within the context of understanding climate variability

and change.
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