A short tutorial on GrADS - Grid Analysis and Display System

Table of Contents

1. THE SOFTWARE 4
1.1 What is GrADS? 4
1.2 Downloading GrADS 4
1.3 Support and Discussion List 4
2 BACKGROUND AND BASIC COMMANDS 4
2.1 Installing GrADS 4
2.2 The data and descriptor (.ctl) files 5
2.3 Running GrADS (initiation session) 6
2.4 The "set" command 10
2.5 Manipulating Dimensions 10
2.6 Other Basic Command 11
2.7 Examples and Basic Exercises 12
3 PLOTING GRAPHICS 14
3.1 Graphics types 14
3.2 Projections maps 16
3.3 Inserting Titles, Texts, Forms and Symbols 17
3.4 Controlling Graphical Options 18
3.5 Page Control. 23
3.6 Application examples and exercises 24
4 GENERATING GRAPHICS OUTPUT FILES 26
4.1 GrADS metafile (.gmf) archives 26
4.2 GrADS Metafile Viewer for Windows 26
4.3 gxtran application 26
4.4 Applications gxps and gxeps 27
4.5 printim and wi commands 27
4.6 Application examples and exercises 28
5 VARIABLES, EXPRESSIONS AND FUNCTIONS 30
5.1 Names of Variables 30
5.2 Defining New Variables: define command 31
5.3 Expressions 31
5.4 Functions 31
5.5 Application examples and exercises 36
6 SCRIPTING LANGUAGE (script.gs) 37
6.1 Basic Concepts 37
6.2 Language Elements in Scripts 40
6.3 Application examples and exercises 45
7 ADDITIONAL TOPICS 46
7.1 The Template Option 46
7.2 Generating binary files with fwrite 46
7.3 Creating a Mask 46

Have fun using GrADS in your weather research and operation tasks!!!

1. THE SOFTWARE

1.1 What is GrADS?

GrADS - Grid Analysis and Display System- is interactive software used in the tasks of accessing, manipulation and visualization of geophysical data. GrADS works with data sets in binary, GRIB, NetCDF or HDF-SDS formats, in which the variables can have up to 5 dimensions (longitude, latitude, vertical levels, time, and ensemble) as specified by a descriptor (control) file. Currently, GrADS is one of the most widely used software by the operational and meteorological research comunities around the world. This software was originally developed by researcher Brian Doty at COLA (http://cola.gmu.edu/cola.php) within in the late 1980s. Its distribution is totally free through its official website: http://cola.gmu.edu/grads/grads.php. Data matrices may contain one or more variables arranged in a regular grid, either nonlinear, or Gaussian, or at station or variable resolution points. Variables can be plotted and combined using various types of graphics, which can be recorded in PostScript format or various graphic image formats (PNG, GIF, JPEG, etc). GrADS has a scripting language with which it is possible to develop sophisticated analyzes, derived variable calculations and automatic visualization applications (graphical interfaces with buttons and dropmenus clickable). Within the scripts it is possible to develop interactivity with functions, expressions or external routines written with other programming languages (FORTRAN, C ++, UNIX Shell, etc.) and also with operating system command lines (MS-DOS, Windows, LINUX, UNIX). Current versions bring a wide variety of intrinsic functions (GrADS 'own functions), but the user can also add their own function using external routines developed in FORTRAN or another language. GrADS can be run in batch mode and therefore scripts can be used to perform automatic tasks without the need for direct user presence.

1.2 Downloading GrADS

On the official GrADS download page (http://cola.gmu.edu/grads/downloads.php) you will find precompiled executable files (binary files), source code and supplementary data sets and utilities (Map files, source files, etc.) required for GrADS installation and execution. Documentation Online documentation and all manuals are available at http://cola.gmu.edu/grads/gadoc/gadoc.php

1.3 Support and Discussion List

There is a list of effectively active GrADS users, where you can share information, learn about recent refinements and developments, new versions, as well as mostly help in troubleshooting GrADS users in general. To be on the GrADS list, send an email to the address gradsusr-request@list.cineca.it and provide your address, institution, etc. To see the online file from the GrADS list go to the address http://dao.gsfc.nasa.gov/grads listserv/

2 BACKGROUND AND BASIC COMMANDS

2.1 Installing GrADS

The GrADS executables are typically placed in /usr/local/bin/grads/. If you do not have write permission for this directory, you can put them in a subdirectory of your home
directory (e.g. ~/bin) or anywhere else in your path. The font and map files are supplementary data sets that are required in order to run GrADS. Their default location is: /usr/local/lib/grads/. If you do not have write permission for this directory you can place the files elsewhere, but you must also change the environment variable GADDIR so the GrADS executables will know where to find these files. You can download the data files separately by clicking here: data2.tar.gz.
cd <dirname>
tar xvfz data2.tar.gz
setenv GADDIR <dirname>

An additional supplementary tar file contains a sample gridded data set along with an example session that reviews basic GrADS capabilities. This data set is not required to run GraDS. If you have not used GrADS before, you are strongly encouraged to obtain this file and go through the sample session. You can download it directly by clicking here: example.tar.gz.

2.2 The data and descriptor (.ctl) files

Basically, GrADS works with two main files:

- the data file (for example, data.dat, data.grib, data.bin ...)
- and the descriptor file (for example, descriptor.ctl)

The data file must be in the BINARY, GRIB, NetCDF, or HDF-SDS formats. The descriptor.ctl is a text-type file, in which all specifications of the dimension of data file are described. A simple example descriptor file is below:

```
DSET ^model.dat
OPTIONS little endian
UNDEF -2.56E33
TITLE 5 Days of Sample Model Output
XDEF 72 LINEAR 0.0 5.0
YDEF 46 LINEAR -90.0 4.0
ZDEF 7 LEVELS 1000 850 700500 300 200 100
TDEF }5\mathrm{ LINEAR 02JAN1987 1DY
VARS }
ps 0 99 Surface Pressure
u 7 99 U Winds
v }799\mathrm{ V Winds
hgt 7 99 Geopotential Heights
tair 7 99 Air Temperature
q 5 99 Specific Humidity
tsfc 0 99 Surface Temperature
p 0 99 Precipitation
ENDVARS
```

Significations of the lines of the descriptor file (model.ctl):

DSET ^model.dat	Specifies the name of the data file (^means the data are in the current directory)
OPTIONS little_endian	This entry controls various aspects of the way GrADS interprets the raw data file and can take The keyword uses here describe the byte ordering of the data file
UNDEF -2.56E33	Missing values (lgnored in the plot)

Note:

The full description of the descriptor file components for the various data formats is in Appendix A1 of this manual. You can find the online documentation on descriptor file at the address http://cola.gmu.edu/grads/gadoc/descriptorfile.html

2.3 Running GrADS (initiation session)

This section will give you a guidance on how to: run GrADS, set the graphics windows, open data file, know the content of the file, display a variable, and exit grads.
\checkmark In the terminal type grads and press enter

At this point, referring to two figures below, a graphics output window (on the left) should open on your console (on the right). You may wish to move or resize this window. Keep in mind that you will be entering GrADS commands from the window () where you first started GrADS -- this window will need to be made the 'active' window and you will not want to entirely cover that window with the graphics output window.

In the text window (console, where you started grads from), you should now see a prompt:

ga->

You will enter GrADS commands at this prompt and see the results displayed in the graphics output window.
\checkmark Set the graphic window
Tip: The GrADS preview screen always opens with the black background, which sometimes makes it difficult to interpret certain graphics. To change the background of the preview screen to white, in the console where you have grads prompt (ga->) type following command:
ga-> set display color white
ga-> clear
What happened?
\checkmark Open a data file

Within the GrADS prompt, the command to open the descriptor file (which in turn controls the data file) is done as follows:	Informations that appears at the opening of the .ctl file.
ga-> open model.ctl	

\checkmark You may want to see what is in this file, so enter:

query file or q file (q is short for query)	```ga-> q file File 1 : 5 Days of Sample Model Output Descriptor: model.ctl Binary: model.dat Type = Gridded Xsize = 72 Ysize = 46 Zsize = 7 Tsize = 5 Number of Variables = 8 ps 0 99 Surface Pressure u 7 99 U Winds v 7 99 v Winds hgt 7 99 Geopotential Heights tair 7 99 Air Temperature q 5 99 Specific Humidity tsfc 0 99 Surface Temperature p 0 99 Precipitation ga->```

\checkmark This data contains surface pressure, represented by a variable name, ps, display this variable by entering:

By default, GrADS will display a lat/Ion plot at the first time and at the lowest level in the data set.
\checkmark Now you may want to produce a hard copy of the plot. So enter the command: printim myfirstplot.png
\checkmark Now you may want to take a look at your GrADS output file. To do so you may need to leave the GrADS session. Enter the command quit.
\checkmark Now, you have left the GrADS session, and went back to the Linux environment. You are expected to use Linux commands (not GrADS commands), while in the Linux environment!

- List the content of the current directory (GrADSTutorial) and look for a file with .png extention, and you should be able to see the file you have created while you were in GrADS environemnt.
- Which linux command did use to open this file?

Note for this initiation section:

Other opening commands are listed in the following table:

grads $-\mathbf{I}$	Opens GrADS in landscape mode
grads $\mathbf{-} \mathbf{~}$	Opens GrADS in portrait mode
grads \mathbf{b}	Runs GrADS in batch mode (No window opens)
grads -c "GrADS command line "	Open GrADS and run the quoted command

These options can be used in combinations, such as:

grads -lc "open model.ctl"	Opens GrADS in landscape mode and run the quoted command (open the file model.ctl)
grads -bpc "run scripts.gs"	Opens GrADS in portrait mode, in batch mode (No graphical window opens) run the command in the grads script file script.gs

Hand on tools: See lab2, a sample of GrADS Session (it takes about 30 minutes to complete this session).

2.4 The "set" command

The set command specifies "when", "where" and "how" variables will be plotted. For example:

When
ga-> set t 1
where
ga-> set lat -20-10
how
ga-> set gxout line

2.5 Manipulating Dimensions

The dimensions are manipulated using the set command, according to the examples below:

Specifies the grid between latitudes valofLAT1 and valofLAT2; If valofLAT2 is not specified, we have the latitude fixed at the point of the valofLAT1

Same as above

Specifies the grid between the lengths valofLON1 and valofLON2; If valofLON2 is not specified, we have the longitude fixed at the point of valofLON1

Same as above

Specifies the grid between the vertical levels valofLev1 and valofLev2; If valofLev2 is not specified, we have the vertical level fixed in valofLev1

Same as above

Specifies the grid between the times valofT1 and valofT2; If valofT2 is not specified, we have the fixed time in valofT1

Same as above, but the syntax of valofT1
ga-> set time valofT1 valofT2 and valofT2 must be in the form: 00z09feb2004

Comments:

- The LAT values of the Southern Hemisphere and LON of the Western Hemisphere are preceded by the negative sign.
- GrADS consider the Y dimension ranging from south to north and the X dimension ranging from west to east. Therefore, when specifying the same, it is necessary to make the first set of LAT (LON) further south (west).
For example:
ga-> set lat -30-5
ga-> set lon -80-20

2.6 Other Basic Command

The query or q command is used to obtain information about data files (names of variables, etc.), dimensions, screen and geographical positions, statistics in general, etc. For example:
ga-> q file Specifies general information for the descriptor file

```
File 1 : 5 Days of Sample Model Output
    Descriptor: model.ctl
    Binary: model.dat
    Type = Gridded
    Xsize=72 Ysize=46 Zsize=7 Tsize = 5 Esize=1
    Number of Variables = 8
        ps 0 99 Surface Pressure
        u 7 99 U Winds
        v 7 99 V Winds
        hgt 7 99 Geopotential Heights
        tair 7 99 Air Temperature
        q 5 99 Specific Humidity
        tsfc 0 99 Surface Temperature
        p 0 99 Precipitation
```

Results of the command q file

Note: If multiple descriptor files are open, use the following:

ga-> q files	ga-> q file \mathbf{n}
Specifies general informations for all the descriptors files opened	to have information about the opened descriptor file number n

ga-> q dims
Default file number is: 1
X is varying Lon $=0$ to $360 \quad X=1$ to 73
Y is varying Lat $=-90$ to $90 \quad Y=1$ to 46
Z is fixed $L e v=1000 Z=1$
T is fixed Time $=00 Z 02 J A N 1987 T=1$
E is fixed $E n s=1 E=1$

Specifies the current dimensions

Results of the command q dims
$>$ ga-> clear or ga-> c
$>$ ga-> reinit
$>$ ga-> reset
$>$ ga-> !command-line
$>$ ga-> help

Clear the preview screen Same as above Restart GrADS; Close all the opened .ctl Restart GrADS; But without closing .ctl Run operating system command line Basic help

2.7 Examples and Basic Exercises

The examples and basic exercises below are based on gfs_sample.grb2 and its control file gfs_sample.ctl. The assumption is that the data is available in ~/GrADSTutorial directory.

```
Example 1:
Open GrADS in Portrait mode and plot the
pressure variable at the mean sea level.
At the GrADS prompt, type:
ga-> set display color white
ga-> c
ga-> open gfs_sample.ctl
ga-> q file
ga-> d prmslmsl
```


Example 2:

Plotting two overlapping variables (pressure and horizontal wind).

At the GrADS prompt, type:
ga-> c
ga-> d prmslmsl
ga-> d ugrdprs;vgrdprs
or
ga-> d skip(ugrdprs,20); vgrdprs

Example 3:

Plot of surface temperature for African Countries.

At the GrADS prompt, type:
ga-> c
ga-> set mpdset hires brmap
ga-> q dims
ga-> set lat -40 40
ga-> set lon -20 55
ga-> d tmpsfc

```
Example 4:
Map of geopotential at 500 hPa
At the GrADS prompt, type:
ga-> c
ga-> set lev 500
```


Proposed exercise 1:

Open GrADS in Landscape and plot the precipitation field

Proposed exercise 2:

Plot the precipitation field superimposed on the horizontal wind field

Proposed exercise 3:

Plot the map of specific humidity over your country

Proposed exercise 4:

Plot the horizontal wind at 200 hPa

```
ga-> d hgtprs
```


Example 5:

Vertical temperature profile on the center point in Ndjamena

At the GrADS prompt, type:
ga-> c
ga-> set lat 12.15
ga-> set lon 15.06
ga-> set z 17
ga-> set zlog on
ga-> d tmpprs

Proposed exercise 5:

Plot the vertical profile of specific humidity on the center point in Dakar.

Proposed exercise 6:

Plot the vertical meridonal section (altitude vs latitude) of geopotential height along the longitude of Accra

At the GrADS prompt, type:
ga-> reset
ga-> set lat 0
ga-> set z 17
ga-> set zlog on
ga-> d tmpprs
The following two examples are performed based on the rain_arc_month.ctl files (ARC monthly precipitation from 1983 to 2016).

Example 7:

Temporal animation of the rain in Africa from January to June 1992

At the GrADS prompt, type:
ga-> reinit
ga-> open rain_arc_month.ctl
ga-> set lat -40 40
ga-> set lon -20 55
ga-> set time jan1992 jun1992
ga-> d rain

Proposed exercise 7:

Make the animation of the observed rain over Africa between the months of July to December of 1988

Example 8:

Hovmöller diagram of the rainfall observed during the year 1992 along the globe and on the equator line.

Proposed exercise 8:

Make the hovmöller diagrams of rain observed in 1998 along the longitudes of Africa specifically over the latitude of: - Sahel band

```
At the GrADS prompt, type:
ga-> c
ga-> set time 00Z01jan1992 00Z31dec1992
ga-> set lat 0
ga-> d rain
```


3 PLOTING GRAPHICS

3.1 Graphics types

There are several graphics options. By default, if the user does not specify graphics output type, of the output will be line type (for 1-dimensional data) and contour type (for2-dimensional graphs).

The command line to select the graphics output type is:
ga-> set gxout graphic_type
The following examples summarize different graphice output options:

```
Example 9: contours (Isolines)
ga-> open gfs_sample.ctl
ga-> set display color white
ga-> c
ga-> set t 3
ga-> set mpdset hires
ga-> set lat -40 40
ga-> set lon -20 55
ga-> set gxout contour
ga-> d tmpprs-273
```

```
Example 10: shaded contours (colors
bands)
```

ga-> c
ga-> set gxout shaded
ga-> d tmpprs-273

Example 11: same as Example 10, but here shading a made on grid points.
ga-> c
ga-> set gxout grfill
ga-> d tmpprs-273

```
Example 12: Values in the grid points
ga-> c
ga-> set gxout grid
ga-> d tmpprs-273
```

```
Example 13: Vectors (arrows)
ga-> c
ga-> set gxout vector
ga-> d ugrdprs;vgrdprs
```

Example 14: streamlines	
ga-> c	
ga-> set gxout stream	
ga-> d ugrdprs;vgrdprs	

```
Example 15: Wind with barb (synoptic
chart)
ga-> c
ga-> set gxout barb
ga-> d ugrdprs; vgrdprs
```

```
Example 16: Shaded in the grid points of
the values specified by the
set fgvals value col value col ...
ga-> c
ga-> set gxout fgrid
ga-> set fgvals 204238262
ga-> d tmpprs-273
```

```
Example 17: Bar graph and error bar
graph
ga-> c
ga-> set t 3
ga-> set lat 0
ga-> set gxout bar
or
ga-> set gxout errbar
ga-> d pratesfc
```

Example 18: Line Graph
ga-> c
ga-> set gxout line
ga-> d pratesfc

Example 19: Scatter plot

ga-> c
ga-> set gxout scatter
ga-> d tmpsfc-273; tmpprs-273

```
Example 20: Statistics (information) on
the data (without graph)
ga-> c
ga-> set gxout stat
ga-> d tmpprs
```

ga-> set gxout fwrite	Write (generates) grads fwrite file with binary data (no graph)
ga-> set gxout linefill	Lines with color filling between two lines
ga-> set gxout value	Station value (station points)
ga-> set gxout wxsym	Symbols of the Synoptic map (weather conditions)
ga-> set gxout findstn	Find the nearest station

3.2 Projections maps

The following examples summerise different projection options:

```
Example 21: Iatlon (default) aspect ratio
maintained on the screen
ga-> reinit
ga-> open gfs_sample.ctl
ga-> set map 1110
ga-> set mproj latlon
ga-> d pratesfc (t=2)
```

Example 22: scaled, same as latlon, but with aspect ratio not maintained on the screen
ga-> reset
ga-> set mproj scaled
ga-> d pratesfc ($\mathrm{t}=2$)

```
Example 23: polar stereographic : sps
(HS) or nps (HN)
ga-> c
ga-> set mproj sps
ga-> set lon -100 0
ga-> set lat -90 0
ga-> d pratesfc (t=2)
```

```
Example 24: robinson
ga-> reset
ga-> set mproj robinson
ga-> set lon -180 180
ga-> set lat -90 90
```

```
ga-> d pratesfc (t=2)
```

```
Example 25: Orthographic (orthogr)
ga-> reset
ga-> set mproj orthogr
ga-> d pratesfc (t=2)
```

```
Example 26: mol/weide
ga-> reset
ga-> set mproj mollweide
ga-> d pratesfc (t=2)
```

```
Example 27: lambert - Conical Lambert
Conformal
ga-> reset
ga-> set mproj lambert
ga-> set lat -90 0
ga-> d pratesfc (t=2)
```

Example 28: off same as scaled, but does not plot map and plot labels without lat and lon sign
ga-> reset
ga-> set mproj off
ga-> d pratesfc ($\mathrm{t}=2$)

3.3 Inserting Titles, Texts, Forms and Symbols

The command lines for entering titles, texts, shapes and symbols are as follows:

ga-> draw title graphic-title	Write title at the top of the picture
ga-> draw xlab X-Title	Write title on x -axis
ga-> draw ylab Y-Title	Write title on y -axis
ga-> draw string x y text	Write text at the point (x, y)
ga-> draw line x1 y1 x2 y2	Draw a line between ($\mathrm{x} 1, \mathrm{y} 1$) and ($\mathrm{x} 2, \mathrm{y} 2$)
ga-> draw rec xlo ylo xhi yhi	Draw a rectangle
ga-> draw recf xlo ylo xhi yhi	Draw a solid (fill) rectangle
ga-> draw polyf x1 y 1 x2 y2 ... xn yn	Draws a polygon between ($\mathrm{x} 1, \mathrm{y} 1$), $(x 2, y 2) \ldots(x n, y n)$
ga-> draw mark marktype x y size	Draw a mark on point (x, y)
ga-> draw wxsym symbol x y size color thickness	Draw a weather symbol on point (x, y)

3.4 Controlling Graphical Options

Color coding:

Note: For the the rainbow Colors Sequence (9 1441151331071282 6), you can use the following commands:
ga-> set ccolor rainbow
ga-> set ccolor revrain *here you reverse the colors of the rainbow
Line style coding
Usage: ga-> set line color style thickness

		0 = none
	1	1 = solid
$-----------$	2	2 = long dash
..	3	3 = Short dash
---------------	4	4 = Long short dash
	5	5 = dots
- -.-.-.-.- - - - -.-.-.-.- -	6	6 = dot dash
- - -..-..-..-..-.- - -		7 = dot dot dash

Mark style coding

Usage: ga-> set cmark marktype

H	\square	\square	\square	\square	\times	\diamond	Δ	A	0	D

0 - none
1 - plus sign
2 - open circle (default)
3 - closed circle
4 - open square

5 - closed square $\quad 10$ - open circle with vertical bar
6 - multiplication sign 11 - closed circle with vertical bar
7 - open diamond 12 - closed diamond (GrADS version 2.1+)

8 - open triangle
9 - closed triangle

Weather Symbol code (from 1 to 41, as shown below):
Usage: ga-> draw wxsym symbol x y size color thickness

] 1	R 2	$\underset{3}{<}$	$\xrightarrow[4]{*}$	$\underset{5}{\underset{\sim}{\sim}}$	$\underset{6}{\stackrel{\rightharpoonup}{\mathrm{R}}}$	$\frac{R_{7}}{7}$	$\begin{aligned} & R_{2}^{2} \\ & 8 \end{aligned}$	¢	$\underset{10}{\sim}$
$\stackrel{\Delta}{8}$	\bigcirc	\sim	$\stackrel{\circ}{\nabla}$	$\stackrel{\circ}{\nabla}$	\bigcirc	\bigcirc	\bigcirc	$\stackrel{*}{*}$	$\stackrel{*}{*}$
11	12	13	14	15	16	17	18	19	20
**	**	* *	\bigcirc	\bigcirc	(2)	ه	92	29	ค9
21	22	23	24	25	26	27	28	29	30
$\stackrel{\rightharpoonup}{\nabla}$	合	\leftrightarrow	-	$\xrightarrow{\uparrow}$	\$	*	\checkmark	\sim	6
31	32	33	34	35	36	37	38	39	40

Command to get the screen coordinates of the point (x, y)

ga-> q pos

or
ga-> q II2xy lon lat (No need to click the screen)
(Click the screen on the desired point)

Command to control text (string):
ga-> set string color justification thickness rotation
This command sets attributes for strings drawn with the draw string command.

Justification coding:		
$\mathrm{tI}=$ top left	tc $=$ top center	$\mathrm{tr}=$ top right
$\mathrm{I}=$ left	$\mathrm{c}=$ center	$\mathrm{r}=$ right
$\mathrm{bl}=$ bottom left	$\mathrm{bc}=$ bottom center	$\mathrm{br}=$ bottom right

ga-> set strsiz hsiz vsiz

This command sets the string character size, where hsiz is the width of the characters; vsiz is the height of the characters, in virtual page inches. If vsiz is not specified, it will be set the the same value as hsiz.

ga-> set font number

This command allows the user to select the font for subsequent text operations. With font type (number) from 0 to 5.

Commands to control the plots in the various types of graphs

- graphs 1-D (gxout = line):

```
ga-> set ccolor color#
ga-> set cthick thickness
ga-> set cstyle linestyle
ga-> set cmark markertype
ga-> set vrange v1 v2
ga-> set missconn on|off (default off)
```

- Graphic type (gxout = bar or errbar):

ga-> set bargap value	Set the gap between bars (value from 0 to 100)
ga-> set barbase value / bottom/top	Plots bars above or below the value
ga-> set baropts filled/outline	Filled the bars or not
ga-> set cthick values	Set the thickness of line (values from 1 to 10)

- Graphic type (gxout = linefill):
ga-> set lfcols coll col2
Fill the space between two isolines with colors col1 and col2

- Graphic type (gxout = contour):

ga-> set ccolor color\#
ga-> set cthick thickness
ga-> set cstyle linestyle
ga-> set cterp on/off
ga-> set cint value
ga-> set cmax value
ga-> set cmin value
ga-> set black val1 val2
ga-> set clevs val1 val2 ...
ga-> set ccols col1 col2 ...
ga-> set rbrange val1 val2
ga-> set rbcols col1 col2 ...
ga-> set rbcols auto
ga-> set clab on/off/forced
ga-> set clskip number
ga-> set clopts color\# thickness size
ga-> set csmooth on/off

Set the color of the isolines
Set the thickness of isolines (thickness from 1 to 10)
Set the isolines style
Turns spline smoothing on or off
Sets the contour interval to the specified value
Controls the maximum value of the isolines
Controls the minimum value of the isolines
Omits contours between val1 and val2
Plot specified values
Specifies colors for clevs Sets the range of values used to determine which
values acquire which rainbow color Specifies a new rainbow color sequence

Set colors in rainbow sequence
Controls contour labeling
Specify the number of contour lines to skip when labeling
controls the look of the contour labels drawn on contour lines
Apply smoothing. If on, the grid is interpolated to a finer grid using cubic interpolation before contouring

```
    - Graphic type (gxout = shaded or grfill):
```

ga-> set cint value
ga-> set cmax value
ga-> set cmin value
ga-> set black val1 val2
ga-> set clevs val1 val2 ...
ga-> set ccols col1 col2 ...
ga-> set rbrange val1 val2
ga-> set rbcols col1 col2 ...
ga-> set csmooth on/off

Sets the contour interval to the specified value
Controls the maximum value of the isolines
Controls the minimum value of the isolines Omits contours between val1 and val2

Plot specified values
Specifies colors for clevs
Sets the range of values used to determine which values acquire which rainbow color Specifies a new rainbow color sequence Apply smoothing. If on, the grid is interpolated to a finer grid using cubic interpolation before contouring

```
    O Graphic type (gxout = grid):
ga-> set dignum number
ga-> set digsiz size
Number of digits after the decimal place Size (in inches, or plotter units) of numbers.
0.1 to 0.15 is usually a good range to use
```

- Graphic type (gxout = vector ou barb):
ga-> set ccolor color\# Set the color of the vectors
ga-> set cthick thickness
ga-> set arrlab on/off
ga-> set arrscl size magnitude
ga-> set arrowhead value
ga-> set cint value
ga-> set cmax value
ga-> set cmin value
ga-> set black val1 val2
ga-> set clevs val1 val2 ...
ga-> set ccols col1 col2 ...
ga-> set rbrange val1 val2
ga-> set rbcols col1 col2 ...

Set the thickness of vectors (thickness from 1 to 10)
Shows or not the reference vector below the plot Specifies arrow length scaling. Length of the vector
according to magnitude Set the size of the arrowhead

Sets the vectors interval to the specified value Controls the maximum magnitude of the vectors

Controls the maximum magnitude of the vectors
Omits vectors of magnitudes between val1 and val2
Plot specified values
Specifies colors for clevs
Sets the range of values used to determine which values
acquire which rainbow color
Specifies a new rainbow color sequence

- Graphic type (gxout = scatter):

ga-> set cmark markertype
ga-> set digsiz size
ga-> set ccolor color\#
ga-> set vrange v1 v2
ga-> set vrange2 v1 v2
Set the style of the marker Size (in inches, or plotter units) of numbers. 0.1 to 0.15 is usually a good range to use

Set marker's colors
Set the range of values for the scale on the X-axis
Set the range of values for the scale on the Y -axis

Specifies values and colors for fgrid

- Graphic type (gxout = stream):
ga-> set strmden density
Controls the appearance of the streamlines (values
from -10 to 10)
ga-> set ccolor color\#
ga-> set cint value
ga-> set cmax value
ga-> set cmin value
ga-> set cthick thickness
ga-> set black val1 val2
ga-> set clevs val1 val2 ...
ga-> set ccols col1 col2 ...
ga-> set rbrange val1 val2
ga-> set rbcols col1 col2 ...

Set the color of the isolines Sets the contour interval to the specified value

Controls the maximum value of the isolines
Controls the minimum value of the isolines
Set the thickness of isolines (thickness from 1 to 10)
Omits contours between val1 and val2
Plot specified values
Specifies colors for clevs
Sets the range of values used to determine which values acquire which rainbow color Specifies a new rainbow color sequence

- Stations data; Graphic type (gxout = value):
ga-> set digsiz size
ga-> set ccolor color\#
ga-> set stid on |off2
ga-> set cthick thickness

Size (in inches, or plotter units) of value.
0.1 to 0.15 is usually a good range to use

Set the color of the value
Turns on/off display of station ID next to the data values
Set the thickness of value (thickness from 1 to 10)

- Stations data; Graphic type (gxout = barb):
ga-> set digsiz size
ga-> set ccolor color\#
ga-> set cthick thickness

Size (in inches, or plotter units) of numbers. 0.1 to 0.15 is usually a good range to use

Set the color of barbs
Set the thickness of barbs (thickness from 1 to 10)

- Stations data; Graphic type (gxout = wxsym):

ga-> set ccolor color\#
Set the color of symbols
ga-> set cthick thickness
ga-> set digsiz size
Set the thickness of symbols (thickness from 1 to 10)
ga-> set wxcols col1 col2 ... Size (in inches, or plotter units) of numbers.
0.1 to 0.15 is usually a good range to use

Specifies the colors of symbols

- Stations data; Graphic type (gxout = model):
ga-> set ccolor color\#
Set the color
ga-> set cthick thickness
ga-> set digsiz size
ga-> set wxcols col1 col2 ...
ga-> set mdlopts noblank/blank/dig3/nodig3

Set the thickness (thickness from 1 to 10) Size (in inches, or plotter units) of numbers.
0.1 to 0.15 is usually a good range to use

Specifies the colors of symbols
Model options

Commands to control axes, maps, etc:

ga-> set grid status style color\# thickness	Specifies the characteristics of the displayed grid lines. Valid options for status are: on - both latitude and longitude lines a drawn off - grid lines are drawn horizontal - only latitude grid lines are drawn vertical - only longitude grid lines are drawn	
ga-> set zlog on/off	Sets log scaling of the Z dimension on or off	
ga-> set xaxis start end <increment>	Range x -axis from start to end with increment	
ga-> set yaxis start end <increment>	Range y -axis from start to end with increment	
ga-> set xlevs lev1 lev2 ...	Specify individual labeled tick mark for the X-axis	
ga-> set ylevs lev1 lev2 ...	Specify individual labeled tick mark for the Y -axis	
ga-> set xlabs lab1\|lab2	...	Label the X-axis with lab1, lab2, ...
ga-> set ylabs lab1\|lab2	...	Label the Y -axis with lab1, lab2, ...
ga-> set xlint interval	Specifies the interval between labeled tick marks on the X -axis	
ga-> set ylint interval	Specifies the interval between labeled tick marks on the Y -axis	
ga-> set xyrev on/off	Reverses the axes on a plot	
ga-> set xflip on/off	Flip the order of the horizontal axis	
ga->set yflip on /off	Flip the order of the vertical axis	
ga-> set xlopts color\# thickness size	Controls the appearance of the tick labels on the Xaxis	
ga-> set ylopts color\# thickness size	Controls the appearance of the tick labels on the Y axis	
ga-> set annot color\# thickness	Controls the look of the plot annotations (draw title, the frame around the plot, any additional axes that are drawn alongside the frame, the axis labels, etc)	
ga-> set mpdset lowres/mres/hires	Controls the map lines resolution	
ga-> set map color\# style thickness	Controls the appearance of the map lines	
ga-> set mpdraw on/off	If off, does not draw the map background	
ga-> set grads on/off	Controls the display of the GrADS logo and the time label for screen or printed output	

3.5 Page Control

Screen Display standard sizes are:
grads -I (landscape: 11×8.5)

grads -p (portrait: 8.5×11)

Page can be controlled using the following commands :

> ga-> set vpage off

Virtual
page
ga-> set vpage x min xmax ymin ymax
ga-> set parea off
Print
Area
ga-> set parea x min $x m a x$ ymin $y m a x$

Default setting, virtual page is equal to real page Defines a "virtual page" that fits within the specified limits of the real page. All the graphics output will be drawn until another set vpage is entered

Default setting, plotting area is chosen depending on the type of the graphics output
Specifies the area for plotting contour plots, maps, or lines graphs. This area does not include axis labels, titles, etc.

3.6 Application examples and exercises

```
Example 29: Maps of Africa
ga-> reinit
ga-> open gfs_sample.ctl
ga-> set display color white
ga-> c
ga-> set mpdset hires
ga-> set map 1110
ga-> set grid off
ga-> set xlopts 110.15
ga-> set ylopts 110.15
ga-> set lat -40 40
ga-> set lon-20 55
ga-> set t 2
ga-> set gxout shaded
ga-> set cmin 1
ga-> set cint 5
ga-> d pratesfc*86400
ga-> set gxout contour
ga-> set cmin 1
ga-> set cint 5
ga-> set ccolor 1
ga-> set clab on
ga-> set clskip 3
ga-> d pratesfc*86400
ga-> draw title Precipitation (mm/day)
ga-> draw xlab Longitude
ga-> draw ylab Latitude
```


Proposed exercise 29:

Over the whole grid of Africa, plot :

- Plot pressure field at sea level highlighting in shaded only the high pressures (prmslmsl> 1015),
- Plot vector wind in barb (remember to skip)
- display the title of map,
- Write strings A and B on the center of the low and high pressure.

Example 30: Two figures on the same portrait page, Rain and Outgoing Long-wave Radiation in Africa ga-> set mpdset hires ga-> set map 1110 ga-> set grid off ga-> set grads off ga-> set xlopts 110.15 ga-> set ylopts 110.15 ga-> set lat -40 40 ga-> set lon -20 55 ga-> set parea 0.58610 .8 ga-> set gxout shaded ga-> set cmin 1 ga-> set cint 5 ga-> d pratesfc ga-> set gxout contour ga-> set cmin 1 ga-> set cint 5 ga-> set ccolor 1 ga-> d pratesfc ga-> set parea 0.580 .55 .5 ga-> set gxout shaded ga-> set cmax 230 ga-> set cint 10 ga-> d ulwrftoa ga-> set gxout contour ga-> set cmax 230 ga-> set cint 10 ga-> set ccolor 1 ga-> d ulwrftoa	Proposed exercise 30: Plot 4 figures using the vpage option on the same landscape page. The variables to be plotted on each of the figures are: - Wind vector at 850 hPa - Streamlines at 200 hPa - Surface temperature - Geopotential at 500 hPa PS: don't forget to put titles on each figure

4 GENERATING GRAPHICS OUTPUT FILES

4.1 GrADS metafile (.gmf) archives

* Generating a GrADS metafile file (*.gmf)

The example below plots the temperature field and generates a .gmf file

Example 31: Procedure to generate an .gmf file	
ga-> enable print archive1.gmf	Open the file
ga-> d tmpprs	
ga-> print	Save the file
ga-> disable print	Close the file

Notes:

\checkmark If the user does not disable print; the file is terminated with reinit or quit
\checkmark It is possible to generate several separate graphics (frames) within the same .gmf file

4.2 GrADS Metafile Viewer for Windows

GrADS metafile Viewer (GV) is an application in Windows environment that is used to make the visualization and manipulation of the generated .gmf files by GrADS.

Graphics opened within the GV can be copied and pasted into your documents (Word, PowerPoint, etc.). There are also other options, such as: printing, cutting a piece of the figure, etc.

4.3 gxtran application

The gxtran utility application is used to manipulate and view .gmf files. It is most commonly used in LINUX environment. The syntax is described below:

ga-> ! gxtran option -i filemane.gmf	The option can be:	
		Animate the frames without giving the enter on each frame change
		Reverts background colors
		pixel size

Note: Press <enter> to exit gxtran
Example 32: Generating a .gmf and viewing with gxtran

```
ga-> c
ga-> enable print archive2.gmf
ga-> d tmpprs (z=1)
ga-> print
ga-> c
ga-> d tmpprs (z=3)
ga-> print
ga-> c
ga-> d tmpprs (z=5)
```

```
ga-> print
ga-> c
ga-> d tmpprs (z=7)
ga-> print
ga-> disable print
ga-> ! gxtran -a -g 800x600 -i archive2.gmf
```

You will better use GV and you will the manipulations are easy

4.4 Applications gxps and gxeps

The gxps utility application (both windows and linux versions) converts .gmf files to PostScript (.ps) format images. To do so the syntax is:

ga-> ! gxps option -i archive.gmf -o archive.ps	option can be: $-c$
	color format $-r$
	black background
$-d$	puts CTRL-D at the end of file

The gxeps utility application (both windows and linux versions) also converts.$g m f$ files to PostScript (.eps) formatted images, with additional options, according to the syntax below :

ga-> ! gxeps option -i archive. gmf -o archive.eps	option can be: -c color format -r black background -d puts CTRL-D at the end of file -1 PostScript Level 1 -2 PostScript Level 2 -a A4-size page -I Letter-size page -L Prompt for a label to be placed in the figure -n Prompt for a note to be included in the file -v verbose mode

NOTE: In both gxps and gxeps, if you do not specify -c the image will be in grayscale on the white background.

4.5 printim and wi commands

The printim command is used to convert the graphic content of the window into an image type file (GIF or PNG), according to the syntax below:

	option can be: ga-> printim archive.out option	
	glack	backerates GIF image (default: png image)
	White	background white
	XNNN	horizontal pixel size
	YNNN	vertical pixel size

The wi command uses the ImageMagick library interface converts the graphic content of the window into an image type file (several format), according to the syntax below:

ga-> wi archive.out	The ImageMagick formatting options to be chosen in the .out extension are: gif, bmp, cgm, eps, fax, ico, jpeg, pcx, hdf and others ...

Notes:

\checkmark printim also works in batch mode, but only in GrADS version 1.8 or higher
\checkmark wi does not run in batch mode, as it requires an X-server. Some ImageMagick formats (TIFF, PNG, MPEG, etc.) do not work in GrADS. In this case, the generated image will be MIFF type. If no extension is specified, GIF is the default format.

4.6 Application examples and exercises

Example 33:

Vertical section (Longitude x Height) of UR and Wind (Uvel; Omega) with generation of .gmf to be placed in Word document as figure

```
ga-> open gfs_sample.ct/
ga-> set lon-100 0
ga-> set lat O
ga-> set z 1 }
ga-> enable print ex33.gmf
ga-> set gxout shaded
ga-> set cmin 0.5
ga-> set cint 0.1
ga-> d rhprs
ga-> set gxout contour
ga-> set ccolor 0
ga-> set cmin 0.5
ga-> set cint 0.1
ga-> d rhprs
ga-> set gxout vector
ga-> set ccolor 1
ga-> set arrscl 1.5 50
ga-> set arrowhead -0.5
ga-> set cthick 10
ga-> d ugrdprs; vvelprs*(-100)
ga-> draw title Vertical section of Rh and wind
ga-> draw xlab Longitude
ga-> draw ylab Altitude (Pressure Levels)
ga-> print
ga-> disable print
```

After generating ex33.gmf, open it in GV and put (copy; paste) in your Word document as figure

Example 34:

Graph lines with generation .gmf to be placed in Word as figure

```
ga-> c
ga-> enable print ex34.gmf
ga-> set parea 2 8.517.7
ga-> set lon -100 0
ga-> set lat 0
ga-> set grid off
ga-> set grads off
ga-> set xaxis 1 111
ga-> set xlopts 1 1 0.2
ga-> set gxout line
ga-> set ccolor 2
ga-> set ylopts 2 1 0.12
ga-> set t 3
ga-> d pratesfc
ga-> set ccolor 4
ga-> set ylopts 4 1 0.12
ga-> d tcdcclm
ga-> set ccolor 3
ga-> set ylopts 3 1 0.12
ga-> d ulwrftoa
ga-> set strsiz 0.4 0.3
ga-> set string 2
ga-> draw string 2.5 8 Precipitation
ga-> set string 4
ga-> draw string 4.5 8 Cloud Cover
ga-> set string 3
ga-> draw string 6.5 8 OLR
ga-> draw xlab time
ga-> print
ga-> disable print
```


5 VARIABLES, EXPRESSIONS AND FUNCTIONS

5.1 Names of Variables

The complete specification for a variable name is:

	abbrev	Abbreviation for the variable as specified in the .ctl file
abbrev.file\# (dimexpr,dimexpr,...)	file\#	The reference number of the opened files containing the variable. The default is 1 (first file to be opened). The command set dfile file \# change the default file.
	dimexpr	Expression of the dimension that locally modifies the environment of the current dimension only for the variable in question. Only fixed dimensions can be used.

Absolute dimensions are:
$\mathrm{X}|\mathrm{Y}| \mathrm{Z}|\mathrm{T}|$ Lon \mid Lat \mid Lev \mid Time $=$ value
The relative dimensions are, for example:
$\mathrm{X}|\mathrm{Y}| \mathrm{Z}|\mathrm{T}|$ Lon | Lat | Lev | Time + - / valor
Here are some examples of variable specifications:
zgeo.3(lev=500) zgeo in file 3 , taken at the level 500 hPa (absolute dimension)
prec(time-12hr) precipitation 12 hr before the current time (relative dimension)
uvel. $\mathbf{2 (t - 1 , l e v = 8 5 0)}$ expression using both relative and absolute dimensions
Note:
Lat, lon, lev are predefined by GrADS variables, i.e. they are implicitly contained within each .ctl file. When used, they provide the lat, lon, lev in the respective grid points, for example lat. 2 specifies the latitude of the second open grid .ctl.

Example 35:

Using Expressions ...
ga-> set map 3110
ga-> set lon -90-30
ga-> set lat -35 10
ga-> set lev 1000
ga-> set cthick 10
ga-> set arrscl 110
ga-> set arrowhead -0.5
ga-> d skip(ugrdprs,2); vgrdprs
ga-> set gxout stream
ga-> set ccolor 2
ga-> set strmden 2
ga-> d ugrdprs (lev=200); vgrdprs (lev=200)

5.2 Defining New Variables: define command

The define command allows the interactive creation of new variables, according to the syntax:
define new-variable-name = expression
The new variable is stored in memory and can be used in subsequent commands. It is possible to use define with dimensions ranging from 0 to 4 . When Z and / or T are varying, define evaluates the expression for each Z and T .

To clear the memory and undefining your new variable use the undefine command, according to the syntax:
undefine new-variable-name

```
Example 36:
Defining a variable for several vertical levels
ga-> set lon -90-30
ga-> set lat -35 10
ga-> set lev 1000 200
ga-> define tempc = tmpprs - 273
ga-> set lev 1000
ga-> d tempc
ga-> set lev 500
ga-> d tempc
```


5.3 Expressions

Similarly to FORTRAN, expressions in GrADS consist of operators, operands, and parentheses, which are used to control the order of calculations in operations.
The operators are: + (addition), - (subtraction), * (multiplication), / (division) The operands can be: variable specifications, functions and constants Note: The operations are performed for each grid point and therefore the grids must have the same dimensions.

Example:
hgtprs - hgtprs (t-1)
tmpprs (lev=500) -tmpprs (lev=850)

5.4 Functions

Grad has a wide range of intrinsic functions. The list below enumerates some of them according to their specific assignments, as well as the syntax of each one.

Mathematical operations:

abs(expr)	Provides the absolute value of expr. Missing data values do not participate.
cdiff(expr,dim)	Performs a centered difference operation on expr in the direction specified by dim. The difference is done in the grid space, and no adjustment is performed for unequally spaced grids. The result value at each grid point is the value at the grid point plus one minus the value at the grid point minus one. Result values at the grid boundaries are set to missing. Example: Calculation of the temperature advection define $d t x=c d i f f(t e m p, x)$ define $d t y=c d i f f(t e m p, y)$ define $d x=$ cdiff(lon, x) $* 3.1416 / 180$ define $d y=c d i f f(l a t, y) * 3.1416 / 180$ d $-1 *\left(\left(u v e l^{*} d t x\right) /\left(\cos \left(l a t^{*} 3.1416 / 180\right) * d x\right)+v_{\text {vel }}{ }^{*} d t y / d y\right) / 6.37 e 6$
exp(expr)	Provide the exponential of expr
gint (expr, dim1, dim2)	Provide the general integral of expr (similar to the ave, but not divided by the total area). $\operatorname{dim} 1$ and $\operatorname{dim} 2$ represents the start and the end point of the integral respectively.
\log (expr)	Takes the natural logarithm of expr. Values less than or equal to zero are set to missing in the result.
$\log 10$ (expr)	Same as above, but for the logarithm to the base 10
pow(expr1,expr2)	Raises the values of expr1 to the power of expr2
sqrt(expr)	Takes the square root of the result of the expr. Values in expr that are less than zero are set to missing in the result
vint(psexpr,expr,top)	Performs a mass-weighted vertical integral in mb pressure coordinates
	psexpr surface pressure, in mb, which bounds the integral on the bottom expr expe
	expr ${ }^{\text {expression representing the quantity to be integrated }}$
	top $\begin{array}{l}\text { top pressure, in } \mathrm{mb} \text {. This value must be a constant and } \\ \text { cannot be provided as an expression }\end{array}$
	Example: calculation of precipitable water in mm vint(psnm,umes,275)

Trigonometric Functions:

cos(expr)	Takes the cosine of the expr. Values are assumed to be in radians
acos(expr)	Applies the inverse cosinus function to the result of expr. Values from expr that exceed 1 or are less than -1 are set to missing. The result is expressed in radians.
$\boldsymbol{\operatorname { s i n } (\text { expr) }}$	Takes the sin of the provided expression. It is assumed the expression is in radiians. Result values are in the range -1 to 1
asin(expr)	Same as acos, but use inverse sinus function.
\tan (expr)	Trigonometric tangent function to the expr which is assumed to be in radians
atan2 (expr1, expr2)	Applies the inverse tangent function to the result of (expr1/expr2). If expr1 and expr2 are both zero, the result is arbitrarily set to zero. The result of the $\boldsymbol{a t a n 2}$ function is in radians.

Averages and sums:

aave(expr, xdim1, xdim2, ydim1, ydim2)	areal average over an X-Y region		
		Expression of the variable	
		Starting X dimension expression	
	xdim2	Ending X dimension expression	
	ydim1	Starting Y dimension expression	
	ydim2		X dimension expression
	In case the average on the global is needed: aave(expr, lon=0, lon=360, lat=-90, lat=90) or aave(expr, global)		
amean (expr, xdim1, xdim2, ydim1, ydim2)	are not weighted by latitude. Means are weighted by grid interval to account for non-linear grid spacing.		
asum(expr, xdim1, xdim2, ydim1, ydim2)	Areal sum over an X-Y region		
asumg(expr, xdim1, xdim2, ydim1, ydim2)	Same as asum, except the calculations are done without weighting		
ave(expr, dim1, dim2 <,tinc> <,-b>)	Averages the result of expr over the specified dimension range. If the summing dimension is time, an optional time increment tincr may be specified.		
	expr	Expression of the variable	
	dim1	Starting point of average	
	dim2	Ending point of average	
	tinc	Optional increment for time averaging	
		Use exact boundaries	
	Example: Zonal mean of the global temperature: ave(temp,lon=0,lon=360) Annual rainfall standard deviation (30 year time series): define cli = ave(prec,t=1,t=30) sqrt(ave(pow(cli-prec,2),t=1,t=30))		
mean (expr, dim1, dim2, <,tinc> <,-b>)	Same as ave, except the calculations in the Y dimension are not weighting by latitude. The means are weighted by grid interval to account for non-linear grid spacing		
sum (expr, dim1, dim2, <,tinc> <,-b>)	Sums the result of expr over the specified dimension range.		
sumg (expr, dim1, dim2, <,tinc> <,-b>)	Same as sum, except the calculations are done without weighting		
tmave(maskexpr,expr,timexpr1,timexpr2)	This function does time averaging while applying a mask		
	maskexpr		The mask expression must be a single value when evaluations are done at a fixed time
	expr		expression to be averaged
	timexpr1,2		limits of the time averaging domain

Correlation and regression:

xpr1, expr2, xdim1, xdim2, ydim1, ydim2)	Gives the spatial correlation between two variables over an $X-Y$ domain. It returns a single number (between -1 and 1)	
	expr1	Any valid expression varying X and Y
	expr2	Any valid expression varying X and Y
	xdim1	Starting X dimension expression
	xdim2	Ending X dimension expression
	ydim1	Starting Y dimension expression
	ydim2	Ending X dimension expression
	Example: Correlation between annual precipitation and long wave radiation over Brazil set lat - 355 set lon -80-30 d scorr(prec, role, lon=-80, lon=-30, lat=-35, lat=5)	
	Produces a spatial map of temporal correlation coefficients	
	expr1	Any time varying valid expression
	expr2	Any valid expression varying not only in time, but also in X and Y
	tdim1	Starting time dimension expression
	tdim2	Starting time dimension expression
tcorr (expr1, expr2, tdim1, tdim2)	Example: Correlation between the 30-year series of annual rainfall in Belém and Long wave over tropical Brazil set lat -1.5 set lon -48 set $\mathbf{z} 1$ set t 130 define belem = prec set lon -80-30 set lat -15 5 set $\mathbf{z} 1$ set $t 1$ d tcorr(belem, role, $t=1, t=30$)	
sregr(expr1, expr2, xdim1, xdim2, ydim1, ydim2)	Calcula betwe return param	es the least-squares regression two variables over an $X-Y$ domain. It a single number. See scorr for the ers definitions.
tregr (expr1, expr2, tdim1, tdim2)	Calcula betwe tcorr f	es the least-squares regression two time-dependent variables. See the parameters definitions.

Derived weather variables and vector operations

tvrh2q(tvexpr,rhexpr)	Returns specific humidity (q , in g / g), from virtual temperature and relative humidty		
	tvexpr		virtual temperature (in Kelvin)
	rhexpr		relative humidty (in \%, value
tvrh2t(tvexpr,rhexpr)	Returns temperature (in Kelvin), from virtual temperature and relative humidty. For parameters, see tvrh2q.		
hcurl(uexpr,vexpr)	Return the vorticity at each grid, from the zonal (uexpr) and meridional (vexpr) wind.		
hdivg(uexpr,vexpr)	Take the zonal (uexpr) and meridional (vexpr) to compute the horizontal divergence using finite differencing.		
mag(uexpr,vexpr)	Return the horizontal wind speed from expressions of zonal (uexpr) and meridional (vexpr) wind components.		
skip (expr, skipx, skipy)	Sets alternating values of expr to the missing data value. Used mainly to decrease the density of vectors and barbs		
	expr	A va	grid expression with 1 or 2 var
	skipx	Skip	tor in the X dimension of expr
	skipy	Skip	tor in the Y dimension of expr

Grid point operations:

	Given two gridded variables, expr and expr_to_find, this function finds the first vertical level at which the expr_to_find value occurs in expr. lev1 and lev2 specify the range of levels over which to search. The result is a grid of pressure values.
fndlvl (expr, expr_to_find, lev1, lev2)	Example: Find the pressure levels of the 30 degree isotherm between 1000 and 200 hPa d fndlvl (tmpprs, const(tmpprs,30), lev=1000, lev=200)
	Returns the maximum of expr over the specified dimension range. If the specified dimension is time, an optional time increment tincr may be specified.
	Returns the grid coordinate for the maximum of expr over the specified dimension range.
min(expr, dim1, dim2 <,tinc>)	Returns the minimum of expr over the specified dimension range.
minloc(expr, dim1, dim2 <,tinc>)	Returns the grid coordinate for the minimum of expr over the specified dimension range.
smth9(expr)	Performs a 9 point smoothing to the gridded result of the expr

Other:

const (expr, value, <-u\|-a>)	Change the missing values of a variable, set all the nonmissing values of a variable to a constant, or set all possible values of a variable (both valid and missing) to a constant.	
	expr	Any valid expression
	value	a constant, either an integer or floating point value
	-u	all missing data are set to value; non-missing data are unchanged
	-a	all data are set to value, both missing and nonmissing
	Example: Plot a horizontal line on a graph line figure set lon 0 set lat -35 10 set gxout linefill set lev 1000 d const((tmpprs -273), -20); tmpprs -273	
maskout(expr,mask)	For valu values	ues in expr, put missing data value wherever the mask are less than zero

5.5 Application examples and exercises

Example 37:

Using functions for the calculation of derived variables (write example37.gs)

```
'open gfs_sample.ctl'
'enable print ex37.gmf'
'set lon -20 55'
'set lat -40 40'
'set lev 1000 200'
'define medz = ave(vvelprs, lat=-5, lat=5)'
'set vpage 0 114.25 8.5'
'set lat O'
'set gxout shaded'
'd medz'
'set gxout contour'
'd medz'
'draw title Zonal mean of Vertical Velocity'
    'set vpage off'
'set lon -20 55'
'set lat -40 40'
'set lev 200'
'define vort = hcurl(ugrdprs,vgrdprs)'
'set lev 850'
'define dive = hdivg(ugrdprs,vgrdprs)'
'set map 151 10'
*(For next, see the right column)
```


6 SCRIPTING LANGUAGE (script.gs)

6.1 Basic Concepts

GrADS has a scripting language in which, basically, the user writes a sequence of command lines using any text editor (outside of GrADS) and then saves that program, for example, with the name of program1.gs. The program1.gs file is defined as a script (the .gs extension would be the acronym for grads script) to run within the GrADS prompt.

The command to run a script within the GrADS prompt is:
ga-> run script-file-name.gs or ga-> script-file-name
Note:
\checkmark Each line of the script must be enclosed in '(apostrophes), as shown below:
*in this the script we want to display the temperature field 'open example.ctl' 'd temp'
\checkmark Within scripts, lines beginning with the * symbol are interpreted as comments (see the example above)
\checkmark The user can also write a script without using the apostrophes, but the execution of the script is done through the command: ga-> exec script-file-name.gs
$>$ Automatic script execution: set imprun
The command ga-> set imprun script-file-name.gs automatically executes the same before a command ga-> d variable as shown below

Example 38:

Starting to create a library of scripts to facilitate and/or speed up our life in GrADS prompt
Open your text editor and type the below commands, save the file under the name gshaded.gs.

* Script made by the trainee, to plot temperature in shaded mode
'set gxout shaded'
'set clevs 200210220230240250260270280290300310 '
'set ccols 91441151331071282 6'
Open your text editor and type the below commands, save the file under the name gcontour.gs.
* Script made by the trainee, to plot temperature in contour mode
'set gxout contour'
'set ccolor 1'
'set clab on'
'set clskip 2'
Ok ... now load GrADS into portrait mode and run the commands as shown below ... see that the sequence of commands has become "cleaner" ...

Example 39:

Using a new .ctl (Precipitation and OLR monthly data observed between 1983 and 2016 i.e 34 years)

```
file olr_month.ctl:
DSET ^olr_month.dat
UNDEF -9999.0
TITLE Monthly mean OLR data (Jan 1983 ~ Dec 2016)
XDEF }144\mathrm{ linear 0.0 2.5
YDEF 73 linear -90.0 2.5
ZDEF }1\mathrm{ LEVELS 1
TDEF 408 LINEAR 01Jan1983 1mo
VARS 1
olr 199 monthly mean OLR (W/m*m)
ENDVARS
file rain_arc_month.ctl:
DSET ^rain_arc_month.dat
TITLE Africa monthly Precip (Jan 1983 ~ Dec 2016)
UNDEF -999.0
XDEF 751 LINEAR -20 0.1
YDEF 801 LINEAR -40 0.1
ZDEF }1\mathrm{ LEVELS 1
TDEF 408 LINEAR 01Jan1983 1mo
VARS 1
rain 099 ch08 merged analysis
ENDVARS
Write a script (example39.gs herafter ex39.gs), including the following actions:
-Definition of new colors, -calculating climatological average, -running scripts (cbarc.gs, cores.gs) inside the ex39.gs, -putting comments etc.
```

```
*** The script starts here **********************
'reinit'
'open rain_arc_month.ctl '
* New color script
'color'
*Coordinates of the African region
'set lat -40 40'; 'set lon-20 55'
*===== Define rainfall monthly climatology mean
*===== for the 34 years of records ===========
'define janrainclim=ave(rain.1, t=1, t=408,12)'
*'define febrainclim=ave(rain.1, t=2, t=408,12)'
*'define marrainclim=ave(rain.1, t=3,t=408,12)'
*'define aprrainclim=ave(rain.1, t=4, t=408,12)'
*'define mayrainclim=ave(rain.1, t=5, t=408,12)'
*'define junrainclim=ave(rain.1, t=6, t=408,12)'
*'define julrainclim=ave(rain.1, t=7, t=408,12)'
*'define augrainclim=ave(rain.1, t=8, t=408,12)'
*'define seprainclim=ave(rain.1, t=9, t=408,12)'
*'define octrainclim=ave(rain.1, t=10, t=408,12)'
*'define novrainclim=ave(rain.1, t=11,t=408,12)'
*'define decrainclim=ave(rain.1, t=12, t=408,12)'
* plot rainfall
'set parea 151 7.5'
'set grads off'; 'set grid off'
'set mpdset hires'; 'set map 15 11'
'set gxout shaded'
'set ccols 2927 25 232132343638 39'
'set clevs 405060708090100120 140'
'd smth9(janrainclim)'
'set gxout contour'; 'set clab off'; 'set ccolor 1'
'set clevs 40506070 80 90 100 120 140'
'd smth9(janrainclim)'
'draw title Jan Climatological rainfall'
'cbarc 5 8.1'
'set parea off'
*close the .ctl file 1
'close 1'
```

'open olr_month.ctl '
*Coordinates of the African region
'set lat -40 40'; 'set lon -20 55'

* ===== Define olr monthly climatology mean
*===== for the 34 years of records $=========$
'define janolrclim=ave(olr.1, $t=1, t=408,12$)'
*'define febolrclim=ave(olr.1, $\mathrm{t}=\mathbf{2 , t = 4 0 8 , 1 2 \text {)' }}$
*'define marolrclim=ave(olr.1, $\mathrm{t}=3, \mathrm{t}=408,12$)'
*'define aprolrclim=ave(olr.1, $\mathrm{t}=4, \mathrm{t}=408,12$)'
*'define mayolrclim=ave(olr.1, $\mathrm{t}=5, \mathrm{t}=408,12$)'
*'define junolrclim=ave(olr.1, $\mathrm{t}=6, \mathrm{t}=408,12$)'
*'define julolrclim=ave(olr.1, $t=7, t=408,12$)'
*'define augolrclim=ave(olr.1, $\mathrm{t}=8, \mathrm{t}=408,12$)'
*'define sepolrclim=ave(olr.1, $\mathrm{t}=9, \mathrm{t}=408,12$)'
*'define octolrclim=ave(olr.1, $\mathrm{t}=10, \mathrm{t}=408,12$)'
*'define novolrclim=ave(olr.1, $\mathrm{t}=11, \mathrm{t}=408,12$)'
*'define decolrclim=ave(olr.1, $\mathrm{t}=12, \mathrm{t}=408,12$)'
* plot OLR
'set parea 6101 7.5'
'set gxout shaded'
'set ccols 494847464544434241 '
'set clevs 200210220230240250260 270'
'd smth9(janolrclim)'
'set gxout contour'; 'set clab off'; 'set cthick 6'; 'set ccolor 2'
'set clevs 200210220230240250260 270'
'd smth9(janolrclim)'
'cbarc 10.5 8.1'
'draw title Jan Climatological OLR'
'set parea off'
* Generating GIF output file
'printim ex39.gif gif white'

6.2 Language Elements in Scripts

In general, the GrADS's scripts contain the following elements:
\checkmark Comment
\checkmark Statement
\checkmark Assignment
\checkmark say / prompt / pull
\checkmark if / else / endif
\checkmark while / endwhile / break / continue
\checkmark function header / return
$>$ Comment: Comments within the scripts should contain the * symbol in the first column.
$>$ Statement: are the declarations of command lines (expressions in general)
Assignment: a claim generally used in general to set a variable = expression

Concatenation:

'set lat 'minlat\%' '\%maxlat
'set lat 'minlat' 'maxlat

Example 40:

Type / Save the following command lines in an example40.gs and then run it in GrADS ... the result is in the figure to the side.
'set display color white'
'c'
'open gfs_sample.ctl'
minlat $=\mathbf{- 4 0}$
maxlat $=$ minlat +80
minlon $=-20$
maxlon $=55$
'set lat 'minlat\%' '\%maxlat
'set lon 'minlon' 'maxion
'set mpdset hires'
'd pressfc/100'

$>$ say / prompt : is used to provide information or to question the user via the terminal (GrADS prompt), according to the syntax below:

> say 'expression'
> prompt expression

Example 41:

Type / Save the following command lines in an example41.gs and then run it in GrADS ... the result is shown in the figure on the side.

```
expression='Worth lt '
say ''
say ==========================================
say ''
say ' Hujambo !!!'
say ''
say ' Hakuna Matata ... '
say ''
say ' Learning GrADS is well 'expression
say ''
say ' Alavida ... Kwaheri ... Dehina yihunu'
say ''
say '=========================================
say ''
```

```
ga->
ga->
ga-> example41.gs
Hujambo !!!
Hakuna Matata ...
Learning GrADS is well Worth It
Alavida ... Kwaheri ... Dehina yihunu
ga->
```

pull allows to load the information provided by the user through keyboard, with the syntax:
pull variable1 variable2 ...

Example 42:

Type / Save the following command lines in example42.gs and then run it in GrADS ... the result is shown in the figure on the side.

```
'open gfs_sample.ctl'
say '
prompt 'What are Latitudes ?'
pull minlat maxlat
say'
prompt 'What are Longitudes ?'
pull minlon maxlon
'set lat 'minlat%' '%maxlat
'set lon 'minlon' 'maxlon
'd pressfc/100'
```



```
if / else / endif a way to control script execution ... the syntax is:
        if expression
                script record
        Else
        script record
        endif
Example:
if ( }i=10);j=20\mathrm{ ; endif
```

while / endwhile a way to control script execution ... the syntax is:
while expression
script record
endwhile

```
Example 43:
Making a loop in time ...
'open rain_arc_month.ctl '
tt=1
while (tt <= 25)
'set t'tt
'd rain'
'c'
tt = tt + 1
endwhile
```

$>$ Global string variables are variables that are maintained throughout the script. Any variable name starting with an underscore (_) will be assumed to be a global variable, and will keep its value throughout an entire script file. An example of an assignment statement that defines a global string variable is as follows:
_var1 = "global variable 1"

Operators

\| logical OR	!= not equal	\% concatenation
\& logical AND	> greater than	+ addition
! unary NOT	>= greater or equal than	- subtraction
- unary minus	< less than	* multiplication
= equal	<= less or equal than	/ division

Intrinsic functions

strlen(string)	This function returns the length (number of characters) of string.	
sublin (string, n)	This function gets a single line from a string containing several lines. n must be an integer. The result is the \boldsymbol{n} th line of $\boldsymbol{s t r i n g}$. If the string has too few lines, the result is NULL.	
subwrd (string, n)	This function gets a single word from a string. n must be an integer. The result is the nth word of string. If the string is too short, the result is NULL.	
substr (string, start, length)	This function gets part of a string. $\frac{\text { start and length must be an }}{\underline{\text { integer }}}$ The sub-string of string starting at location start for length length will be returned. If the string is too short, the result will be short or NULL.	
read (filename)	This function reads individual records from file filename. Repeated calls must be made to read consecutive records. The record may be a maximum of 80 characters.	
	The result is a string containing two lines. Use the sublin function to separate the result.	the first line is the return code,
		the 2nd line is the record read from the file.
	Return codes are:	0 - ok 1 - open error 2 - end of file 8 - file open for write 9-I/O error
	Files are opened when the first call to read is made for a particular file name. Files are closed when the execution of the script file terminates (note that files remain open between function calls, etc).	
	This function writes records to output file filename.	
write (filename, record <, append>)	On the first call to write for a particular file, the file is opened in write mode. This will destroy an existing file! If you use the optional append flag, the file will be opened in append mode, and all writes will be appended to the end of the file	
	Return codes are:	$\begin{aligned} & 0 \text { - ok } \\ & 1 \text { - open error } \\ & 8 \text { - file open for read } \end{aligned}$
close (name)	This function closes the named file.	
	This must be done if you wish to read from a file you have been writing to. This can also be used to rewind a file.	
	Return codes are:	$\begin{aligned} & 0 \text { - ok } \\ & 1 \text { - file not open } \end{aligned}$

Complementary commands

query < option> or q < option>	The query command allows the user to get information about a variety of aspects of the current GrADS session. Configuration, plot characteristics, graphics specifics, and file structure are some examples.
q define	Lists currently defined variables
q defval v1ij	Returns the value of defined variable v1 at point i,j
q dims	Returns current dimension environment
q file n	Returns info on file number n . Uses the default file if n is not given.
q files	Lists open files
q fwrite	Returns status and characteristics of fwrite ouput file
q gxinfo	Returns graphics environment info
q gxout	Returns current gxout settings
q pos	Waits for mouse click, then returns position plus additional widget information
q shades	Lists colors and levels of shaded contours
q time	Returns info about time setting
q xy2w v1 v2	Converts XY coords to world cords
q xy2gr v1 v2	Converts XY coords to grid cords
q w2xy v1 v2	Converts world coords to XY cords
q w2gr v1 v2	Converts world coords to grid cords
q gr2w v1 v2	Converts grid coords to world cords
q gr2xy v1 v2	Converts grid coords to XY cords

6.3 Application examples and exercises

Example 44: Calculating climatology and plotting anomalies ...

*** The script starts here $* ~$

'reinit'

'open rain_arc_month.ctl '

* New color script
'color'
*Coordinates of the African region
'set lat -40 40'; 'set lon -20 55'
*===== Define rainfall monthly climatology mean
*===== for the 34 years of records $==========$
'define janrainclim=ave(rain.1, $t=1, t=408,12$)'
*'define febrainclim=ave(rain.1, $t=2, \mathrm{t}=408,12$)'
*'define marrainclim=ave(rain.1, $t=3, t=408,12$)
* plot rainfall anomalies
'set parea $5.910 .908 .5^{\prime}$
'set grads off'; 'set grid off'
'set mpdset hires'; 'set map 151 1'
'set gxout shaded'
'set ccols 2928272625242322210515253545556575859 ' 'set clevs -50 -40-35-30-25-20-15 -10 -5 510152025303540 50' 'd smth9(rain.1(time=jan2000)-janrainclim)'
'set gxout contour'; 'set clab off'; 'set ccolor 1'
'set clevs -50 -40-35-30 -25-20 -15-10 -5 510152025303540 50' 'd smth9(rain.1(time=jan2000)-janrainclim)'
'draw title Jan 2000 rainfall anomalies'
'cbarc 10.98 .1
'set parea off'
*close the .ctl file 1
'close 1'

'open olr month.ctl '

*Coordinates of the African region
'set lat -40 40'; 'set lon -20 55'

* ===== Define olr monthly climatology mean
*===== for the 34 years of records $========$
'define janolrclim=ave(olr.1, $\mathrm{t}=1, \mathrm{t}=408,12$)'
*'define febolrclim=ave(olr.1, $t=2, t=408,12$)'
*'define marolrclim=ave(olr.1, $t=3, t=408,12$)

* plot OLR

set parea $0.55 .508 .5^{\prime}$
'set gxout shaded'
'set ccols 2928272625242322210515253545556575859 ' 'set clevs -50 -40-35-30 -25 -20 -15 -10 -5 51015202530354050 d smth9(olr.1(time=jan2000)-janolrclim)'
'set gxout contour'; 'set clab on'; 'set ccolor 1'
set clevs -50-40-35-30-25-20-15-10-5 51015202530354050 d smth9(olr.1(time=jan2000)-janolrclim)'

cbarc 5.5 7.5'

draw title Jan OLR anomalies'
'set parea off'

'q time'

res = subwrd(result,3)
mthyear $=\operatorname{substr}($ res, 6,7$)$
set strsiz 0.20 .5
draw string 0.5 8.1 Anomalies in ' mthyear

* Generating GIF output file
'printim ex44.gif gif white'

7 ADDITIONAL TOPICS

7.1 The Template Option
7.2 Generating binary files with fwrite
7.3 Creating a Mask

