Introduction to GrADS

Eleventh International Training Workshop Climate Variability and Predictions (11ITWCVP) Ankara, Turkey, April 2019

> Endalkachew Bekele NOAA/CPC/International Desks

Outline

- GrADS Tutorial Files
- Introduction
- GrADS Control/Descriptor File
- Displaying Variables
- GrADS Script
- Exercises

1. GrADS Tutorial Files

- Make sure you have the GrADS tutorial files on your machine
- Use your Cygwin/linux terminal to download files:

curl –o <u>ftp://ftp.cpc.ncep.noaa.gov/International/11ITWCVP_Ankara2019/Endalk/grads_excercise.tar.gz</u> wget <u>ftp://ftp.cpc.ncep.noaa.gov/International/11ITWCVP_Ankara2019/Endalk/grads_excercise.tar.gz</u>

• Unpack the files, using:

tar -xvf grads_excercise.tar.gz

• Move to the GrADS Exercise directory:

cd grads_excercise,

Type **Is** to see list of the files:

```
cbar.gs gfs_sample.ctl
define_colors.gs gfs_sample.grb2
gefs_precip_weekl_20190127.ctl gfs_sample.grb2.idx
gefs_precip_weekl_20190127.dat gribmap.exe*
gefs_Precip_weekl_week2_climo.ctl model.ctl
gefs_Precip_weekl_week2_climo.dat model.dat
```

2. Introduction

- •GrADS Grid Analysis and Display System
 - Used for analyzing and displaying gridded data
- Advantages of using GrADS
 - Free
 - Easy to install and use
 - Very good documentation and users support (<u>http://cola.gmu.edu/grads/gadoc/gadocindex.html</u>)
- Input files
 - Binary
 - GRIB (WMO standard Gridded Binary)
 - Data with Self descriptive files such netcdf
 - OPeNDAP and GDS based data Remote/online access of metedata and subset of data ... you can open access and analyze data with out downloading it to your local computer:

https://nomads.ncep.noaa.gov:9090/dods/gfs_0p50/gfs20190415/gfs_0p50_00z

3. GrADS Control/Descriptor File

•GrADS requires an intermediate file to open a regular binary or GRIB data

•This intermediate file in text format is known as control or descriptor file

•It contains meta information about the main binary or GRIB data:

–Data file name

-Vertical and horizontal dimension

–Time dimension

-Ensemble dimension

-List of variables in the file

Change directory to grads_tutorial folder

cd grads_excercise

•Using npp (cygwin users) or gedit (Linux users) open model.ctl npp model.ctl& or gedit model.ctl&

3. GrADS Control/Descriptor File (Cont.)

DSET ^model.dat name of the main binary file
OPTIONS little_endian Data byte order (default is little_endian)
UNDEF -2.56E33 missing value
TITLE 5 Days of Sample Model Output Data title
XDEF 72 LINEAR 0.0 5.0longitude dimension and grid resolution
YDEF 46 LINEAR -90.0 4.0Latitude dimension and grid resolution
ZDEF 7 LEVELS 1000 850 700 500 300 200 100 vertical dimension and resolution
TDEF 5 LINEAR 02JAN1987 1DY Time dimension
VARS 8 Number of variables
ps 0 99 Surface Pressure
u 7 99 U Winds
v 7 99 V Winds
hgt 7 99 Geopotential Heights
tair 7 99 Air Temperature
q 5 99 Specific Humidity
tsfc 0 99 Surface Temperature
p 0 99 Precipitation
ENDVARS

4. Displaying Variables

- On your cygwin/Linux terminal, type Is to see list of files, and make sure that model.dat (the main binary file) and mode.ctl (its descriptor or control) files are available.
- Type grads –p to initiate the grads package, with a portrait oriented display window

The display window opens

- Type GrADS commands in logical order
 - open model.ctl
 - q file
 - ps 0 99 Surface Pressure
 - u 7 99 U Winds
 - v 7 99 V Winds
 - hgt 7 99 Geopotential Heights
 - tair 7 99 Air Temperature
 - q 5 99 Specific Humidity
 - tsfc 0 99 Surface Temperature
 - p 0 99 Precipitation

- Type GrADS commands in logical order
 - **d ps** (displays surface pressure plots on the display window)
 - set geographical domain for your country
 - Set lat 4 22

Set lon 116 127

- Type c to clear the plot on the display window before we make another plot
- Type **d ps**
- Instead surface pressure, plot rainfall for Jan 4, 1987

- Type GrADS commands in logical order
 - C
 - set t 3 or set time 4jan1987
 - d p
 - The rainfall unit in this data is mm/sec, and need to change it to mm/day
 - Туре **с**
 - d p*60*60*24

- Type GrADS commands in logical order
 - Type Set gxout shaded to change the graphics output from contour to shaded colors
 - Type set mpdset hires to add high resolution boundary map to your display, and type c to clear the previous display
 - d p*60*60*24
 - Type **cbar** to add color legend to your plot
 - Type set display color white to change display background color to white
 - Clear the previous display, and redisplay it to reflect the new changes (c; d p*60*60*24; cbar)

- Type GrADS commands in logical order
 - Type set grads off to remove GrADS logo and dates in the display window and redisplay (c; d p*60*60*24; cbar)
 - Use our own color scale
 - RGB based color definitions in opengrads
 - 21 to 29 gives light yellow to dark red
 - **31 to 39 light green to dark green**
 - 41 to 49 light blue to dark blue
 - 71 to 79 light brown to dark brown

- Type GrADS commands in logical order
 - Type define_colors to activate the RGB color definition script on your current display
 - Clear the previous display and remove the GrADS logo
 (c; set grads off)
 - Type set clevs 3 6 9 12 16 18 21 24 27 30 to define contour levels for your display
 - Type set ccols 0 32 34 36 44 46 21 23 25 27 29 to enter the color of your choice
 - redisplay (d p*60*60*24; cbar)

```
'open model.ctl'
'set lat 4 22'
'set lon 116 127'
'set display color white'
'c'
'set mpdset hires'
'set gxout shaded'
'set grads off'
'define colors'
'set clevs 3 6 9 12 15 18 21 24 27 30'
'set ccols 0 32 34 36 44 46 21 23 25 27 29'
'd p*60*60*24'
'cbar'
'draw title Daily rainfall; valid Jan 4, 1987'
'printim test.png'
```

5. GrADS Script

Use your npp or gedit to type the following GrADS commands,: npp grads_test1.gs or gedit grads_test1.gs

```
'open model.ctl'
'set lat 4 22'
'set lon 116 127'
'set display color white'
'c'
'set mpdset hires'
'set gxout shaded'
'set grads off'
'define colors'
'set clevs 3 6 9 12 15 18 21 24 27 30'
'set ccols 0 32 34 36 44 46 21 23 25 27 29'
'd p*60*60*24'
'cbar'
'draw title Daily rainfall; valid Jan 4, 1987'
'printim test.png'
   Save and Exit
٠
```

5. GrADS Script (cont)

- On your terminal, type Is to check if your grads_test1.gs file is available
- Run your GrADS script in portrait display orientation
 grads -pc grads_test1.gs

Exercise 1 (questions)

- 1. From the grads_tutorial directory, use your text editor (npp or gedit) to open gfs_sample.ctl, and examine structure of the data (its dimension, variable names ...)
- 2. Write two GrADs scripts that display horizontal wind divergence at 850-hPa and 200-hPa over your country, for 12Z of Aug 15, 2017.
 - Overlay wind vectors on your divergence plot
 - Use your own color definitions
 - Please refer to GrADS documentation page for a reference
 - Use 1e05 factor to have unit scale conversion in the divergence plot

Exercise 1 (Answer)

'open gfs_sample.ctl' 'set lat -10 40' 'set lon 90 140' 'set display color white' 'C' 'set mpdset hires' 'set gxout shaded' 'set grads off' 'define_colors' 'set lev 850' 'set time 12Z15aug2017' 'set clevs -8 -6 -4 -2 2 4 6 8' 'set ccols 49 47 45 43 0 63 65 67 69' 'd hdivg(ugrdprs,vgrdprs)*1e05' 'd skip(ugrdprs,3,3);vgrdprs' 'cbar' 'draw title 850-hPa Wind and Divergence; 12Z Aug 15 2017'

'printim div_850.png'

Exercise 1 (Answer)

'open gfs_sample.ctl' 'set lat -10 40' 'set lon 90 140' 'set display color white' 'C' 'set mpdset hires' 'set gxout shaded' 'set grads off' 'define colors' 'set lev 200' 'set time 12Z15aug2017' 'set clevs -8 -6 -4 -2 2 4 6 8' 'set ccols 69 67 65 63 0 43 45 47 49' 'd hdivg(ugrdprs,vgrdprs)*1e05' 'd skip(ugrdprs,3,3);vgrdprs' 'cbar' 'draw title 200-hPa Wind and Divergence; 12Z Aug 15 2017'

'printim div_200.png'

Exercise 2 (question)

- Use the following files in this exercise: gefs_precip_week1_20190127.ctl gefs_precip_week1_20190127.dat gefs_Precip_week1_week2_climo.ctl gefs_Precip_week1_week2_climo.dat
 - Write two GrADs scripts that plot GEFS week-1 total rainfall forecast and GEFS rainfall forecast anomaly for a week of 27 January 2019 (week that begins on January 27, 2019)

'open gefs Precip week1 week2 climo.ctl' 'set lat 4 22' 'set lon 116 127' 'set time 27jan' 'define clm=week1' 'close 1' 'open gefs precip week1 20190127.ctl' 'set lat 4 22' 'set lon 116 127' 'set time 27jan2019' 'define for=rain' 'set display color white' 'c' 'set mpdset hires' 'set gxout shaded' 'set grads off' 'define colors' 'set clevs 10 12 30 40 50 60 70 80 90 100' 'set ccols 0 32 34 36 44 46 21 23 25 27 29' 'd for' 'cbar' 'draw title GEFS Week-1 Total; valid Jan 27-Feb 2 2019' 'printim total.png'

'open gefs_Precip_week1_week2_climo.ctl' 'set lat 4 22' 'set lon 116 127' 'set time 27jan 'define clm=week1' 'close 1' 'open gefs_precip_week1_20190127.ctl' 'set lat 4 22' 'set lon 116 127' 'set time 27jan2019' 'define for=rain' 'define anom = for - clm''set display color white' 'c' 'set mpdset hires' 'set gxout shaded' 'set grads off' 'define colors' 'set clevs -50 -40 -30 -20 -10 10 20 30 40 50' 'set ccols 79 77 75 73 71 0 31 33 35 37 39' 'd anom' 'cbar' 'draw title GEFS Week-1 Anomaly; valid Jan 27-Feb 2 2019' 'printim anom.png'