MJO and Other Tropical Equatorial Waves

WMO RCC Training Workshop

Jon Gottschalck Chief, Operational Prediction Branch NOAA / NWS / NCEP / Climate Prediction Center

> September 30, 2019 NCWCP

<u>Outline</u>

• MJO

- ✓ Characteristics, structure, dynamics
- ✓ Monitoring
- ✓ Prediction skill
- ✓ Impacts
- Atmospheric Kelvin and Equatorial Rossby Waves
 ✓ Overview, characteristics
 ✓ Monitoring and Predictions
- Available Operational MJO assessments

Madden-Julian Oscillation

MJO Characteristics

- The MJO is an intraseasonal "wave" originating in the Tropics
- The MJO results in changes in atmospheric and oceanic variables
 - Lower- and upper-level wind
 - Cloudiness and tropical rainfall
 - Sea level Pressure
 - Sea surface temperature (SST)
 - Ocean surface evaporation
 - Ocean chlorophyll
- <u>Typical</u> period of the MJO cycle is approximately 30-60 days
- Acts on a global spatial scale
- Coherent eastward propagation (EH 5 m/s and WH 15 m/s)

MJO Characteristics

<u>Courtesy</u>: Adrian Matthews, Univ. East Anglia, UK

Schematic of Three-Dimensional MJO Structure

Rui and Wang 1990

Rainfall Composite of MJO Lifecycle

Green areas

Above normal rainfall Enhanced convective phase of MJO

Brown areas

Below normal rainfall Suppressed convective phase of MJO

200-hPa Velocity Potential Animation

<u>Time-Longitude Diagram – Outgoing Longwave Radiation (OLR)</u>

5°N – 5 °S Average Eastward Propagation

Blue shades Enhanced convection Increased rainfall Negative anomalies

Red/Yellow shades Suppressed convection Decreased rainfall Positive anomalies

Spatial Distribution – 850-hPa Zonal Winds

Enhanced convective phase of MJO centered over eastern Indian Ocean
Boxes indicate enhanced westerly (red) and easterly (blue) anomalies
Low-level convergence (black circle)

Spatial Distribution – 200-hPa Zonal Winds

- Enhanced phase of MJO (black circle) centered across Indonesia
 Anticyclonic (A) and cyclonic (C) circulations straddling anomalous tropical convection
- •Westerly anomalies over the eastern equatorial Pacific Ocean (red box)

Pressure-Time Cross Section Anomalous Specific Humidity

(b) Pressure - Time Cross-section -- 10N-10S and 75E-85E Anomalous U-W (streamlines), Specific Humidity (shaded) (g/kg) JAN 01 2012 -- APR 30 2012

<u>MJO Index – RMM</u>

-15

-12

180

3

Û

120W

6

60W

12

g

15

6DE

-6

-9

12DE

-3

Wheeler and Hendon, 2004

- EOF analysis (OLR, 850/200-hPa zonal winds)
- Index based on first 2 modes

MJO Index – 200-hPa Velocity Potential

--Strong lagging index

Interannual Variability of the MJO – RMM

There is strong year to year variability in MJO activity

This interannual variability may be partly linked to the ENSO cycle

<u>Grey areas</u> are "active" MJO periods

<u>Courtesy</u>: Australia CAWCR

http://cawcr.gov.au/staff/mwheeler/maproom/RMM/ts.PCvar91drm.gif

MJO Prediction – Overview

• The MJO is predictable at a forecast lead time ranging from 10-35 days depending on the forecast method and skill metric used

- Considerable portion of the forecast skill comes from established ongoing events
- Transitions (MJO onset/decay) remain a challenge at times, but progress has been made regarding MJO onset in part by major efforts such as the DYNAMO field campaign (2011-2012)
- Both statistical and dynamical model predictions are available

MJO Prediction – Baseline Forecast Skill

Kang and Kim, 2010

MJO Prediction – CFS / ECMWF Forecast Skill

MJO Prediction – S2S Models Forecast Skill

(top) RMM bivariate correlation for all seasons for the 1999-2010 overlapping reforecast period for various S2S contributing forecast models

(bottom) RMM bivariate correlation for extended winter days only for same reforecast period denoted above (Dec-Mar)

Vitart et al. 2017

Operational Realtime Dynamical Model Prediction

- Application of Wheeler and Hendon (2004) MJO index methodology to dynamical model data from operational international centers
- Uniform approach for comparison and skill assessment
- Realtime forecasts

Differences in:

(1) Ensemble spread(2) Propagation speed(3) Amplitude

Gottschalck et al. 2010

http://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/CLIVAR/clivar_wh.shtml

MJO Prediction – Realtime Forecast Skill

MJO Prediction – Realtime Forecast Skill

Keyed to Initial Phase

Ensemble Mean Forecasts

ECMF

0.5 0.6

MJO Phose

0.7

0.8 0.85 0.9

Forecast Lead (Days)

MJO Impacts – ENSO

- The MJO has been shown to modulate the intensity, timing and duration of ENSO events
- These interactions occur both at and below the ocean surface

<u>Surface</u>: Low-level wind anomalies associated with phases of the MJO can significantly alter the pattern of SSTs in the Pacific

SST Anomalies

MJO Impacts – ENSO

<u>Below the Surface</u>: Weakening of the low-level easterlies across the western-central Pacific often lead to oceanic Kelvin waves

MJO Impacts – Tropical Cyclones

MJO phase (by 850 hPa Wind Anomalies) and Tropical Cyclone Tracks

Maloney and Hartmann 2000

MJO Impacts – Monsoons

MJO Impacts – Lagged 200-hPa Height Composites

MJO Impacts – Extratropical Circulation

CDAS 200-hPa HT Anoms (11d rm) 27DEC2008

Other Equatorial Subseasonal Waves

Theoretical Depictions of Kelvin/ER Waves

<u>Typical MJO – KW – ER Relationships</u>

OLR – Many Eastward/Westward Moving Features

MJO enhanced phase:

Higher-frequency coherent tropical variability is included in the MJO Atmospheric Kelvin waves (green) and equatorial Rossby waves (black)

> "Envelope" of all of these convective elements (large and small, fast or slow) is what travels eastward with time (black dashed line)

OLR and Rainfall – Other Modes

Courtesy: Carl Schreck, North Carolina Institute for Climate Studies

Courtesy: Carl Schreck, North Carolina Institute for Climate Studies

Available Operational Assessments

CPC MJO Weekly Update

http://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/mjoupdate.pdf

Madden-Julian Oscillation: **Recent Evolution.** Current **Status and Predictions**

Update prepared by **Climate Prediction Center / NCEP** December 3, 2007

Overview

- IO has strengthened to a moderate level during the past week
- e has shifted eastwards and is now centered in the western phere while large-scale suppressed convection is evident across much of the
- rate strength for at least the next week with en
- Maritime continent into the western Pacific Ocean.
- ort-term cold across eastern areas. MJO associated im

• Review of weekly changes in the MJO

 Includes some of the monitoring and prediction products described here

- Provides an assessment in compact form
- •Anticipated evolution and impacts of the MJO during the next 2 weeks
- Released every Monday ~ 4 PM ET

Below-average rainfall

Above-normal temperatures

Below-normal temperatures

Weekly total rainfall in the lower third of the historical range.

7-day mean temperatures in the upper third of the historical range.

7-day mean temperatures in the lower third of the historical range.

Product is updated once per week, except from 6/1 - 11/30 for the region from 120E to 0, 0 to 40N. The product targets broad scale conditions integrated over a 7-day period for US interests only. Consult your local responsible forecast agency.

Thank You for Your Attention

Jon.Gottschalck@noaa.gov

MJO Onset and Maintenance

• The mechanisms for MJO onset and subsequent maintenance have not been well understood

- Initiation is likely a result of complex interactions
 - (1) between atmosphere and ocean
 - (2) across multiple temporal and spatial scales
 - (3) across regional boundaries

No one theory completely explains the mechanisms for the period, zonal scale and eastward propagation of the MJO

Two types of theories:

Independent external forcing: Stationary intraseasonal oscillations in Asian monsoon, stochastic forcing, extratropical disturbances

Internal MJO mechanisms driven: Complex air-sea interactions initiate MJO, varying temporal / spatial scales of convection interact and organize MJO

- •Experiment to better understand the mechanisms for MJO onset
- •Extensive instrumentation was deployed and subsequent diagnostic and modeling research ongoing
- •Sounding data was included into operational modeling centers ingest

What is DYNAMO?

DYNAMO – Dynamics of the Madden-Julian Oscillation (MJO) – is a US research program for improving our understanding of MJO initiation and our capability of forecasting it.

