Introduction to GrADS

First International Training Workshop WMO RCC-Washington

NOAA's CPC International Desks

Washington, USA, 30 September – 4 October 2019

GrADS

Grid Analysis and Display System – GrADS

• GrADS is an interactive software to manipulate and visualize geophysical data.

Graphic window

Command window (console or terminal)

GrADS

- GrADS works with data sets in different formats, including binary (.dat), GRIB (.grib), NetCDF (.nc), etc.
- It works with 2 main files:
 - data file (example: *name_file.dat*)
 - descriptor file (example: *name_file.ctl*)

Download directory

1. Download the directory introduction_grads.zip from the NOAA's CPC ftp server wget --no-check-certificate https://ftp.cpc.ncep.noaa.gov/International/usrcc/training/2019/day3/ introduction_grads.zip

2. List files/directories

ls

3. Unzip the directory *introduction_grads* unzip introduction_grads.zip -d introduction_grads

4. List files/directories

ls

5. Go to the directory introduction_grads
cd introduction_grads

6. List files/directories

ls

Descriptor file: cmorph.ctl

Descriptor files (.ctl) are text-type files, in which all specifications of the dimension of data file are described.

Open the descriptor file *cmorph.ctl* (add & enables to open gedit in background and allow you to continue to use the terminal at the same time)

Linux:gedit cmorph.ctl & Cygwin:npp cmorph.ctl &

dset ^cmorph.dat title Sample of CMORPH Daily Preci	bin ipitation	ary data file	
undef -999.0	-		
xdef 1440 linear 0.125 0.25	cover the world		
ydef 480 linear -59.875 0.25	with a spatial resolution of 0.25° x 0.25°		
zdef 1 levels 1			
tdef 61 linear 01Sep2017 1dy vars 1	daily data from 01 September to 31 October 2017		
precip 1 99 CMORPH Daily Precipita endvars	tion [mm]	1 variable	

Open the descriptor file in GrADS

1. Open GrADS grads -1

2. Open the file *cmorph.ctl*

open cmorph.ctl

```
ga-> open cmorph.ctl
Scanning description file: cmorph.ctl
Data file cmorph.dat is open as file 1
LON set to 0 360
LAT set to -59.875 59.875
LEV set to 1 1
Time values set: 2017:9:1:0 2017:9:1:0
E set to 1 1
```

Query information about the current file

3. Get information about the file

query file or q file

```
ga-> query file
File 1 : Sample of CMORPH Daily Precipitation
Descriptor: cmorph.ctl
Binary: cmorph.dat
Type = Gridded
Xsize = 1440 Ysize = 480 Zsize = 1 Tsize = 61 Esize = 1
Number of Variables = 1
precip 1 99 CMORPH Daily Precipitation [mm]
```

4. Get more information about the file query ctlinfo or q ctlinfo

```
ga-> query ctlinfo
dset cmorph.dat
title Sample of CMORPH Daily Precipitation
undef -999
xdef 1440 linear 0.125 0.25
ydef 480 linear -59.875 0.25
zdef 1 linear 1 1
tdef 61 linear 00Z01SEP2017 1440mn
vars 1
precip 1 99 CMORPH Daily Precipitation [mm]
endvars
```

Change the time

5. Set the first time step set t 1

6. Set the second time step set t 2

7. Set the latest time step set t last

8. Set time 11 October 2017 set time 11Oct2017

9. Set time 11 October 2017 set t 41

2 ways to set the time

set time daymonthyear

set t number

Display a variable

10. Display precipitation field display precip or d precip

What day corresponds the precipitation fields? → 11 October 2017 set time stays until changed

Exercise 1 Change the time

11. Set time 12 September 2017 set time 12Sep2017

12. Display precipitation d precip

The precipitation fields are overlapped!

13. Delete the plot clear or c

14. Display precipitation d precip

Precipitation of 11 October 2017 (purple contours) and 12 September 2017 (white contours)

Precipitation of 12 September 2017

Remove black background

15. Remove the black background

set display color white

С

16. Display precipitation d precip

Precipitation of 12 September 2017

Precipitation of 12 September 2017

Make an animation

17. Delete plot

clear or c

18. Set time from 01 September 2017 to 15 September 2017 set time 01Sep2017 15Sep2017

19. Display precipitation

d precip

Display variable at a given grid point

20. Delete plot clear or c

21. Set time 13 October 2017 set time 13Oct2017

22. Set the latitude at 19.375°N set lat 19.375

23. Set the longitude at 99.125°W set lon -99.125

24. Display precipitation d precip

You should get one value.

ga-> set time 130ct2017 Time values set: 2017:10:13:0 2017:10:13:0 ga-> set lat 19.375 LAT set to 19.375 19.375 ga-> set lon -99.125 LON set to -99.125 -99.125 ga-> d precip Result value = 0.288889

Display variable for a spatial domain

25. Delete the plot clear or c

26. Set time 21 September 2017 set time 21Sep2017

27. Change the latitude and longitude

set lat 0 35 set lon -120 -40

28. Display precipitation d precip

Function sum

29. Delete the plot clear or c

30. Plot the 7-day accumulated precipitation between 1 October 2017 and 7 October 2017

d sum(precip, time = 01Oct2017, time = 07Oct2017)

Option *minimum values*

31. Delete the plot clear or c

32. Display 7-day accumulated precipitation above 75 mm between 1 October 2017 and 7 October 2017

set cmin 75
d sum(precip, time = 010ct2017, time = 070ct2017)

cmin option stay until **clear** command is issued

Exercise 1 Shaded areas

33. Delete the plot clear or c

cmin option stay until **clear** command is issued

34. Set graphic type as shaded contour plot set gxout shaded

35. Display the 7-day accumulated precipitation between 1 October 2017 and 7 October 2017

d sum(precip, time = 01Oct2017, time = 07Oct2017)

36. Add the color bar cbar

Shaded areas

37. Delete the plot clear or c

38. Plot the 7-day accumulated precipitation above 100 mm from 15 September to 21 September 2017.

set cmin 100 d sum(precip, time = 15Sep2017, time = 21Sep2017) cbar

Exercise 1 Add title and save map

39. Add a title

draw title 7-day accumulated precipitation 15-21 Sep. 2017

40. Save your map as .png printim 7day precip sep2017.png

41. Close the file close 1

42. Exit GrADS quit

43. List files/directories **ls**

44. Check your plot display 7day_precip_sep2017.png

Summary – Basic GrADS commands

- **open** command opens a file (.dat) in GrADS.
- **query** or **q** command allows the user to get information about the current GrADS session.

example: q file or q ctlinfo

 set command specifies when, where and how options. example: when - set time 14Oct2018 where - set lat 20 how - set gxout shaded

- **display** or **d** command enables to display a variable graphically.
- **clear** or **c** command clears the graphic window.
- quit command enables to exit GrADS session.

Descriptor file: reanalysis.ctl

Open the descriptor file *reanalysis.ctl* Linux: gedit reanalysis.ctl & Cygwin: npp reanalysis.ctl &

```
dset ^reanalysis.dat
title Sample of NCEP Reanalysis Data
undef 9.999E+20
xdef 161 linear -120 0.5
                               cover the spatial from (0 - 35^{\circ}N; 120^{\circ}W - 40^{\circ}W)
                                    with a spatial resolution of 0.5° x 0.5°
ydef 71 linear 00.5
tdef 32 linear 00Z15Sep2017 6hr
zdef 10 levels 1000 925 850 700 600 500 400 300 250 200
vars 4
TMP2m 099 2m above ground Temperature [K]
HGTprs 10 99 Geopotential Height [gpm]
UGRDprs 10 99 U-Component of Wind [m/s]
VGRDprs 10 99 V-Component of Wind [m/s]
endvars
```

Open several files in GrADS

1. Open GrADS grads -1

2. Open the file cmorph.ctl

open cmorph.ctl

```
ga-> open cmorph.ctl
Scanning description file: cmorph.ctl
Data file cmorph.dat is open as file 1
LON set to 0 360
LAT set to -59.875 59.875
LEV set to 1 1
Time values set: 2017:9:1:0 2017:9:1:0
E set to 1 1
ga-> open reanalysis.ctl
```

3. Open the file *reanalysis.ctl*

open reanalysis.ctl

```
ga-> open reanalysis.ctl
Scanning description file: reanalysis.ctl
Data file reanalysis.dat is open as file 2
```

Query information about the files

4. Get more about the first file (*cmorph.ctl*) opened in GrADS q ctlinfo 1

```
ga-> q ctlinfo 1
dset cmorph.dat
title Sample of CMORPH Daily Precipitation
undef -999
xdef 1440 linear 0.125 0.25
ydef 480 linear -59.875 0.25
zdef 1 linear 1 1
tdef 61 linear 00Z01SEP2017 1440mn
vars 1
precip 1 99 CMORPH Daily Precipitation [mm]
endvars
```

cmorph.ctl

- spatial domain: global
- spatial resolution: 0.25° x 0.25°
- temporal resolution: 1440 min = 1 day
- starting date: 01 September 2017 at 00Z

5. Get more about the second file (*reanalysis.ctl*) opened in GrADS q ctlinfo 2

```
ga-> q ctlinfo 2
dset reanalysis.dat
title Sample of NCEP Reanalysis Data
undef 9.999e+20
xdef 161 linear -120 0.5
ydef 71 linear 0 0.5
zdef 10 levels 1000 925 850 700 600 500 400 300
250 200
tdef 32 linear 00Z15SEP2017 360mn
vars 4
tmp2m 0 99 2m above ground Temperature [K]
hgtprs 10 99 Geopotential Height [gpm]
ugrdprs 10 99 U-Component of Wind [m/s]
vgrdprs 10 99 V-Component of Wind [m/s]
endvars
```

reanalysis.ctl

- spatial domain: 0 35°N; 120°W 40°W
- spatial resolution: 0.5° x 0.5°
- temporal resolution: 360 min = 6 h
- starting date : 15 September 2017 at 00Z

Change time

6. Set the first time step set t 1

By default, GrADS refers to the first file (cmorph.ctl) opened in GrADS!

7. Refers to the second descriptor file *reanalysis.ctl* set dfile 2

8. Set the first time step set t 1

9. Set the first time step set t 2

10. Set the last time step set t last

Change spatial domain

11. Remove black background

set display color white

С

12. Refer to the first file *cmorph.ctl* set dfile 1

13. Define the following geographical domain set lat 0 35 set lon -120 -40

Define and display the variable *rain*

14. Define a variable *rain* as the 7-day accumulated rainfall from 15 September to 21 September 2017 from the file *cmorph.ctl*

define rain = sum(precip.1, time = 15Sep2017, time = 21Sep2017)

15. Display the variable *rain*

d rain

Exercise 2 Shaded area

16. Delete the plot

С

17. Set graphic type as shaded contour plot set gxout shaded

18. Display the variable *rain* d rain

19. Add the color bar cbar

Define variables of wind components at different levels

20. Delete the plot

С

21. Refer to the second file *reanalysis.ctl* set dfile 2

22. Set the level 850 hPa

set lev 850

23. Define a variable *u850* as the averaged zonal wind at 850 hPa define u850 = ave(ugrdprs.2, time = 00Z15sep2017, time = 18Z21sep2017)

24. Define a variable *v850* as the averaged meridian wind at 850 hPa define v850 = ave(vgrdprs.2, time = 00Z15sep2017, time = 18Z21sep2017)

25. Set the level 200 hPa set lev 200

26. Define a variable *u200* as the averaged zonal wind at 200 hPa define u200 = ave(ugrdprs.2, time = 00Z15sep2017, time = 18Z21sep2017)

27. Define a variable *v200* as the averaged meridian wind at 200 hPa define v200 = ave(vgrdprs.2, time = 00Z15sep2017, time = 18Z21sep2017)

Display wind as vector arrows

28. Display wind at 850 hPa as vector arrows d u850;v850

29. Delete the plot

С

30. Display wind at 200 hPa as vector arrows d u200;v200

850 hPa Wind

200 hPa Wind

Display wind as vector arrows

31. Clear the plot

С

32. Display the wind at 850 hPa every 5th grid point in the longitude and every 4th grid point in the latitude d skip(u850,5,4);v850

Display wind as barb

33. Clear the plot

С

34. Set graphic type as barb set gxout barb

set gxout stays until changed

35. Display every 5th grid point in the longitude and every 4th grid point in the latitude d skip(u850,5,4);v850

Display wind as stream lines

36. Clear the plot

С

37. Set graphic type as stream lines set gxout stream

38. Display wind at 850 hPa

d u850;v850

set gxout stays until changed

Display wind as stream lines

39. Overlap on the wind at 850 hPa, the wind at 200 hPa with green *(ccolor)* thick *(cthick)* long dash *(cstyle)* lines

set ccolor ? \rightarrow set ccolor 3set cthick ? \rightarrow set cthick 6set cstyle ? \rightarrow set cstyle 2d u200;v200

Line thickness

The *thickness* arg must

be an integer in the

range of 1 to 12

Line styles Ø - no contours

- $\delta \text{no contou}$
- 1 solid
- 2 long dash
- 3 short dash
- 4 long dash, short dash
- 5 dotted
- 6 dot dash
- 7 dot dot dash

Overlap precipitation and wind fields

40. Delete the plot

С

41. Plot the variable *rain*, overlap wind field at 850 hPa as vector arrows and add the color bar

d rain set gxout vector d skip(u850,5,4);v850 cbar set gxout stays until changed

Display temperature fields

42. Delete the plot

С

43. Define a variable *tmp* as the mean temperature from 15 September to 21 September 2017

```
define tmp = ave(tmp2m.2, time = 00Z15sep2017, time = 18Z21sep2017)
```

44. Display the variable *tmp*

d tmp

Display temperature fields

46. Delete the plot

С

47. Define a variable *t2m* as the mean temperature in degree celsius, from 15 September to 21 September 2017 define t2m = ave(tmp2m.2 - 273.15, time = 00Z15sep2017, time = 18Z21sep2017)

48. Display the temperature *t2m* d t2m

49. Add the color bar cbar

Display a cross section of geopotential height

50. Delete the plot

С

51. Set the time on 15 September 2017 at 00UTC set time 00Z15Sep2017

52. Plot a cross section of the geopotential height at 12°N

set lat 12 set lon -120 -40 set lev 1000 200 set gxout contour d hgtprs.2

Display a cross section of geopotential height

53. Delete the plot

С

54. Set logarithm scaling of the z dimension set zlog on

55. Plot a cross section of the geopotential height at 12°N d hgtprs.2

56. Add label on the x-axis draw xlab Longitude

57. Add label on the y-axis draw ylab Pressure level (hPa)

58. Add title draw title Geopotential height at 12N

